|试卷下载
搜索
    上传资料 赚现金
    2022届江苏省宜兴市陶都中学毕业升学考试模拟卷数学卷含解析
    立即下载
    加入资料篮
    2022届江苏省宜兴市陶都中学毕业升学考试模拟卷数学卷含解析01
    2022届江苏省宜兴市陶都中学毕业升学考试模拟卷数学卷含解析02
    2022届江苏省宜兴市陶都中学毕业升学考试模拟卷数学卷含解析03
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届江苏省宜兴市陶都中学毕业升学考试模拟卷数学卷含解析

    展开
    这是一份2022届江苏省宜兴市陶都中学毕业升学考试模拟卷数学卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,的值是,下列计算正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.若一组数据1、、2、3、4的平均数与中位数相同,则不可能是下列选项中的( )
    A.0 B.2.5 C.3 D.5
    2.函数y=自变量x的取值范围是( )
    A.x≥1 B.x≥1且x≠3 C.x≠3 D.1≤x≤3
    3.《九章算术》是中国古代第一部数学专著,它对我国古代后世的数学家产生了深远的影响,该书中记载了一个问题,大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元,问有多少人?该物品价几何?设有x人,物品价值y元,则所列方程组正确的是( )
    A. B.
    C. D.
    4.已知一个多边形的内角和是外角和的3倍,则这个多边形是(  )
    A.五边形 B.六边形 C.七边形 D.八边形
    5.已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是(  )
    A.a<13,b=13 B.a<13,b<13 C.a>13,b<13 D.a>13,b=13
    6.关于反比例函数y=,下列说法中错误的是(  )
    A.它的图象是双曲线
    B.它的图象在第一、三象限
    C.y的值随x的值增大而减小
    D.若点(a,b)在它的图象上,则点(b,a)也在它的图象上
    7.的值是(  )
    A.1 B.﹣1 C.3 D.﹣3
    8.如图,AB与⊙O相切于点B,OA=2,∠OAB=30°,弦BC∥OA,则劣弧的长是(  )

    A. B. C. D.
    9.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC长度一半的长为半径圆弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=AB中,一定正确的是( )

    A.①②③ B.①②④ C.①③④ D.②③④
    10.下列计算正确的是(  )
    A.x4•x4=x16 B.(a+b)2=a2+b2
    C.=±4 D.(a6)2÷(a4)3=1
    11.下列图形中,可以看作是中心对称图形的是( )
    A. B. C. D.
    12.如果一个多边形的内角和是外角和的3倍,则这个多边形的边数是(  )
    A.8 B.9 C.10 D.11
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.已知A(x1,y1),B(x2,y2)都在反比例函数y=的图象上.若x1x2=﹣4,则y1y2的值为______.
    14.一个凸多边形的内角和与外角和相等,它是______边形.
    15.关于x的一元二次方程x2-2x+m-1=0有两个相等的实数根,则m的值为_________
    16.如图,分别以正六边形相间隔的3个顶点为圆心,以这个正六边形的边长为半径作扇形得到 “三叶草”图案,若正六边形的边长为3,则“三叶草”图案中阴影部分的面积为_____(结果保留π)

    17.不等式组的整数解是_____.
    18.如图,等边△ABC的边长为1cm,D、E分别是AB、AC边上的点,将△ADE沿直线DE折叠,点A落在点处,且点在△ABC的外部,则阴影部分图形的周长为_____cm.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)水龙头关闭不紧会造成滴水,小明用可以显示水量的容器做图①所示的试验,并根据试验数据绘制出图②所示的容器内盛水量W(L)与滴水时间t(h)的函数关系图象,请结合图象解答下列问题:容器内原有水多少?求W与t之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?

    图 ① 图②
    20.(6分)已知关于x的一元二次方程3x2﹣6x+1﹣k=0有实数根,k为负整数.求k的值;如果这个方程有两个整数根,求出它的根.
    21.(6分)如图,在每个小正方形的边长均为1的方格纸中,有线段AB和线段CD,点A、B、C、D均在小正方形的顶点上.
    (1)在方格纸中画出以AB为斜边的等腰直角三角形ABE,点E在小正方形的顶点上;
    (2)在方格纸中画出以CD为对角线的矩形CMDN(顶点字母按逆时针顺序),且面积为10,点M、N均在小正方形的顶点上;
    (3)连接ME,并直接写出EM的长.

