|试卷下载
终身会员
搜索
    上传资料 赚现金
    2022届四川省成都市锦江区中考数学对点突破模拟试卷含解析
    立即下载
    加入资料篮
    2022届四川省成都市锦江区中考数学对点突破模拟试卷含解析01
    2022届四川省成都市锦江区中考数学对点突破模拟试卷含解析02
    2022届四川省成都市锦江区中考数学对点突破模拟试卷含解析03
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届四川省成都市锦江区中考数学对点突破模拟试卷含解析

    展开
    这是一份2022届四川省成都市锦江区中考数学对点突破模拟试卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算中,正确的是,有下列四个命题,定义运算等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于( )

    A.1∶3 B.2∶3 C.∶2 D.∶3
    2.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为千米/小时,依据题意列方程正确的是( )
    A. B. C. D.
    3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b0;④2c–3b<0;⑤a+b>n(an+b)(n≠1),其中正确的结论有( )

    A.2个 B.3个 C.4个 D.5个
    4.如图,将△ABC沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )

    A.42 B.96 C.84 D.48
    5.2018年我市财政计划安排社会保障和公共卫生等支出约1800000000元支持民生幸福工程,数1800000000用科学记数法表示为(  )
    A.18×108 B.1.8×108 C.1.8×109 D.0.18×1010
    6.如图,△ABC中,∠ACB=90°,∠A=30°,AB=1.点P是斜边AB上一点.过点P作PQ⊥AB,垂足为P,交边AC(或边CB)于点Q,设AP=x,△APQ的面积为y,则y与x之间的函数图象大致为( )

    A. B.
    C. D.
    7.下列计算中,正确的是(  )
    A.a•3a=4a2 B.2a+3a=5a2
    C.(ab)3=a3b3 D.7a3÷14a2=2a
    8.有下列四个命题:①相等的角是对顶角;②两条直线被第三条直线所截,同位角相等;③同一种正五边形一定能进行平面镶嵌;④垂直于同一条直线的两条直线互相垂直.其中假命题的个数有(  )
    A.1个 B.2个 C.3个 D.4个
    9.定义运算:a⋆b=2ab.若a,b是方程x2+x-m=0(m>0)的两个根,则(a+1)⋆a -(b+1)⋆b的值为( )
    A.0 B.2 C.4m D.-4m
    10.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AB=c,∠A=α,则CD长为(  )

    A.c•sin2α B.c•cos2α C.c•sinα•tanα D.c•sinα•cosα
    二、填空题(共7小题,每小题3分,满分21分)
    11.鼓励科技创新、技术发明,北京市2012-2017年专利授权量如图所示.根据统计图中提供信息,预估2018年北京市专利授权量约______件,你的预估理由是______.

    12.用黑白两种颜色的正六边形地面砖按如图所示的规律,拼成若干图案:
    第4个图案有白色地面砖______块;第n个图案有白色地面砖______块.
    13.2018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法表示应为_______________.

    14.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为_____.

    15.与直线平行的直线可以是__________(写出一个即可).
    16.如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是_____cm.

    17.计算:|-3|-1=__.
    三、解答题(共7小题,满分69分)
    18.(10分)已知关于 的方程mx2+(2m-1)x+m-1=0(m≠0) . 求证:方程总有两个不相等的实数根; 若方程的两个实数根都是整数,求整数 的值.
    19.(5分)如图,抛物线经过点A(﹣2,0),点B(0,4).
    (1)求这条抛物线的表达式;
    (2)P是抛物线对称轴上的点,联结AB、PB,如果∠PBO=∠BAO,求点P的坐标;
    (3)将抛物线沿y轴向下平移m个单位,所得新抛物线与y轴交于点D,过点D作DE∥x轴交新抛物线于点E,射线EO交新抛物线于点F,如果EO=2OF,求m的值.

    20.(8分)如图,抛物线y=﹣x2﹣x+4与x轴交于A,B两点(A在B的左侧),与y轴交于点C.
    (1)求点A,点B的坐标;
    (2)P为第二象限抛物线上的一个动点,求△ACP面积的最大值.

    21.(10分)某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:

    (Ⅰ)图①中的值为 ;
    (Ⅱ)求统计的这组数据的平均数、众数和中位数;
    (Ⅲ) 根据样本数据,估计这2500只鸡中,质量为的约有多少只?
    22.(10分)如图,在平面直角坐标系中,一次函数的图象与轴相交于点,与反比例函数的图象相交于点,.

