年终活动
搜索
    上传资料 赚现金

    2022届四川省成都市中考数学最后冲刺浓缩精华卷含解析

    立即下载
    加入资料篮
    2022届四川省成都市中考数学最后冲刺浓缩精华卷含解析第1页
    2022届四川省成都市中考数学最后冲刺浓缩精华卷含解析第2页
    2022届四川省成都市中考数学最后冲刺浓缩精华卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届四川省成都市中考数学最后冲刺浓缩精华卷含解析

    展开

    这是一份2022届四川省成都市中考数学最后冲刺浓缩精华卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,方程的根是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.下列图形中,是轴对称图形但不是中心对称图形的是(  )
    A.直角梯形 B.平行四边形 C.矩形 D.正五边形
    2.运用乘法公式计算(4+x)(4﹣x)的结果是(  )
    A.x2﹣16 B.16﹣x2 C.16﹣8x+x2 D.8﹣x2
    3.二次函数的对称轴是
    A.直线 B.直线 C.y轴 D.x轴
    4.抛物线y=ax2﹣4ax+4a﹣1与x轴交于A,B两点,C(x1,m)和D(x2,n)也是抛物线上的点,且x1<2<x2,x1+x2<4,则下列判断正确的是(  )
    A.m<n B.m≤n C.m>n D.m≥n
    5.如图是一个由4个相同的长方体组成的立体图形,它的主视图是( )

    A. B. C. D.
    6.如图是某几何体的三视图,下列判断正确的是( )

    A.几何体是圆柱体,高为2 B.几何体是圆锥体,高为2
    C.几何体是圆柱体,半径为2 D.几何体是圆锥体,直径为2
    7.方程的根是( )
    A.x=2 B.x=0 C.x1=0,x2=-2 D. x1=0,x2=2
    8.如图,已知直线,点E,F分别在、上,,如果∠B=40°,那么( )

    A.20° B.40° C.60° D.80°
    9.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车辆,根据题意,可列出的方程是 ( ).
    A. B.
    C. D.
    10.有一种球状细菌的直径用科学记数法表示为2.16×10﹣3米,则这个直径是(  )
    A.216000米 B.0.00216米
    C.0.000216米 D.0.0000216米
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.设[x)表示大于x的最小整数,如[3)=4,[−1.2)=−1,则下列结论中正确的是 ______ .(填写所有正确结论的序号)①[0)=0;②[x)−x的最小值是0;③[x)−x的最大值是0;④存在实数x,使[x)−x=0.5成立.
    12.△ABC中,∠A、∠B都是锐角,若sinA=,cosB=,则∠C=_____.
    13.如图,在△ABC中,AB=5cm,AC=3cm,BC的垂直平分线分别交AB、BC于D、E,则△ACD的周长为 cm.
    14.某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是_____.
    15.如图,直线y1=kx+n(k≠0)与抛物线y2=ax2+bx+c(a≠0)分别交于A(﹣1,0),B(2,﹣3)两点,那么当y1>y2时,x的取值范围是_____.

    16.对于任意非零实数a、b,定义运算“”,使下列式子成立:,,,,…,则ab=   .
    三、解答题(共8题,共72分)
    17.(8分)已知Rt△ABC,∠A=90°,BC=10,以BC为边向下作矩形BCDE,连AE交BC于F.
    (1)如图1,当AB=AC,且sin∠BEF=时,求的值;
    (2)如图2,当tan∠ABC=时,过D作DH⊥AE于H,求的值;
    (3)如图3,连AD交BC于G,当时,求矩形BCDE的面积

    18.(8分)如图,∠BAO=90°,AB=8,动点P在射线AO上,以PA为半径的半圆P交射线AO于另一点C,CD∥BP交半圆P于另一点D,BE∥AO交射线PD于点E,EF⊥AO于点F,连接BD,设AP=m.
    (1)求证:∠BDP=90°.
    (2)若m=4,求BE的长.
    (3)在点P的整个运动过程中.
    ①当AF=3CF时,求出所有符合条件的m的值.
    ②当tan∠DBE=时,直接写出△CDP与△BDP面积比.

    19.(8分)如图,内接于,,的延长线交于点.

    (1)求证:平分;
    (2)若,,求和的长.
    20.(8分)如图,在平面直角坐标系中,直线:与轴,轴分别交于,两点,且点,点在轴正半轴上运动,过点作平行于轴的直线.