    22.(8分)如图,矩形ABCD中,CE⊥BD于E,CF平分∠DCE与DB交于点F.
    求证:BF=BC;若AB=4cm,AD=3cm,求CF的长.
    23.(8分)为了抓住梵净山文化艺术节的商机,某商店决定购进A、B两种艺术节纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.
    (1)求购进A、B两种纪念品每件各需多少元?
    (2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?
    (3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?
    24.(10分)关于的一元二次方程.求证:方程总有两个实数根;若方程有一根小于1,求的取值范围.
    25.(10分)如图,某人站在楼顶观测对面的笔直的旗杆AB,已知观测点C到旗杆的距离CE=8m,测得旗杆的顶部A的仰角∠ECA=30°,旗杆底部B的俯角∠ECB=45°,求旗杆AB的髙.

    26.(12分)已知关于的一元二次方程 (为实数且).求证:此方程总有两个实数根;如果此方程的两个实数根都是整数,求正整数的值.
    27.(12分)如图,在△ABC中,AB=AC,∠BAC=90°,M是BC的中点,延长AM到点D,AE=AD,∠EAD=90°,CE交AB于点F,CD=DF.
    (1)∠CAD=______度;
    (2)求∠CDF的度数;
    (3)用等式表示线段CD和CE之间的数量关系,并证明.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    解:这组数据1、a、2、1、4的平均数为:(1+a+2+1+4)÷5=(a+10)÷5=0.2a+2,
    (1)将这组数据从小到大的顺序排列后为a,1,2,1,4,中位数是2,平均数是0.2a+2,
    ∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,符合排列顺序.
    (2)将这组数据从小到大的顺序排列后为1,a,2,1,4,中位数是2,平均数是0.2a+2,
    ∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,不符合排列顺序.
    (1)将这组数据从小到大的顺序排列后1,2,a,1,4,中位数是a,平均数是0.2a+2,
    ∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=a,解得a=2.5,符合排列顺序.
    (4)将这组数据从小到大的顺序排列后为1,2,1,a,4,中位数是1,平均数是0.2a+2,
    ∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5,不符合排列顺序.
    (5)将这组数据从小到大的顺序排列为1,2,1,4,a,中位数是1,平均数是0.2a+2,
    ∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5;符合排列顺序;
    综上,可得:a=0、2.5或5,∴a不可能是1.
    故选C.
    【点睛】
    本题考查中位数;算术平均数.
    2、B
    【解析】
    由题意得,
    x-1≥0且x-3≠0,
    ∴x≥1且x≠3.
    故选B.
    3、C
    【解析】
    根据题意相等关系:①8×人数-3=物品价值,②7×人数+4=物品价值,可列方程组:,
    故选C.
    点睛:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.
    4、D
    【解析】
    根据多边形的外角和是360°,以及多边形的内角和定理即可求解.
    【详解】
    设多边形的边数是n,则
    (n−2)⋅180=3×360,
    解得:n=8.
    故选D.
    【点睛】
    此题考查多边形内角与外角,解题关键在于掌握其定理.
    5、A
    【解析】
    试题解析:∵原来的平均数是13岁,
    ∴13×23=299(岁),
    ∴正确的平均数a=≈12.97<13,
    ∵原来的中位数13岁,将14岁写成15岁,最中间的数还是13岁,
    ∴b=13;
    故选A.
    考点:1.平均数;2.中位数.
    6、C
    【解析】
    根据反比例函数y=的图象上点的坐标特征,以及该函数的图象的性质进行分析、解答.
    【详解】
    A.反比例函数的图像是双曲线,正确;
    B.k=2>0,图象位于一、三象限,正确;
    C.在每一象限内,y的值随x的增大而减小,错误;
    D.∵ab=ba,∴若点(a,b)在它的图像上,则点(b,a)也在它的图像上,故正确.
    故选C.
    【点睛】
    本题主要考查反比例函数的性质.注意:反比例函数的增减性只指在同一象限内.
    7、B
    【解析】
    直接利用立方根的定义化简得出答案.
    【详解】
    因为(-1)3=-1,
    =﹣1.
    故选:B.
    【点睛】
    此题主要考查了立方根,正确把握立方根的定义是解题关键.,
    8、B
    【解析】
    解:连接OB,OC.∵AB为圆O的切线,∴∠ABO=90°.在Rt△ABO中,OA=2,∠OAB=30°,∴OB=1,∠AOB=60°.∵BC∥OA,∴∠OBC=∠AOB=60°.又∵OB=OC,∴△BOC为等边三角形,∴∠BOC=60°,则劣弧BC的弧长为=π.故选B.

