江苏省盐城市龙冈共同体市级名校2021-2022学年中考数学模拟预测试卷含解析
展开
这是一份江苏省盐城市龙冈共同体市级名校2021-2022学年中考数学模拟预测试卷含解析,共29页。试卷主要包含了考生要认真填写考场号和座位序号,下列计算正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是( )
A.9分 B.8分 C.7分 D.6分
2.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的( )
A.方差 B.中位数 C.众数 D.平均数
3.已知抛物线的图像与轴交于、两点(点在点的右侧),与轴交于点.给出下列结论:①当的条件下,无论取何值,点是一个定点;②当的条件下,无论取何值,抛物线的对称轴一定位于轴的左侧;③的最小值不大于;④若,则.其中正确的结论有( )个.
A.1个 B.2个 C.3个 D.4个
4.下列等式从左到右的变形,属于因式分解的是
A.8a2b=2a·4ab B.-ab3-2ab2-ab=-ab(b2+2b)
C.4x2+8x-4=4x D.4my-2=2(2my-1)
5.如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E;B、E是半圆弧的三等分点,的长为,则图中阴影部分的面积为( )
A. B. C. D.
6.如图,正方形ABCD边长为4,以BC为直径的半圆O交对角线BD于点E,则阴影部分面积为( )
A.π B.π C.6﹣π D.2﹣π
7.如图,AB切⊙O于点B,OA=2,AB=3,弦BC∥OA,则劣弧BC的弧长为( )
A. B. C.π D.
8.下列计算正确的是( )
A.a6÷a2=a3 B.(﹣2)﹣1=2
C.(﹣3x2)•2x3=﹣6x6 D.(π﹣3)0=1
9.如图,以O为圆心的圆与直线交于A、B两点,若△OAB恰为等边三角形,则弧AB的长度为( )
A. B.π C.π D.π
10.在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:
册数
0
1
2
3
4
人数
4
12
16
17
1
关于这组数据,下列说法正确的是( )
A.中位数是2 B.众数是17 C.平均数是2 D.方差是2
11.如图,在平面直角坐标系中,△ABC与△A1B1C1是以点P为位似中心的位似图形,且顶点都在格点上,则点P的坐标为( )
A.(﹣4,﹣3) B.(﹣3,﹣4) C.(﹣3,﹣3) D.(﹣4,﹣4)
12.如图所示,在长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下的矩形与原矩形相似,那么剩下矩形的面积是( )
A.28cm2 B.27cm2 C.21cm2 D.20cm2
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,某景区的两个景点A、B处于同一水平地面上、一架无人机在空中沿MN方向水平飞行进行航拍作业,MN与AB在同一铅直平面内,当无人机飞行至C处时、测得景点A的俯角为45°,景点B的俯角为30°,此时C到地面的距离CD为100米,则两景点A、B间的距离为__米(结果保留根号).
14.如图,在矩形ABCD中,AB=,AD=1,把该矩形绕点A顺时针旋转α度得矩形AB′C′D′,点C′落在AB的延长线上,则图中阴影部分的面积是_____.
15.如图,点是反比例函数图像上的两点(点在点左侧),过点作轴于点,交于点,延长交轴于点,已知,,则的值为__________.
16. 如图,已知,要使,还需添加一个条件,则可以添加的条件是 .(只写一个即可,不需要添加辅助线)
17.计算:sin30°﹣(﹣3)0=_____.
18.计算两个两位数的积,这两个数的十位上的数字相同,个位上的数字之和等于1.
53×57=3021,38×32=1216,84×86=7224,71×79=2.
(1)你发现上面每个数的积的规律是:十位数字乘以十位数字加一的积作为结果的千位和百位,两个个位数字相乘的积作为结果的 ,请写出一个符合上述规律的算式 .
(2)设其中一个数的十位数字为a,个位数字为b,请用含a,b的算式表示这个规律.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在平面直角坐标中,点O是坐标原点,一次函数y1=kx+b与反比例函数y2=的图象交于A(1,m)、B(n,1)两点.
(1)求直线AB的解析式;
(2)根据图象写出当y1>y2时,x的取值范围;
(3)若点P在y轴上,求PA+PB的最小值.