    (1)求的值和点的坐标;
    (2)当时,直线与直线交于点,反比例函数的图象经过点,求反比例函数的解析式;
    (3)当时,若直线与直线和(2)反比例函数的图象分别交于点,,当间距离大于等于2时,求的取值范围.
    21.(8分)定义:任意两个数a,b,按规则c=b2+ab﹣a+7扩充得到一个新数c,称所得的新数c为“如意数”.若a=2,b=﹣1,直接写出a,b的“如意数”c;如果a=3+m,b=m﹣2,试说明“如意数”c为非负数.
    22.(10分)阅读与应用:
    阅读1:a、b为实数,且a>0,b>0,因为,所以,从而(当a=b时取等号).
    阅读2:函数(常数m>0,x>0),由阅读1结论可知: ,所以当即时,函数的最小值为.
    阅读理解上述内容,解答下列问题:
    问题1:已知一个矩形的面积为4,其中一边长为x,则另一边长为,周长为,求当x=__________时,周长的最小值为__________.
    问题2:已知函数y1=x+1(x>-1)与函数y2=x2+2x+17(x>-1),当x=__________时, 的最小值为__________.
    问题3:某民办学习每天的支出总费用包含以下三个部分:一是教职工工资6400元;二是学生生活费每人10元;三是其他费用.其中,其他费用与学生人数的平方成正比,比例系数为0.1.当学校学生人数为多少时,该校每天生均投入最低?最低费用是多少元?(生均投入=支出总费用÷学生人数)
    23.(12分)定义:如果把一条抛物线绕它的顶点旋转180°得到的抛物线我们称为原抛物线的“孪生抛物线”.
    (1)求抛物线y=x2﹣2x的“孪生抛物线”的表达式;
    (2)若抛物线y=x2﹣2x+c的顶点为D,与y轴交于点C,其“孪生抛物线”与y轴交于点C′,请判断△DCC’的形状,并说明理由:
    (3)已知抛物线y=x2﹣2x﹣3与y轴交于点C,与x轴正半轴的交点为A,那么是否在其“孪生抛物线”上存在点P,在y轴上存在点Q,使以点A、C、P、Q为顶点的四边形为平行四边形?若存在,求出P点的坐标;若不存在,说明理由.
    24.为落实党中央“长江大保护”新发展理念,我市持续推进长江岸线保护,还洞庭湖和长江水清岸绿的自然生态原貌.某工程队负责对一面积为33000平方米的非法砂石码头进行拆除,回填土方和复绿施工,为了缩短工期,该工程队增加了人力和设备,实际工作效率比原计划每天提高了20%,结果提前11天完成任务,求实际平均每天施工多少平方米?



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】分析:根据轴对称图形与中心对称图形的概念结合矩形、平行四边形、直角梯形、正五边形的性质求解.
    详解:A.直角梯形不是轴对称图形,也不是中心对称图形,故此选项错误;
    B.平行四边形不是轴对称图形,是中心对称图形,故此选项错误;
    C.矩形是轴对称图形,也是中心对称图形,故此选项错误;
    D.正五边形是轴对称图形,不是中心对称图形,故此选项正确.
    故选D.
    点睛:本题考查了轴对称图形和中心对称图形的概念.轴对称图形的关键是寻找对称轴,图形沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.
    2、B
    【解析】
    根据平方差公式计算即可得解.
    【详解】

    故选:B.
    【点睛】
    本题主要考查了整式的乘法公式,熟练掌握平方差公式的运算是解决本题的关键.
    3、C
    【解析】
    根据顶点式y=a(x-h)2+k的对称轴是直线x=h,找出h即可得出答案.
    【详解】
    解:二次函数y=x2的对称轴为y轴.
    故选:C .
    【点睛】
    本题考查二次函数的性质,解题关键是顶点式y=a(x-h)2+k的对称轴是直线x=h,顶点坐标为(h,k).
    4、C
    【解析】
    分析:将一般式配方成顶点式,得出对称轴方程根据抛物线与x轴交于两点,得出求得
    距离对称轴越远,函数的值越大,根据判断出它们与对称轴之间的关系即可判定.
    详解:∵
    ∴此抛物线对称轴为
    ∵抛物线与x轴交于两点,
    ∴当时,得