    (1)求一次函数和反比例函数的解析式;
    (2)根据图象,直接写出时,的取值范围;
    (3)在轴上是否存在点,使为等腰三角形,如果存在,请求点的坐标,若不存在,请说明理由.
    23.(12分)李宁准备完成题目;解二元一次方程组,发现系数“□”印刷不清楚.他把“□”猜成3,请你解二元一次方程组;张老师说:“你猜错了”,我看到该题标准答案的结果x、y是一对相反数,通过计算说明原题中“□”是几?
    24.(14分)如图,∠BAC的平分线交△ABC的外接圆于点D,交BC于点F,∠ABC的平分线交AD于点E.

    (1)求证:DE=DB:
    (2)若∠BAC=90°,BD=4,求△ABC外接圆的半径;
    (3)若BD=6,DF=4,求AD的长



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、A
    【解析】
    ∵DE⊥AC,EF⊥AB,FD⊥BC,
    ∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,
    ∴∠C=∠FDE,
    同理可得:∠B=∠DFE,∠A=DEF,
    ∴△DEF∽△CAB,
    ∴△DEF与△ABC的面积之比= ,
    又∵△ABC为正三角形,
    ∴∠B=∠C=∠A=60°
    ∴△EFD是等边三角形,
    ∴EF=DE=DF,
    又∵DE⊥AC,EF⊥AB,FD⊥BC,
    ∴△AEF≌△CDE≌△BFD,
    ∴BF=AE=CD,AF=BD=EC,
    在Rt△DEC中,
    DE=DC×sin∠C=DC,EC=cos∠C×DC=DC,
    又∵DC+BD=BC=AC=DC,
    ∴,
    ∴△DEF与△ABC的面积之比等于:
    故选A.
    点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直角三角形三边间的关系(锐角三角形函数)即可得出对应边之比,进而得到面积比.
    2、C
    【解析】
    由实际问题抽象出方程(行程问题).
    【分析】∵甲车的速度为千米/小时,则乙甲车的速度为千米/小时
    ∴甲车行驶30千米的时间为,乙车行驶40千米的时间为,
    ∴根据甲车行驶30千米与乙车行驶40千米所用时间相同得.故选C.
    3、B
    【解析】
    ①观察图象可知a<0,b>0,c>0,由此即可判定①;②当x=﹣1时,y=a﹣b+c由此可判定②;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,由此可判定③;④当x=3时函数值小于0,即y=9a+3b+c<0,且x=﹣ =1,可得a=﹣,代入y=9a+3b+c<0即可判定④;⑤当x=1时,y的值最大.此时,y=a+b+c,当x=n时,y=an2+bn+c,由此即可判定⑤.
    【详解】
    ①由图象可知:a<0,b>0,c>0,abc<0,故此选项错误;
    ②当x=﹣1时,y=a﹣b+c<0,即b>a+c,故此选项错误;
    ③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故此选项正确;
    ④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故此选项正确;
    ⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=n时,y=an2+bn+c,所以a+b+c>an2+bn+c,故a+b>an2+bn,即a+b>n(an+b),故此选项正确.
    ∴③④⑤正确.
    故选B.
    【点睛】
    本题主要考查了抛物线的图象与二次函数系数之间的关系,熟知抛物线的图象与二次函数系数之间的关系是解决本题的关键.
    4、D
    【解析】
    由平移的性质知,BE=6,DE=AB=10,
    ∴OE=DE﹣DO=10﹣4=6,
    ∴S四边形ODFC=S梯形ABEO=(AB+OE)•BE=(10+6)×6=1.
    故选D.
    【点睛】
    本题考查平移的性质,平移前后两个图形大小,形状完全相同,图形上的每个点都平移了相同的距离,对应点之间的距离就是平移的距离.
    5、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:1800000000=1.8×109,
    故选:C.
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    6、D
    【解析】
    解:当点Q在AC上时,∵∠A=30°,AP=x,∴PQ=xtan30°=,∴y=×AP×PQ=×x×=x2;
    当点Q在BC上时,如下图所示:

    ∵AP=x,AB=1,∠A=30°,∴BP=1﹣x,∠B=60°,∴PQ=BP•tan60°=(1﹣x),∴ =AP•PQ= = ,∴该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下.故选D.
    点睛:本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q在BC上这种情况.
    7、C
    【解析】
    根据同底数幂的运算法则进行判断即可.
    【详解】
    解:A、a•3a=3a2,故原选项计算错误;
    B、2a+3a=5a,故原选项计算错误;
    C、(ab)3=a3b3,故原选项计算正确;
    D、7a3÷14a2=a,故原选项计算错误;
    故选C.
    【点睛】
    本题考点:同底数幂的混合运算.
    8、D
    【解析】
    根据对顶角的定义,平行线的性质以及正五边形的内角及镶嵌的知识,逐一判断.
    【详解】
    解:①对顶角有位置及大小关系的要求,相等的角不一定是对顶角,故为假命题;
    ②只有当两条平行直线被第三条直线所截,同位角相等,故为假命题;
    ③正五边形的内角和为540°,则其内角为108°,而360°并不是108°的整数倍,不能进行平面镶嵌,故为假命题;
    ④在同一平面内,垂直于同一条直线的两条直线平行,故为假命题.
    故选:D.
    【点睛】
    本题考查了命题与证明.对顶角,垂线,同位角,镶嵌的相关概念.关键是熟悉这些概念,正确判断.
    9、A
    【解析】【分析】由根与系数的关系可得a+b=-1然后根据所给的新定义运算a⋆b=2ab对式子(a+1)⋆a -(b+1)⋆b用新定义运算展开整理后代入进行求解即可.
    【详解】∵a,b是方程x2+x-m=0(m>0)的两个根,
    ∴a+b=-1,
    ∵定义运算:a⋆b=2ab,
    ∴(a+1)⋆a -(b+1)⋆b
    =2a(a+1)-2b(b+1)
    =2a2+2a-2b2-2b
    =2(a+b)(a-b)+2(a-b)
    =-2(a-b)+2(a-b)=0,
    故选A.
    【点睛】本题考查了一元二次方程根与系数的关系,新定义运算等,理解并能运用新定义运算是解题的关键.
    10、D
    【解析】
    根据锐角三角函数的定义可得结论.
    【详解】
    在Rt△ABC中,∠ACB=90°,AB=c,∠A=a,根据锐角三角函数的定义可得sinα= ,
    ∴BC=c•sinα,
    ∵∠A+∠B=90°,∠DCB+∠B=90°,
    ∴∠DCB=∠A=α
    在Rt△DCB中,∠CDB=90°,
    ∴cos∠DCB= ,
    ∴CD=BC•cosα=c•sinα•cosα,
    故选D.

    二、填空题(共7小题,每小题3分,满分21分)
    11、113407, 北京市近两年的专利授权量平均每年增加6458.5件.
    【解析】
    依据北京市近两年的专利授权量的增长速度,即可预估2018年北京市专利授权量.
    【详解】
    解:∵北京市近两年的专利授权量平均每年增加:(件),
    ∴预估2018年北京市专利授权量约为106948+6458.5≈113407(件),
    故答案为:113407,北京市近两年的专利授权量平均每年增加6458.5件.
    【点睛】
    此题考查统计图的意义,解题的关键在于看懂图中数据.
    12、18块 (4n+2)块.
    【解析】
    由已知图形可以发现:前三个图形中白色地砖的块数分别为:6,10,14,所以可以发现每一个图形都比它前一个图形多4个白色地砖,所以可以得到第n个图案有白色地面砖(4n+2)块.
    【详解】
    解:第1个图有白色块4+2,第2图有4×2+2,第3个图有4×3+2,
    所以第4个图应该有4×4+2=18块,
    第n个图应该有(4n+2)块.
    【点睛】
    此题考查了平面图形,主要培养学生的观察能力和空间想象能力.
    13、
    【解析】
    【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】60000小数点向左移动4位得到6,
    所以60000用科学记数法表示为:6×1,
    故答案为:6×1.
    【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    14、60°
    【解析】
    试题解析:∵∠ACB=90°,∠ABC=30°,
    ∴∠A=90°-30°=60°,
    ∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上,
    ∴AC=A′C,
    ∴△A′AC是等边三角形,
    ∴∠ACA′=60°,
    ∴旋转角为60°.
    故答案为60°.
    15、y=-2x+5(答案不唯一)
    【解析】
    根据两条直线平行的条件:k相等,b不相等解答即可.
    【详解】
    解:如y=2x+1(只要k=2,b≠0即可,答案不唯一).
    故答案为y=2x+1.(提示:满足的形式,且)
    【点睛】
    本题考查了两条直线相交或平行问题.直线y=kx+b,(k≠0,且k,b为常数),当k相同,且b不相等,图象平行;当k不同,且b相等,图象相交;当k,b都相同时,两条直线重合.
    16、2
    【解析】
    试题分析:BE=AB-AE=2.设AH=x,则DH=AD﹣AH=2﹣x,在Rt△AEH中,∠EAH=90°,AE=4,AH=x,EH=DH=2﹣x,∴EH2=AE2+AH2,即(2﹣x)2=42+x2,解得:x=1.∴AH=1,EH=5.∴C△AEH=12.∵∠BFE+∠BEF=90°,∠BEF+∠AEH=90°,∴∠BFE=∠AEH.又∵∠EAH=∠FBE=90°,∴△EBF∽△HAE,∴.
    ∴C△EBF==C△HAE=2.
    考点:1折叠问题;2勾股定理;1相似三角形.
    17、2
    【解析】
    根据有理数的加减混合运算法则计算.
    【详解】
    解:|﹣3|﹣1=3-1=2.
    故答案为2.
    【点睛】
    考查的是有理数的加减运算、乘除运算,掌握它们的运算法则是解题的关键.