20.(6分)已知,抛物线y=x2﹣x+与x轴分别交于A、B两点(A点在B点的左侧),交y轴于点F.
(1)A点坐标为 ;B点坐标为 ;F点坐标为 ;
(2)如图1,C为第一象限抛物线上一点,连接AC,BF交于点M,若BM=FM,在直线AC下方的抛物线上是否存在点P,使S△ACP=4,若存在,请求出点P的坐标,若不存在,请说明理由;
(3)如图2,D、E是对称轴右侧第一象限抛物线上的两点,直线AD、AE分别交y轴于M、N两点,若OM•ON=,求证:直线DE必经过一定点.
21.(6分)某市飞翔航模小队,计划购进一批无人机.已知3台A型无人机和4台B型无人机共需6400元,4台A型无人机和3台B型无人机共需6200元.
(1)求一台A型无人机和一台B型无人机的售价各是多少元?
(2)该航模小队一次购进两种型号的无人机共50台,并且B型无人机的数量不少于A型无人机的数量的2倍.设购进A型无人机x台,总费用为y元.
①求y与x的关系式;
②购进A型、B型无人机各多少台,才能使总费用最少?
22.(8分)在⊙O中,弦AB与弦CD相交于点G,OA⊥CD于点E,过点B作⊙O的切线BF交CD的延长线于点F.
(I)如图①,若∠F=50°,求∠BGF的大小;
(II)如图②,连接BD,AC,若∠F=36°,AC∥BF,求∠BDG的大小.
23.(8分)观察下列各个等式的规律:
第一个等式:=1,第二个等式: =2,第三个等式:=3…
请用上述等式反映出的规律解决下列问题:直接写出第四个等式;猜想第n个等式(用n的代数式表示),并证明你猜想的等式是正确的.
24.(10分)如图,在锐角△ABC中,小明进行了如下的尺规作图:
①分别以点A、B为圆心,以大于AB的长为半径作弧,两弧分别相交于点P、Q;
②作直线PQ分别交边AB、BC于点E、D.小明所求作的直线DE是线段AB的 ;联结AD,AD=7,sin∠DAC=,BC=9,求AC的长.
25.(10分)如图,在Rt△ABC的顶点A、B在x轴上,点C在y轴上正半轴上,且
A(-1,0),B(4,0),∠ACB=90°.
(1)求过A、B、C三点的抛物线解析式;
(2)设抛物线的对称轴l与BC边交于点D,若P是对称轴l上的点,且满足以P、C、D为顶点的三角形与△AOC相似,求P点的坐标;
(3)在对称轴l和抛物线上是否分别存在点M、N,使得以A、O、M、N为顶点的四边形是平行四边形,若存在请直接写出点M、点N的坐标;若不存在,请说明理由.
图1 备用图
26.(12分)先化简:,再从、2、3中选择一个合适的数作为a的值代入求值.
27.(12分)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长,交AD于E,交BA的延长线点F.问:图中△APD与哪个三角形全等?并说明理由;求证:△APE∽△FPA;猜想:线段PC,PE,PF之间存在什么关系?并说明理由.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】分析: 根据中位数的定义,首先将这组数据按从小到大的顺序排列起来,由于这组数据共有7个,故处于最中间位置的数就是第四个,从而得出答案.
详解: 将这组数据按从小到大排列为:6<7<7<7<8<9<9,故中位数为 :7分,
故答案为:C.
点睛: 本题主要考查中位数,解题的关键是掌握中位数的定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.
2、A
【解析】
试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定.故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可.
故选A.
考点:1、计算器-平均数,2、中位数,3、众数,4、方差
3、C
【解析】
①利用抛物线两点式方程进行判断;
②根据根的判别式来确定a的取值范围,然后根据对称轴方程进行计算;
③利用顶点坐标公式进行解答;
④利用两点间的距离公式进行解答.
【详解】
①y=ax1+(1-a)x-1=(x-1)(ax+1).则该抛物线恒过点A(1,0).故①正确;
②∵y=ax1+(1-a)x-1(a>0)的图象与x轴有1个交点,
∴△=(1-a)1+8a=(a+1)1>0,
∴a≠-1.