    故选C.
    点睛:考查二次函数的图象以及性质,开口向上,距离对称轴越远的点,对应的函数值越大,
    5、A
    【解析】
    由三视图的定义可知,A是该几何体的三视图,B、C、D不是该几何体的三视图.
    故选A.
    点睛:从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,看不到的线画虚线.本题从左面看有两列,左侧一列有两层,右侧一列有一层.
    6、A
    【解析】
    试题解析:根据主视图和左视图为矩形是柱体,根据俯视图是圆可判断出这个几何体应该是圆柱,
    再根据左视图的高度得出圆柱体的高为2;
    故选A.
    考点:由三视图判断几何体.
    7、C
    【解析】
    试题解析:x(x+1)=0,
    ⇒x=0或x+1=0,
    解得x1=0,x1=-1.
    故选C.
    8、C
    【解析】
    根据平行线的性质,可得的度数,再根据以及平行线的性质,即可得出的度数.
    【详解】
    ∵,,
    ∴,
    ∵,
    ∴,
    ∵,
    ∴,
    故选C.
    【点睛】
    本题主要考查了平行线的性质的运用,解题时注意:两直线平行,同旁内角互补,且内错角相等.
    9、B
    【解析】
    根据题意,表示出两种方式的总人数,然后根据人数不变列方程即可.
    【详解】
    根据题意可得:每车坐3人,两车空出来,可得人数为3(x-2)人;每车坐2人,多出9人无车坐,可得人数为(2x+9)人,所以所列方程为:3(x-2)=2x+9.
    故选B.
    【点睛】
    此题主要考查了一元一次方程的应用,关键是找到问题中的等量关系:总人数不变,列出相应的方程即可.
    10、B
    【解析】
    绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    2.16×10﹣3米=0.00216米.
    故选B.
    【点睛】
    考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、④
    【解析】
    根据题意[x)表示大于x的最小整数,结合各项进行判断即可得出答案.
    【详解】
    ①[0)=1,故本项错误;
    ②[x)−x>0,但是取不到0,故本项错误;
    ③[x)−x⩽1,即最大值为1,故本项错误;
    ④存在实数x,使[x)−x=0.5成立,例如x=0.5时,故本项正确.
    故答案是:④.
    【点睛】
    此题考查运算的定义,解题关键在于理解题意的运算法则.
    12、60°.
    【解析】
    先根据特殊角的三角函数值求出∠A、∠B的度数,再根据三角形内角和定理求出∠C即可作出判断.
    【详解】
    ∵△ABC中,∠A、∠B都是锐角sinA=,cosB=,
    ∴∠A=∠B=60°.
    ∴∠C=180°-∠A-∠B=180°-60°-60°=60°.
    故答案为60°.
    【点睛】
    本题考查的是特殊角的三角函数值及三角形内角和定理,比较简单.
    13、8
    【解析】
    试题分析:根据线段垂直平分线的性质得,BD=CD,则AB=AD+CD,所以,△ACD的周长=AD+CD+AC=AB+AC,解答出即可
    解:
    ∵DE是BC的垂直平分线,
    ∴BD=CD,
    ∴AB=AD+BD=AD+CD,
    ∴△ACD的周长=AD+CD+AC=AB+AC=8cm;
    故答案为8
    考点:线段垂直平分线的性质
    点评:本题主要考查了线段垂直平分线的性质和三角形的周长,掌握线段的垂直平分线上的点到线段两端点的距离相等
    14、85
    【解析】
    根据中位数求法,将学生成绩从小到大排列,取中间两数的平均数即可解题.
    【详解】
    解:将六位同学的成绩按从小到大进行排列为:75,75,84,86,92,99,
    中位数为中间两数84和86的平均数,
    ∴这六位同学成绩的中位数是85.
    【点睛】
    本题考查了中位数的求法,属于简单题,熟悉中位数的概念是解题关键.
    15、﹣1<x<2
    【解析】
    根据图象得出取值范围即可.
    【详解】
    解:因为直线y1=kx+n(k≠0)与抛物线y2=ax2+bx+c(a≠0)分别交于A(﹣1,0),B(2,﹣3)两点,
    所以当y1>y2时,﹣1<x<2,
    故答案为﹣1<x<2
    【点睛】
    此题考查二次函数与不等式,关键是根据图象得出取值范围.
    16、
    【解析】
    试题分析:根据已知数字等式得出变化规律,即可得出答案:
    ∵,,,,…,
    ∴。