    三、解答题(共7小题,满分69分)
    18、(1)证明见解析(2)m=1或m=-1
    【解析】
    试题分析:(1)由于m≠0,则计算判别式的值得到,从而可判断方程总有两个不相等的实数根;
    (2)先利用求根公式得到然后利用有理数的整除性确定整数的值.
    试题解析:(1)证明:∵m≠0,
    ∴方程为一元二次方程,

    ∴此方程总有两个不相等的实数根;
    (2)∵

    ∵方程的两个实数根都是整数,且m是整数,
    ∴m=1或m=−1.
    19、(1);(2)P(1,); (3)3或5.
    【解析】
    (1)将点A、B代入抛物线,用待定系数法求出解析式.
    (2)对称轴为直线x=1,过点P作PG⊥y轴,垂足为G, 由∠PBO=∠BAO,得tan∠PBO=tan∠BAO,即,可求出P的坐标.
    (3)新抛物线的表达式为,由题意可得DE=2,过点F作FH⊥y轴,垂足为H,∵DE∥FH,EO=2OF,∴,∴FH=1.然后分情况讨论点D在y轴的正半轴上和在y轴的负半轴上,可求得m的值为3或5.
    【详解】
    解:(1)∵抛物线经过点A(﹣2,0),点B(0,4)
    ∴,解得,
    ∴抛物线解析式为,
    (2),
    ∴对称轴为直线x=1,过点P作PG⊥y轴,垂足为G,
    ∵∠PBO=∠BAO,∴tan∠PBO=tan∠BAO,
    ∴,
    ∴,
    ∴,

    ∴P(1,),
    (3)设新抛物线的表达式为
    则,,DE=2
    过点F作FH⊥y轴,垂足为H,∵DE∥FH,EO=2OF

    ∴,
    ∴FH=1.
    点D在y轴的正半轴上,则,
    ∴,
    ∴,
    ∴m=3,
    点D在y轴的负半轴上,则,
    ∴,
    ∴,
    ∴m=5,
    ∴综上所述m的值为3或5.
    【点睛】
    本题是二次函数和相似三角形的综合题目,整体难度不大,但是非常巧妙,学会灵活运用是关键.
    20、 (1) A(﹣4,0),B(2,0);(2)△ACP最大面积是4.
    【解析】
    (1)令y=0,得到关于x 的一元二次方程﹣x2﹣x+4=0,解此方程即可求得结果;
    (2)先求出直线AC解析式,再作PD⊥AO交AC于D,设P(t,﹣t2﹣t+4),可表示出D点坐标,于是线段PD可用含t的代数式表示,所以S△ACP=PD×OA=PD×4=2PD,可得S△ACP关于t 的函数关系式,继而可求出△ACP面积的最大值.
    【详解】
    (1)解:设y=0,则0=﹣x2﹣x+4
    ∴x1=﹣4,x2=2
    ∴A(﹣4,0),B(2,0)
    (2)作PD⊥AO交AC于D