∴该抛物线的对称轴为:x=,无法判定的正负.
故②不一定正确;
③根据抛物线与y轴交于(0,-1)可知,y的最小值不大于-1,故③正确;
④∵A(1,0),B(-,0),C(0,-1),
∴当AB=AC时,,
解得:a=,故④正确.
综上所述,正确的结论有3个.
故选C.
【点睛】
考查了二次函数与x轴的交点及其性质.(1).抛物线是轴对称图形.对称轴为直线x = - ,对称轴与抛物线唯一的交点为抛物线的顶点P;特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0);(1).抛物线有一个顶点P,坐标为P ( -b/1a ,(4ac-b1)/4a ),当-=0,〔即b=0〕时,P在y轴上;当Δ= b1-4ac=0时,P在x轴上;(3).二次项系数a决定抛物线的开口方向和大小;当a>0时,抛物线开口向上;当a0),对称轴在y轴左;当a与b异号时(即ab0时,抛物线与x轴有1个交点;Δ= b1-4ac=0时,抛物线与x轴有1个交点;
Δ= b1-4ac0时,函数在x= -b/1a处取得最小值f(-b/1a)=〔4ac-b1〕/4a;在{x|x-b/1a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b1/4a}相反不变;当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax1+c(a≠0).
4、D
【解析】
根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.
【详解】
解:A、是整式的乘法,故A不符合题意;
B、没把一个多项式转化成几个整式积的形式,故B不符合题意;
C、没把一个多项式转化成几个整式积的形式,故C不符合题意;
D、把一个多项式转化成几个整式积的形式,故D符合题意;
故选D.
【点睛】
本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.
5、D
【解析】
连接BD,BE,BO,EO,先根据B、E是半圆弧的三等分点求出圆心角∠BOD的度数,再利用弧长公式求出半圆的半径R,再利用圆周角定理求出各边长,通过转化将阴影部分的面积转化为S△ABC﹣S扇形BOE,然后分别求出面积相减即可得出答案.
【详解】
解:连接BD,BE,BO,EO,
∵B,E是半圆弧的三等分点,
∴∠EOA=∠EOB=∠BOD=60°,
∴∠BAD=∠EBA=30°,
∴BE∥AD,
∵ 的长为 ,
∴
解得:R=4,
∴AB=ADcos30°= ,
∴BC=AB=,
∴AC=BC=6,
∴S△ABC=×BC×AC=××6=,
∵△BOE和△ABE同底等高,
∴△BOE和△ABE面积相等,
∴图中阴影部分的面积为:S△ABC﹣S扇形BOE=
故选:D.
【点睛】
本题主要考查弧长公式,扇形面积公式,圆周角定理等,掌握圆的相关性质是解题的关键.
6、C
【解析】
根据题意作出合适的辅助线,可知阴影部分的面积是△BCD的面积减去△BOE和扇形OEC的面积.
【详解】
由题意可得,
BC=CD=4,∠DCB=90°,
连接OE,则OE=BC,
∴OE∥DC,
∴∠EOB=∠DCB=90°,
∴阴影部分面积为:
=
=6-π,
故选C.
【点睛】
本题考查扇形面积的计算、正方形的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
7、A
【解析】
试题分析:连接OB,OC,
∵AB为圆O的切线,
∴∠ABO=90°,
在Rt△ABO中,OA=,∠A=30°,
∴OB=,∠AOB=60°,
∵BC∥OA,
∴∠OBC=∠AOB=60°,
又OB=OC,
∴△BOC为等边三角形,
∴∠BOC=60°,
则劣弧长为.
故选A.
考点: 1.切线的性质;2.含30度角的直角三角形;3.弧长的计算.
8、D
【解析】
解:A.a6÷a2=a4,故A错误;
B.(﹣2)﹣1=﹣,故B错误;
C.(﹣3x2)•2x3=﹣6x5,故C错;
D.(π﹣3)0=1,故D正确.
故选D.
9、C
【解析】
过点作,
∵,
∴,,
∴为等腰直角三角形,,
,
∵为等边三角形,
∴,
∴.