    三、解答题(共8题,共72分)
    17、 (1) ;(2)80;(3)100.
    【解析】
    (1)过A作AK⊥BC于K,根据sin∠BEF=得出,设FK=3a,AK=5a,可求得BF=a,故;(2)过A作AK⊥BC于K,延长AK交ED于G,则AG⊥ED,得△EGA∽△EHD,利用相似三角形的性质即可求出;(3)延长AB、ED交于K,延长AC、ED交于T,根据相似三角形的性质可求出BE=ED,故可求出矩形的面积.
    【详解】
    解:(1)过A作AK⊥BC于K,
    ∵sin∠BEF=,sin∠FAK=,
    ∴,
    设FK=3a,AK=5a,
    ∴AK=4a,
    ∵AB=AC,∠BAC=90°,
    ∴BK=CK=4a,
    ∴BF=a,
    又∵CF=7a,

    (2)过A作AK⊥BC于K,延长AK交ED于G,则AG⊥ED,
    ∵∠AGE=∠DHE=90°,
    ∴△EGA∽△EHD,
    ∴,
    ∴,其中EG=BK,
    ∵BC=10,tan∠ABC=,
    cos∠ABC=,
    ∴BA=BC· cos∠ABC=,
    BK= BA·cos∠ABC=
    ∴EG=8,
    另一方面:ED=BC=10,
    ∴EH·EA=80
    (3)延长AB、ED交于K,延长AC、ED交于T,
    ∵BC∥KT, ,
    ∴,同理:
    ∵FG2= BF·CG ∴,
    ∴ED2= KE·DT ∴ ,
    又∵△KEB∽△CDT,∴,
    ∴KE·DT =BE2, ∴BE2=ED2
    ∴ BE=ED


    【点睛】
    此题主要考查相似三角形的判定与性质,解题的关键根据题意作出辅助线再进行求解.
    18、(1)详见解析;(2)的长为1;(3)m的值为或;与面积比为或.
    【解析】
    由知,再由知、,据此可得,证≌即可得;
    易知四边形ABEF是矩形,设,可得,证≌得,在中,由,列方程求解可得答案;
    分点C在AF的左侧和右侧两种情况求解:左侧时由知、、,在中,由可得关于m的方程,解之可得;右侧时,由知、、,利用勾股定理求解可得.作于点G,延长GD交BE于点H,由≌知,据此可得,再分点D在矩形内部和外部的情况求解可得.
    【详解】
    如图1,




    、,


    ≌,

    ,,



    四边形ABEF是矩形,
    设,则,




    ≌,

    ≌,

    在中,,即,
    解得:,
    的长为1.
    如图1,当点C在AF的左侧时,
    ,则,

    ,,
    在中,由可得,
    解得:负值舍去;
    如图2,当点C在AF的右侧时,




    ,,
    在中,由可得,
    解得:负值舍去;
    综上,m的值为或;
    如图3,过点D作于点G,延长GD交BE于点H,

    ≌,

    又,且,

    当点D在矩形ABEF的内部时,
    由可设、,
    则,

    则;
    如图4,当点D在矩形ABEF的外部时,

    由可设、,
    则,

    则,
    综上,与面积比为或.
    【点睛】
    本题考查了四边形的综合问题,解题的关键是掌握矩形的判定与性质、全等三角形的判定和性质及勾股定理、三角形的面积等知识点.
    19、 (1)证明见解析;(2)AC= , CD= ,
    【解析】
    分析:(1)延长AO交BC于H,连接BO,证明A、O在线段BC的垂直平分线上,得出AO⊥BC,再由等腰三角形的性质即可得出结论;(2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径,由圆周角定理得出∠EBC=90°,∠E=∠BAC,得出sinE=sin∠BAC,求出CE=BC=10,由勾股定理求出BE=8,证出BE∥OA,得出,求出OD=,得出CD=,而BE∥OA,由三角形中位线定理得出OH=BE=4,CH=BC=3,在Rt△ACH中,由勾股定理求出AC的长即可.
    本题解析:
    解:(1)证明:延长AO交BC于H,连接BO.
    ∵AB=AC,OB=OC,
    ∴A,O在线段BC的垂直平分线上.∴AO⊥BC.
    又∵AB=AC,∴AO平分∠BAC.

