终身会员
搜索
    上传资料 赚现金

    2022届江苏省扬州市大丰区第一共同体市级名校中考数学模拟预测试卷含解析

    立即下载
    加入资料篮
    2022届江苏省扬州市大丰区第一共同体市级名校中考数学模拟预测试卷含解析第1页
    2022届江苏省扬州市大丰区第一共同体市级名校中考数学模拟预测试卷含解析第2页
    2022届江苏省扬州市大丰区第一共同体市级名校中考数学模拟预测试卷含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届江苏省扬州市大丰区第一共同体市级名校中考数学模拟预测试卷含解析

    展开

    这是一份2022届江苏省扬州市大丰区第一共同体市级名校中考数学模拟预测试卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.若正六边形的半径长为4,则它的边长等于( )
    A.4 B.2 C. D.
    2.下列各数中,比﹣1大1的是(  )
    A.0 B.1 C.2 D.﹣3
    3.在学校演讲比赛中,10名选手的成绩折线统计图如图所示,则下列说法正确的是( )

    A.最高分90 B.众数是5 C.中位数是90 D.平均分为87.5
    4.绿豆在相同条件下的发芽试验,结果如下表所示:
    每批粒数n
    100
    300
    400
    600
    1000
    2000
    3000
    发芽的粒数m
    96
    282
    382
    570
    948
    1904
    2850
    发芽的频率
    0.960
    0.940
    0.955
    0.950
    0.948
    0.952
    0.950
    下面有三个推断:
    ①当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率是0.955;
    ②根据上表,估计绿豆发芽的概率是0.95;
    ③若n为4000,估计绿豆发芽的粒数大约为3800粒.
    其中推断合理的是(  )
    A.① B.①② C.①③ D.②③
    5.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:
    ①b2﹣4c>1;②b+c+1=1;③3b+c+6=1;④当1<x<3时,x2+(b﹣1)x+c<1.
    其中正确的个数为

    A.1 B.2 C.3 D.4
    6.如图,由矩形和三角形组合而成的广告牌紧贴在墙面上,重叠部分(阴影)的面积是4m2,广告牌所占的面积是 30m2(厚度忽略不计),除重叠部分外,矩形剩余部分的面积比三角形剩余部分的面积多2m2,设矩形面积是xm2,三角形面积是ym2,则根据题意,可列出二元一次方程组为(  )

    A. B. C. D.
    7.在实数,,,中,其中最小的实数是(  )
    A. B. C. D.
    8.如图是一个由4个相同的正方体组成的立体图形,它的左视图为( )

    A. B. C. D.
    9. “车辆随机到达一个路口,遇到红灯”这个事件是( )
    A.不可能事件 B.不确定事件 C.确定事件 D.必然事件
    10.已知一个多边形的内角和是外角和的3倍,则这个多边形是(  )
    A.五边形 B.六边形 C.七边形 D.八边形
    11.某种微生物半径约为0.00000637米,该数字用科学记数法可表示为(  )
    A.0.637×10﹣5 B.6.37×10﹣6 C.63.7×10﹣7 D.6.37×10﹣7
    12.的负倒数是(  )
    A. B.- C.3 D.﹣3
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用“出入相补”原理复原了《海岛算经》九题古证.

    (以上材料来源于《古证复原的原则》《吴文俊与中国数学》和《古代世界数学泰斗刘徽》)
    请根据上图完成这个推论的证明过程.
    证明:S矩形NFGD=S△ADC-(S△ANF+S△FGC),
    S矩形EBMF=S△ABC-(______________+______________).
    易知,S△ADC=S△ABC,______________=______________,______________=______________.
    可得S矩形NFGD=S矩形EBMF.
    14.因式分解:-3x2+3x=________.
    15.在正方形中,,点在对角线上运动,连接,过点作,交直线于点(点不与点重合),连接,设,,则和之间的关系是__________(用含的代数式表示).
    16.当x ________ 时,分式 有意义.
    17.若关于x的一元二次方程x2+2x﹣m2﹣m=0(m>0),当m=1、2、3、…、2018时,相应的一元二次方程的两个根分别记为α1、β1,α2、β2,…,α2018、β2018,则:的值为_____.
    18.点A(a,3)与点B(﹣4,b)关于原点对称,则a+b=(  )
    A.﹣1 B.4 C.﹣4 D.1
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.
    求甲、乙两种商品的每件进价;
    该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?
    20.(6分)如图,PB与⊙O相切于点B,过点B作OP的垂线BA,垂足为C,交⊙O于点A,连结PA,AO,AO的延长线交⊙O于点E,与PB的延长线交于点D.
    (1)求证:PA是⊙O的切线;
    (2)若tan∠BAD=,且OC=4,求BD的长.

    21.(6分)如图,AB是⊙O的直径,点C是AB延长线上的点,CD与⊙O相切于点D,连结BD、AD.求证;∠BDC=∠A.若∠C=45°,⊙O的半径为1,直接写出AC的长.

    22.(8分)如图,在△OAB中,OA=OB,C为AB中点,以O为圆心,OC长为半径作圆,AO与⊙O交于点E,OB与⊙O交于点F和D,连接EF,CF,CF与OA交于点G
    (1)求证:直线AB是⊙O的切线;
    (2)求证:△GOC∽△GEF;
    (3)若AB=4BD,求sinA的值.

    23.(8分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.
    (1)求这条抛物线的表达式;
    (2)求∠ACB的度数;
    (3)点D是抛物线上的一动点,是否存在点D,使得tan∠DCB=tan∠ACO.若存在,请求出点D的坐标,若不存在,说明理由.