∴.故选C.
10、A
【解析】
试题解析:察表格,可知这组样本数据的平均数为:
(0×4+1×12+2×16+3×17+4×1)÷50=;
∵这组样本数据中,3出现了17次,出现的次数最多,
∴这组数据的众数是3;
∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,
∴这组数据的中位数为2,
故选A.
考点:1.方差;2.加权平均数;3.中位数;4.众数.
11、A
【解析】
延长A1A、B1B和C1C,从而得到P点位置,从而可得到P点坐标.
【详解】
如图,点P的坐标为(-4,-3).
故选A.
【点睛】
本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.
12、B
【解析】
根据题意,剩下矩形与原矩形相似,利用相似形的对应边的比相等可得.
【详解】
解:依题意,在矩形ABDC中截取矩形ABFE,
则矩形ABDC∽矩形FDCE,
则
设DF=xcm,得到:
解得:x=4.5,
则剩下的矩形面积是:4.5×6=17cm1.
【点睛】
本题就是考查相似形的对应边的比相等,分清矩形的对应边是解决本题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、100+100
【解析】
【分析】由已知可得∠ACD=∠MCA=45°,∠B=∠NCB=30°,继而可得∠DCB=60°,从而可得AD=CD=100米,DB= 100米,再根据AB=AD+DB计算即可得.
【详解】∵MN//AB,∠MCA=45°,∠NCB=30°,
∴∠ACD=∠MCA=45°,∠B=∠NCB=30°,
∵CD⊥AB,∴∠CDA=∠CDB=90°,∠DCB=60°,
∵CD=100米,∴AD=CD=100米,DB=CD•tan60°=CD=100米,
∴AB=AD+DB=100+100(米),
故答案为:100+100.
【点睛】本题考查了解直角三角形的应用﹣﹣仰角俯角问题,解题的关键是借助俯角构造直角三角形并解直角三角形.注意方程思想与数形结合思想的应用.
14、
【解析】
∵在矩形ABCD中,AB=,∠DAC=60°,
∴DC=,AD=1.
由旋转的性质可知:D′C′=,AD′=1,
∴tan∠D′AC′==,
∴∠D′AC′=60°.
∴∠BAB′=30°,
∴S△AB′C′=×1×=,
S扇形BAB′==.
S阴影=S△AB′C′-S扇形BAB′=-.
故答案为-.
【点睛】
错因分析 中档题.失分原因有2点:(1)不能准确地将阴影部分面积转化为易求特殊图形的面积;(2)不能根据矩形的边求出α的值.
15、
【解析】
过点B作BF⊥OC于点F,易证S△OAE=S四边形DEBF=,S△OAB=S四边形DABF,因为,所以,,又因为AD∥BF,所以S△BCF∽S△ACD,可得BF:AD=2:5,因为S△OAD=S△OBF,所以×OD×AD =×OF×BF,即BF:AD=2:5= OD:OF,易证:S△OED∽S△OBF,S△OED:S△OBF=4:25,S△OED:S四边形EDFB=4:21,所以S△OED= ,S△OBF= S△OED+ S四边形EDFB=+=, 即可得解:k=2 S△OBF=.
【详解】
解:过点B作BF⊥OC于点F,
由反比例函数的比例系数|k|的意义可知:S△OAD=S△OBF,
∴S△OAD- S△OED =S△OBF一S△OED,即S△OAE=S四边形DEBF=,S△OA B=S四边形DABF,
∵,
∴,,
∵AD∥BF
∴S△BCF∽S△ACD,
又∵,
∴BF:AD=2:5,
∵S△OAD=S△OBF,
∴×OD×AD =×OF×BF
∴BF:AD=2:5= OD:OF
易证:S△OED∽S△OBF,
∴S△OED:S△OBF=4:25,S△OED:S四边形EDFB=4:21
∵S四边形EDFB=,
∴S△OED= ,S△OBF= S△OED+ S四边形EDFB=+=,
∴k=2 S△OBF=.
故答案为.
【点睛】
本题考查反比例函数的比例系数|k|的几何意义,解题关键是熟练运用相似三角形的判定定理和性质定理.