    设AC解析式y=kx+b

    解得:
    ∴AC解析式为y=x+4.
    设P(t,﹣t2﹣t+4)则D(t,t+4)
    ∴PD=(﹣t2﹣t+4)﹣(t+4)=﹣t2﹣2t=﹣(t+2)2+2
    ∴S△ACP=PD×4=﹣(t+2)2+4
    ∴当t=﹣2时,△ACP最大面积4.
    【点睛】
    本题考查二次函数综合,解题的关键是掌握待定系数法进行求解.
    21、(Ⅰ)28. (Ⅱ)平均数是1.52. 众数为1.8. 中位数为1.5. (Ⅲ)200只.
    【解析】
    分析:(Ⅰ)用整体1减去所有已知的百分比即可求出m的值;
    (Ⅱ)根据众数、中位数、加权平均数的定义计算即可;
    (Ⅲ)用总数乘以样本中2.0kg的鸡所占的比例即可得解.
    解:(Ⅰ)m%=1-22%-10%-8%-32%=28%.故m=28;
    (Ⅱ)观察条形统计图,
    ∵,
    ∴这组数据的平均数是1.52.
    ∵在这组数据中,1.8出现了16次,出现的次数最多,
    ∴这组数据的众数为1.8.
    ∵将这组数据按从小到大的顺序排列,其中处于中间的两个数都是1.5,有,
    ∴这组数据的中位数为1.5.
    (Ⅲ)∵在所抽取的样本中,质量为的数量占.
    ∴由样本数据,估计这2500只鸡中,质量为的数量约占.
    有.
    ∴这2500只鸡中,质量为的约有200只.
    点睛:此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.
    22、(1); ;(2)或;(3)存在,或或或.
    【解析】
    (1)利用待定系数法求出反比例函数解析式,进而求出点C坐标,最后用再用待定系数法求出一次函数解析式;
    (2)利用图象直接得出结论;
    (3)分、、三种情况讨论,即可得出结论.
    【详解】
    (1)一次函数与反比例函数,相交于点,,
    ∴把代入得:,
    ∴,
    ∴反比例函数解析式为,
    把代入得:,
    ∴,
    ∴点C的坐标为,
    把,代入得:,
    解得:,
    ∴一次函数解析式为;
    (2)根据函数图像可知:
    当或时,一次函数的图象在反比例函数图象的上方,
    ∴当或时,;
    (3)存在或或或时,为等腰三角形,理由如下:
    过作轴,交轴于,

    ∵直线与轴交于点,
    ∴令得,,
    ∴点A的坐标为,
    ∵点B的坐标为,
    ∴点D的坐标为,
    ∴,
    ①当时,则,

    ∴点P的坐标为:、;
    ②当时,
    是等腰三角形,,
    平分,

    ∵点D的坐标为,
    ∴点P的坐标为,即;
    ③当时,如图:

    设,
    则,
    在中,,,,
    由勾股定理得:


    解得:,

    ∴点P的坐标为,即,
    综上所述,当或或或时,为等腰三角形.
    【点睛】
    本题是反比例函数综合题,主要考查了待定系数法,利用图象确定函数值满足条件的自变量的范围,等腰三角形的性质,勾股定理,解(1)的关键是待定系数法的应用,解(2)的关键是利用函数图象确定x的范围,解(3)的关键是分类讨论.
    23、(1);(2)-1
    【解析】
    (1)②+①得出4x=-4,求出x,把x的值代入①求出y即可;
    (2)把x=-y代入x-y=4求出y,再求出x,最后把x、y代入②求出答案即可.
    【详解】
    解:(1)
    ①+②得,.
    将时代入①得,,
    ∴.
    (2)设“□”为a,
    ∵x、y是一对相反数,
    ∴把x=-y代入x-y=4得:-y-y=4,
    解得:y=-2,
    即x=2,
    所以方程组的解是,
    代入ax+y=-8得:2a-2=-8,
    解得:a=-1,
    即原题中“□”是-1.
    【点睛】
    本题考查了解二元一次方程组,也考查了二元一次方程组的解,能得出关于a的方程是解(2)的关键.
    24、(1)见解析;(2)2 (3)1
    【解析】
    (1)通过证明∠BED=∠DBE得到DB=DE;
    (2)连接CD,如图,证明△DBC为等腰直角三角形得到BC=BD=4,从而得到△ABC外接圆的半径;
    (3)证明△DBF∽△ADB,然后利用相似比求AD的长.
    【详解】
    (1)证明:∵AD平分∠BAC,BE平分∠ABD,
    ∴∠1=∠2,∠3=∠4,
    ∴∠BED=∠1+∠3=∠2+∠4=∠5+∠4=∠DBE,
    ∴DB=DE;
    (2)解:连接CD,如图,

    ∵∠BAC=10°,
    ∴BC为直径,
    ∴∠BDC=10°,
    ∵∠1=∠2,
    ∴DB=BC,
    ∴△DBC为等腰直角三角形,
    ∴BC=BD=4,
    ∴△ABC外接圆的半径为2;
    (3)解:∵∠5=∠2=∠1,∠FDB=∠BDA,
    ∴△DBF∽△ADB,
    ∴=,即=,
    ∴AD=1.
    【点睛】
    本题考查了三角形的外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了圆周角定理和相似三角形的判定与性质.

    相关试卷

    2023年四川省成都市锦江区师一学校中考数学三模试卷(含解析): 这是一份2023年四川省成都市锦江区师一学校中考数学三模试卷(含解析),共31页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年四川省成都市锦江区中考数学二诊试卷(含解析): 这是一份2023年四川省成都市锦江区中考数学二诊试卷(含解析),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年四川省成都市锦江区中考数学二模试卷(含解析): 这是一份2023年四川省成都市锦江区中考数学二模试卷(含解析),共38页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map