    点睛:此题考查了切线的性质,含30度直角三角形的性质,以及弧长公式,熟练掌握切线的性质是解答本题的关键.
    9、B
    【解析】
    解:根据作图过程,利用线段垂直平分线的性质对各选项进行判断:
    根据作图过程可知:PB=CP,
    ∵D为BC的中点,∴PD垂直平分BC,∴①ED⊥BC正确.
    ∵∠ABC=90°,∴PD∥AB.
    ∴E为AC的中点,∴EC=EA,∵EB=EC.
    ∴②∠A=∠EBA正确;③EB平分∠AED错误;④ED=AB正确.
    ∴正确的有①②④.
    故选B.
    考点:线段垂直平分线的性质.
    10、D
    【解析】
    试题分析:x4x4=x8(同底数幂相乘,底数不变,指数相加) ;(a+b)2=a2+b2+2ab(完全平方公式) ;(表示16的算术平方根取正号);.(先算幂的乘方,底数不变,指数相乘;再算同底数幂相除,底数不变,指数相减.).
    考点:1、幂的运算;2、完全平方公式;3、算术平方根.
    11、A
    【解析】
    分析:根据中心对称的定义,结合所给图形即可作出判断.
    详解:A、是中心对称图形,故本选项正确;
    B、不是中心对称图形,故本选项错误;
    C、不是中心对称图形,故本选项错误;
    D、不是中心对称图形,故本选项错误;
    故选:A.
    点睛:本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.
    12、A
    【解析】
    分析:根据多边形的内角和公式及外角的特征计算.
    详解:多边形的外角和是360°,根据题意得:
    110°•(n-2)=3×360°
    解得n=1.
    故选A.
    点睛:本题主要考查了多边形内角和公式及外角的特征.求多边形的边数,可以转化为方程的问题来解决.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、﹣1.
    【解析】
    根据反比例函数图象上点的坐标特征得到 再把它们相乘,然后把代入计算即可.
    【详解】
    根据题意得
    所以
    故答案为:−1.
    【点睛】
    考查反比例函数图象上点的坐标特征,把点的坐标代入反比例函数解析式得到是解题的关键.
    14、四
    【解析】
    任何多边形的外角和是360度,因而这个多边形的内角和是360度.n边形的内角和是(n-2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.
    【详解】
    解:设边数为n,根据题意,得
    (n-2)•180=360,
    解得n=4,则它是四边形.
    故填:四.
    【点睛】
    此题主要考查已知多边形的内角和求边数,可以转化为方程的问题来解决.
    15、2.
    【解析】
    试题分析:已知方程x2-2x=0有两个相等的实数根,可得:△=4-4(m-1)=-4m+8=0,所以,m=2.
    考点:一元二次方程根的判别式.
    16、18π
    【解析】
    根据“三叶草”图案中阴影部分的面积为三个扇形面积的和,利用扇形面积公式解答即可.
    【详解】
    解:∵正六边形的内角为=120°,
    ∴扇形的圆心角为360°−120°=240°,
    ∴“三叶草”图案中阴影部分的面积为=18π,
    故答案为18π.
    【点睛】
    此题考查正多边形与圆,关键是根据“三叶草”图案中阴影部分的面积为三个扇形面积的和解答.
    17、﹣1、0、1
    【解析】
    求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,即可得出答案.
    【详解】