    (2)延长CD交⊙O于E,连接BE,则CE是⊙O的直径.
    ∴∠EBC=90°,BC⊥BE.
    ∵∠E=∠BAC,∴sinE=sin∠BAC.
    ∴=.∴CE=BC=10.
    ∴BE==8,OA=OE=CE=5.
    ∵AH⊥BC,∴BE∥OA.
    ∴=,即=,
    解得OD=.∴CD=5+=.
    ∵BE∥OA,即BE∥OH,OC=OE,∴OH是△CEB的中位线.
    ∴OH=BE=4,CH=BC=3.∴AH=5+4=9.
    在Rt△ACH中,AC===3.

    点睛:本题考查了等腰三角形的判定与性质、三角函数及圆的有关计算,(1)中由三线合一定理求解是解题的关键,(2)中由圆周角定理得出∠EBC=90°,∠E=∠BAC,再利用三角函数及三角形中位线定理求出AC即可,本题综合性强,有一定难度.
    20、(1),;(2);的取值范围是:.
    【解析】
    (1)把代入得出的值,进而得出点坐标;
    (2)当时,将代入,进而得出的值,求出点坐标得出反比例函数的解析式;
    (3)可得,当向下运动但是不超过轴时,符合要求,进而得出的取值范围.
    【详解】
    解:(1)∵直线: 经过点,
    ∴,
    ∴,
    ∴;
    (2)当时,将代入,
    得,,
    ∴代入得,,
    ∴;
    (3)当时,即,而,
    如图,,当向下运动但是不超过轴时,符合要求,
    ∴的取值范围是:.