    24.(10分)为了解今年初三学生的数学学习情况,某校对上学期的数学成绩作了统计分析,绘制得到如下图表.请结合图表所给出的信息解答下列问题:
    成绩
    频数
    频率
    优秀
    45
    b
    良好
    a
    0.3
    合格
    105
    0.35
    不合格
    60
    c
    (1)该校初三学生共有多少人?求表中a,b,c的值,并补全条形统计图.初三(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.

    25.(10分)如图,已知二次函数y=ax2+2x+c的图象经过点C(0,3),与x轴分别交于点A,点B(3,0).点P是直线BC上方的抛物线上一动点.求二次函数y=ax2+2x+c的表达式;连接PO,PC,并把△POC沿y轴翻折,得到四边形POP′C.若四边形POP′C为菱形,请求出此时点P的坐标;当点P运动到什么位置时,四边形ACPB的面积最大?求出此时P点的坐标和四边形ACPB的最大面积.

    26.(12分)计算:(﹣)0﹣|﹣3|+(﹣1)2015+()﹣1.
    27.(12分)已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE = AF.
    求证:BE = DF;连接AC交EF于点O,延长OC至点M,使OM = OA,连接EM、FM.判断四边形AEMF是什么特殊四边形?并证明你的结论.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    试题分析:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于1,则正六边形的边长是1.故选A.
    考点:正多边形和圆.
    2、A
    【解析】
    用-1加上1,求出比-1大1的是多少即可.
    【详解】
    ∵-1+1=1,
    ∴比-1大1的是1.
    故选:A.
    【点睛】
    本题考查了有理数加法的运算,解题的关键是要熟练掌握: “先符号,后绝对值”.
    3、C
    【解析】
    试题分析:根据折线统计图可得:最高分为95,众数为90;中位数90;平均分=(80×2+85+90×5+95×2)÷(2+1+5+2)=88.5.
    4、D
    【解析】
    ①利用频率估计概率,大量反复试验下频率稳定值即概率,n=400,数值较小,不能近似的看为概率,①错误;②利用频率估计概率,大量反复试验下频率稳定值即概率,可得②正确;③用4000乘以绿豆发芽的的概率即可求得绿豆发芽的粒数,③正确.
    【详解】
    ①当n=400时,绿豆发芽的频率为0.955,所以绿豆发芽的概率大约是0.955,此推断错误;
    ②根据上表当每批粒数足够大时,频率逐渐接近于0.950,所以估计绿豆发芽的概率是0.95,此推断正确;
    ③若n为4000,估计绿豆发芽的粒数大约为4000×0.950=3800粒,此结论正确.
    故选D.
    【点睛】
    本题考查利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.
    5、B
    【解析】
    分析:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<1;故①错误。
    当x=1时,y=1+b+c=1,故②错误。
    ∵当x=3时,y=9+3b+c=3,∴3b+c+6=1。故③正确。
    ∵当1<x<3时,二次函数值小于一次函数值,
    ∴x2+bx+c<x,∴x2+(b﹣1)x+c<1。故④正确。
    综上所述,正确的结论有③④两个,故选B。
    6、A
    【解析】
    根据题意找到等量关系:①矩形面积+三角形面积﹣阴影面积=30;②(矩形面积﹣阴影面积)﹣(三角形面积﹣阴影面积)=4,据此列出方程组.
    【详解】
    依题意得:

    故选A.
    【点睛】
    考查了由实际问题抽象出二元一次方程组.根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.
    7、B
    【解析】
    由正数大于一切负数,负数小于0,正数大于0,两个负数绝对值大的反而小,把这四个数从小到大排列,即可求解.
    【详解】
    解:∵0,-2,1,中,-2<0<1<,
    ∴其中最小的实数为-2;
    故选:B.
    【点睛】
    本题考查了实数的大小比较,关键是掌握:正数大于0,负数小于0,正数大于一切负数,两个负数绝对值大的反而小.
    8、B
    【解析】
    根据左视图的定义,从左侧会发现两个正方形摞在一起.
    【详解】
    从左边看上下各一个小正方形,如图

    故选B.
    9、B
    【解析】
    根据事件发生的可能性大小判断相应事件的类型即可.
    【详解】
    “车辆随机到达一个路口,遇到红灯”是随机事件.
    故选:.
    【点睛】
    本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的实际;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
    10、D
    【解析】
    根据多边形的外角和是360°,以及多边形的内角和定理即可求解.
    【详解】
    设多边形的边数是n,则
    (n−2)⋅180=3×360,
    解得:n=8.
    故选D.
    【点睛】
    此题考查多边形内角与外角,解题关键在于掌握其定理.
    11、B
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|1时,n是正数;当原数的绝对值

    相关试卷

    江苏省盐城市龙冈共同体市级名校2021-2022学年中考数学模拟预测试卷含解析:

    这是一份江苏省盐城市龙冈共同体市级名校2021-2022学年中考数学模拟预测试卷含解析,共29页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算正确的是等内容,欢迎下载使用。

    江苏省扬州市大丰区第一共同体2021-2022学年中考数学模拟试题含解析:

    这是一份江苏省扬州市大丰区第一共同体2021-2022学年中考数学模拟试题含解析,共17页。

    江苏省扬州市大丰区第一共同体市级名校2022年中考数学仿真试卷含解析:

    这是一份江苏省扬州市大丰区第一共同体市级名校2022年中考数学仿真试卷含解析,共19页。试卷主要包含了下列方程中,没有实数根的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map