    解不等式得:,
    解不等式得:,
    不等式组的解集为,
    不等式组的整数解为-1,0,1.
    故答案为:-1,0,1.
    【点睛】
    本题考查的知识点是一元一次不等式组的整数解,解题关键是注意解集范围从而得出整数解.
    18、3
    【解析】
    由折叠前后图形全等,可将阴影部分图形的周长转化为三角形周长.
    【详解】
    ∵△A'DE与△ADE关于直线DE对称,
    ∴AD=A'D,AE=A'E,
    C阴影=BC+A'D+A'E+BD+EC= BC+AD+AE+BD+EC =BC+AB+AC=3cm.
    故答案为3.
    【点睛】
    由图形轴对称可以得到对应的边相等、角相等.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)0.3 L;(2)在这种滴水状态下一天的滴水量为9.6 L.
    【解析】
    (1)根据点的实际意义可得;
    (2)设与之间的函数关系式为,待定系数法求解可得,计算出时的值,再减去容器内原有的水量即可.
    【详解】
    (1)由图象可知,容器内原有水0.3 L.
    (2)由图象可知W与t之间的函数图象经过点(0,0.3),
    故设函数关系式为W=kt+0.3.
    又因为函数图象经过点(1.5,0.9),
    代入函数关系式,得1.5k+0.3=0.9,解得k=0.4.
    故W与t之间的函数关系式为W=0.4t+0.3.
    当t=24时,W=0.4×24+0.3=9.9(L),9.9-0.3=9.6(L),
    即在这种滴水状态下一天的滴水量为9.6 L.
    【点睛】
    本题考查了一次函数的应用,关键是利用待定系数法正确求出一次函数的解析式.
    20、(2)k=﹣2,﹣2.(2)方程的根为x2=x2=2.
    【解析】
    (2)根据方程有实数根,得到根的判别式的值大于等于0列出关于k的不等式,求出不等式的解集即可得到k的值;
    (2)将k的值代入原方程,求出方程的根,经检验即可得到满足题意的k的值.
    【详解】
    解:(2)根据题意,得△=(﹣6)2﹣4×3(2﹣k)≥0,
    解得 k≥﹣2.
    ∵k为负整数,
    ∴k=﹣2,﹣2.
    (2)当k=﹣2时,不符合题意,舍去;
    当k=﹣2时,符合题意,此时方程的根为x2=x2=2.
    【点睛】
    本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:(2)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根.也考查了一元二次方程的解法.
    21、(1)画图见解析;(2)画图见解析;(3).
    【解析】
    (1)直接利用直角三角形的性质结合勾股定理得出符合题意的图形;
    (2)根据矩形的性质画出符合题意的图形;
    (3)根据题意利用勾股定理得出结论.
    【详解】
    (1)如图所示;

    (2)如图所示;
    (3)如图所示,在直角三角形中,根据勾股定理得EM=.
    【点睛】
    本题考查了勾股定理与作图,解题的关键是熟练的掌握直角三角形的性质与勾股定理.
    22、(1)见解析,(2)CF=cm.
    【解析】
    (1)要求证:BF=BC只要证明∠CFB=∠FCB就可以,从而转化为证明∠BCE=∠BDC就可以;
    (2)已知AB=4cm,AD=3cm,就是已知BC=BF=3cm,CD=4cm,在直角△BCD中,根据三角形的面积等于BD•CE=BC•DC,就可以求出CE的长.要求CF的长,可以在直角△CEF中用勾股定理求得.其中EF=BF-BE,BE在直角△BCE中根据勾股定理就可以求出,由此解决问题.
    【详解】
    证明:(1)∵四边形ABCD是矩形,∴∠BCD=90°,
    ∴∠CDB+∠DBC=90°.
    ∵CE⊥BD,∴∠DBC+∠ECB=90°.
    ∴∠ECB=∠CDB.
    ∵∠CFB=∠CDB+∠DCF,∠BCF=∠ECB+∠ECF,∠DCF=∠ECF,
    ∴∠CFB=∠BCF
    ∴BF=BC
    (2)∵四边形ABCD是矩形,∴DC=AB=4(cm),BC=AD=3(cm).
    在Rt△BCD中,由勾股定理得BD=.
    又∵BD•CE=BC•DC,
    ∴CE=.
    ∴BE=.
    ∴EF=BF﹣BE=3﹣.
    ∴CF=cm.
    【点睛】
    本题考查矩形的判定与性质,等腰三角形的判定定理,等角对等边,以及勾股定理,三角形面积计算公式的运用,灵活运用已知,理清思路,解决问题.
    23、(1)A种纪念品需要100元,购进一件B种纪念品需要50元(2)共有4种进货方案(3)当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元
    【解析】
    解:(1)设该商店购进一件A种纪念品需要a元,购进一件B种纪念品需要b元,
    根据题意得方程组得:,…2分
    解方程组得:,
    ∴购进一件A种纪念品需要100元,购进一件B种纪念品需要50元…4分;
    (2)设该商店购进A种纪念品x个,则购进B种纪念品有(100﹣x)个,
    ∴,…6分
    解得:50≤x≤53,…7分
    ∵x 为正整数,
    ∴共有4种进货方案…8分;
    (3)因为B种纪念品利润较高,故B种数量越多总利润越高,
    因此选择购A种50件,B种50件.…10分
    总利润=50×20+50×30=2500(元)
    ∴当购进A种纪念品50件,B种纪念品50件时,可获最大利润,最大利润是2500元.…12分
    24、(2)见解析;(2)k<2.
    【解析】
    (2)根据方程的系数结合根的判别式,可得△=(k-2)2≥2,由此可证出方程总有两个实数根;
    (2)利用分解因式法解一元二次方程,可得出x=2、x=k+2,根据方程有一根小于2,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.
    【详解】
    (2)证明:∵在方程中,△=[-(k+3)]-4×2×(2k+2)=k-2k+2=(k-2)≥2,
    ∴方程总有两个实数根.
    (2) ∵x-(k+3)x+2k+2=(x-2)(x-k-2)=2,
    ∴x=2,x=k+2.
    ∵方程有一根小于2,
    ∴k+2<2,解得:k<2,
    ∴k的取值范围为k<2.
    【点睛】
    此题考查根的判别式,解题关键在于掌握运算公式.
    25、 (8+8)m.
    【解析】
    利用∠ECA的正切值可求得AE;利用∠ECB的正切值可求得BE,由AB=AE+BE可得答案.
    【详解】
    在Rt△EBC中,有BE=EC×tan45°=8m,
    在Rt△AEC中,有AE=EC×tan30°=8m,
    ∴AB=8+8(m).
    【点睛】
    本题考查了解直角三角形的应用-俯角、仰角问题,要求学生能借助其关系构造直角三角形并解直角三角形.
    26、 (1)证明见解析;(2)或.
    【解析】
    (1)求出△的值,再判断出其符号即可;
    (2)先求出x的值,再由方程的两个实数根都是整数,且m是正整数求出m的值即可.
    【详解】
    (1)依题意,得