    【点睛】
    本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.
    21、(1)4;(2)详见解析.
    【解析】
    (1)本题是一道自定义运算题型,根据题中给的如意数的概念,代入即可得出结果
    (2)根据如意数的定义,求出代数式,分析取值范围即可.
    【详解】
    解:(1)∵a=2,b=﹣1
    ∴c=b2+ab﹣a+7
    =1+(﹣2)﹣2+7
    =4
    (2)∵a=3+m,b=m﹣2
    ∴c=b2+ab﹣a+7
    =(m﹣2)2+(3+m)(m﹣2)﹣(3+m)+7
    =2m2﹣4m+2
    =2(m﹣1)2
    ∵(m﹣1)2≥0
    ∴“如意数”c为非负数
    【点睛】
    本题考查了因式分解,完全平方式(m﹣1)2的非负性,难度不大.
    22、问题1: 2 8 问题2: 3 8 问题3:设学校学生人数为x人,生均投入为y元,依题意得: ,因为x>0,所以,当即x=800时,y取最小值2.答:当学校学生人数为800人时,该校每天生均投入最低,最低费用是2元.
    【解析】试题分析:
    问题1:当 时,周长有最小值,求x的值和周长最小值;
    问题2:变形,由当x+1= 时, 的最小值,求出x值和的最小值;
    问题3:设学校学生人数为x人,生均投入为y元,根据生均投入=支出总费用÷学生人数,列出关系式,根据前两题解法,从而求解.
    试题解析:
    问题1:∵当 ( x>0)时,周长有最小值,
    ∴x=2,
    ∴当x=2时,有最小值为=3.即当x=2时,周长的最小值为2×3=8;
    问题2:∵y1=x+1(x>-1)与函数y2=x2+2x+17(x>-1),
    ∴,
    ∵当x+1= (x>-1)时, 的最小值,
    ∴x=3,
    ∴x=3时, 有最小值为3+3=8,即当x=3时, 的最小值为8;
    问题3:设学校学生人数为x人,则生均投入y元,依题意得
    ,因为x>0,所以,当即x=800时,y取最小值2.
    答:当学校学生人数为800时,该校每天生均投入最低,最低费用是2元.
    23、(1)y=-(x-1)²=-x²+2x-2;(2)等腰Rt△,(3)P1(3,-8),P2(-3,-20).
    【解析】
    (1)当抛物线绕其顶点旋转180°后,抛物线的顶点坐标不变,只是开口方向相反,则可根据顶点式写出旋转后的抛物线解析式;
    (2)可分别求出原抛物线和其“孪生抛物线”与y轴的交点坐标C、C′,由点的坐标可知△DCC’是等腰直角三角形;
    (3)可求出A(3,0),C(0,-3),其“孪生抛物线”为y=-x2+2x-5,当AC为对角线时,由中点坐标可知点P不存在,当AC为边时,分两种情况可求得点P的坐标.
    【详解】
    (1)抛物线y=x2-2x化为顶点式为y=(x-1)2-1,顶点坐标为(1,-1),由于抛物线y=x2-2x绕其顶点旋转180°后抛物线的顶点坐标不变,只是开口方向相反,
    则所得抛物线解析式为y=-(x-1)2-1=-x2+2x-2;
    (2)△DCC'是等腰直角三角形,理由如下:
    ∵抛物线y=x2-2x+c=(x-1)2+c-1,
    ∴抛物线顶点为D的坐标为(1,c-1),与y轴的交点C的坐标为(0,c),
    ∴其“孪生抛物线”的解析式为y=-(x-1)2+c-1,与y轴的交点C’的坐标为(0,c-2),
    ∴CC'=c-(c-2)=2,
    ∵点D的横坐标为1,
    ∴∠CDC'=90°,
    由对称性质可知DC=DC’,
    ∴△DCC'是等腰直角三角形;
    (3)∵抛物线y=x2-2x-3与y轴交于点C,与x轴正半轴的交点为A,
    令x=0,y=-3,令y=0时,y=x2-2x-3,解得x1=-1,x2=3,
    ∴C(0,-3),A(3,0),
    ∵y=x2-2x-3=(x-1)2-4,
    ∴其“孪生抛物线”的解析式为y=-(x-1)2-4=-x2+2x-5,
    若A、C为平行四边形的对角线,
    ∴其中点坐标为(,−),
    设P(a,-a2+2a-5),
    ∵A、C、P、Q为顶点的四边形为平行四边形,
    ∴Q(0,a-3),
    ∴=−,
    化简得,a2+3a+5=0,△<0,方程无实数解,
    ∴此时满足条件的点P不存在,
    若AC为平行四边形的边,点P在y轴右侧,则AP∥CQ且AP=CQ,
    ∵点C和点Q在y轴上,
    ∴点P的横坐标为3,
    把x=3代入“孪生抛物线”的解析式y=-32+2×3-5=-9+6-5=-8,
    ∴P1(3,-8),
    若AC为平行四边形的边,点P在y轴左侧,则AQ∥CP且AQ=CP,
    ∴点P的横坐标为-3,
    把x=-3代入“孪生抛物线”的解析式y=-9-6-5=-20,
    ∴P2(-3,-20)
    ∴原抛物线的“孪生抛物线”上存在点P1(3,-8),P2(-3,-20),在y轴上存在点Q,使以点A、C、P、Q为顶点的四边形为平行四边形.
    【点睛】
    本题是二次函数综合题型,主此题主要考查了根据二次函数的图象的变换求抛物线的解析式,解题的关键是求出旋转后抛物线的顶点坐标以及确定出点P的位置,注意分情况讨论.
    24、1平方米
    【解析】
    设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,根据时间=工作总量÷工作效率结合提前11天完成任务,即可得出关于x的分式方程,解之即可得出结论.
    【详解】
    解:设原计划平均每天施工x平方米,则实际平均每天施工1.2x平方米,
    根据题意得:﹣=11,
    解得:x=500,
    经检验,x=500是原方程的解,
    ∴1.2x=1.
    答:实际平均每天施工1平方米.
    【点睛】
    考查了分式方程的应用,解题的关键是找准等量关系,正确列出分式方程.

    相关试卷

    2022年四川省成都市高新南区重点名校中考数学最后冲刺浓缩精华卷含解析:

    这是一份2022年四川省成都市高新南区重点名校中考数学最后冲刺浓缩精华卷含解析,共19页。试卷主要包含了下列运算正确的是,化简的结果是等内容,欢迎下载使用。

    2022年四川省宜宾市名校中考数学最后冲刺浓缩精华卷含解析:

    这是一份2022年四川省宜宾市名校中考数学最后冲刺浓缩精华卷含解析,共21页。试卷主要包含了关于x的方程=无解,则k的值为等内容,欢迎下载使用。

    2022年山东新泰莆田中考数学最后冲刺浓缩精华卷含解析:

    这是一份2022年山东新泰莆田中考数学最后冲刺浓缩精华卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map