    ∵,
    ∴方程总有两个实数根.
    (2)∵,
    ∴,.
    ∵方程的两个实数根都是整数,且是正整数,
    ∴或.
    ∴或.
    【点睛】
    本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac的关系是解答此题的关键.
    27、(1)45;(2)90°;(3)见解析.
    【解析】
    (1)根据等腰三角形三线合一可得结论;
    (2)连接DB,先证明△BAD≌△CAD,得BD=CD=DF,则∠DBA=∠DFB=∠DCA,根据四边形内角和与平角的定义可得∠BAC+∠CDF=180°,所以∠CDF=90°;
    (3)证明△EAF≌△DAF,得DF=EF,由②可知,可得结论.
    【详解】
    (1)解:∵AB=AC,M是BC的中点,
    ∴AM⊥BC,∠BAD=∠CAD,
    ∵∠BAC=90°,
    ∴∠CAD=45°,
    故答案为:45
    (2)解:如图,连接DB.
    ∵AB=AC,∠BAC=90°,M是BC的中点,
    ∴∠BAD=∠CAD=45°.
    ∴△BAD≌△CAD.
    ∴∠DBA=∠DCA,BD=CD.
    ∵CD=DF,
    ∴BD=DF.
    ∴∠DBA=∠DFB=∠DCA.
    ∵∠DFB+∠DFA=180°,
    ∴∠DCA+∠DFA=180°.
    ∴∠BAC+∠CDF=180°.
    ∴∠CDF=90°.
    (3).
    证明:∵∠EAD=90°,
    ∴∠EAF=∠DAF=45°.
    ∵AD=AE,
    ∴△EAF≌△DAF.
    ∴DF=EF.
    由②可知,.
    ∴.


    【点睛】
    此题考查等腰三角形的性质,全等三角形的判定与性质,直角三角形的性质,解题关键在于掌握判定定理及性质.

    相关试卷

    2022年江苏省无锡市南菁中学毕业升学考试模拟卷数学卷含解析: 这是一份2022年江苏省无锡市南菁中学毕业升学考试模拟卷数学卷含解析,共22页。试卷主要包含了计算-5x2-3x2的结果是,7的相反数是等内容,欢迎下载使用。

    2022年江苏省南京师范大附属中学毕业升学考试模拟卷数学卷含解析: 这是一份2022年江苏省南京师范大附属中学毕业升学考试模拟卷数学卷含解析,共22页。试卷主要包含了下列各组数中,互为相反数的是等内容,欢迎下载使用。

    2022年江苏省宜兴市实验中学毕业升学考试模拟卷数学卷含解析: 这是一份2022年江苏省宜兴市实验中学毕业升学考试模拟卷数学卷含解析,共20页。试卷主要包含了估计-1的值在等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map