16、可添∠ABD=∠CBD或AD=CD.
【解析】
由AB=BC结合图形可知这两个三角形有两组边对应相等,添加一组边利用SSS证明全等,也可以添加一对夹角相等,利用SAS证明全等,据此即可得答案.
【详解】
.可添∠ABD=∠CBD或AD=CD,
①∠ABD=∠CBD,
在△ABD和△CBD中,
∵,
∴△ABD≌△CBD(SAS);
②AD=CD,
在△ABD和△CBD中,
∵,
∴△ABD≌△CBD(SSS),
故答案为∠ABD=∠CBD或AD=CD.
【点睛】
本题考查了三角形全等的判定,结合图形与已知条件灵活应用全等三角形的判定方法是解题的关键. 熟记全等三角形的判定方法有:SSS,SAS,ASA,AAS.
17、-
【解析】
sin30°=,a0=1(a≠0)
【详解】
解:原式=-1
=-
故答案为:-.
【点睛】
本题考查了30°的角的正弦值和非零数的零次幂.熟记是关键.
18、 (1)十位和个位,44×46=2024;(2) 10a(a+1)+b(1﹣b)
【解析】分析:(1)、根据题意得出其一般性的规律,从而得出答案;(2)、利用代数式表示出其一般规律得出答案.
详解:(1)由已知等式知,每个数的积的规律是:十位数字乘以十位数字加一的积作为结果的千位和百位,两个个位数字相乘的积作为结果的十位和个位,
例如:44×46=2024,
(2)(1a+b)(1a+1﹣b)=10a(a+1)+b(1﹣b).
点睛:本题主要考查的是规律的发现与整理,属于基础题型.找出一般性的规律是解决这个问题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)y=﹣x+4;(2)1<x<1;(1)2.
【解析】
(1)依据反比例函数y2= (x>0)的图象交于A(1,m)、B(n,1)两点,即可得到A(1,1)、B(1,1),代入一次函数y1=kx+b,可得直线AB的解析式;
(2)当1<x<1时,正比例函数图象在反比例函数图象的上方,即可得到当y1>y2时,x的取值范围是1<x<1;
(1)作点A关于y轴的对称点C,连接BC交y轴于点P,则PA+PB的最小值等于BC的长,利用勾股定理即可得到BC的长.
【详解】
(1)A(1,m)、B(n,1)两点坐标分别代入反比例函数y2= (x>0),可得
m=1,n=1,
∴A(1,1)、B(1,1),
把A(1,1)、B(1,1)代入一次函数y1=kx+b,可得
,解得,
∴直线AB的解析式为y=-x+4;
(2)观察函数图象,发现:
当1<x<1时,正比例函数图象在反比例函数图象的上方,
∴当y1>y2时,x的取值范围是1<x<1.
(1)如图,作点A关于y轴的对称点C,连接BC交y轴于点P,则PA+PB的最小值等于BC的长,
过C作y轴的平行线,过B作x轴的平行线,交于点D,则
Rt△BCD中,BC=,
∴PA+PB的最小值为2.
【点睛】
本题考查的是反比例函数与一次函数的交点问题,根据函数图象的上下位置关系结合交点的横坐标,得出不等式的取值范围是解答此题的关键.
20、(1)(1,0),(3,0),(0,);(2)在直线AC下方的抛物线上不存在点P,使S△ACP=4,见解析;(3)见解析
【解析】
(1)根据坐标轴上点的特点建立方程求解,即可得出结论;
(2)在直线AC下方轴x上一点,使S△ACH=4,求出点H坐标,再求出直线AC的解析式,进而得出点H坐标,最后用过点H平行于直线AC的直线与抛物线解析式联立求解,即可得出结论;
(3)联立直线DE的解析式与抛物线解析式联立,得出,进而得出,,再由得出,进而求出,同理可得,再根据,即可得出结论.
【详解】
(1)针对于抛物线,
令x=0,则,
∴,
令y=0,则,
解得,x=1或x=3,
∴,
综上所述:,,;
(2)由(1)知,,,
∵BM=FM,
∴,
∵,
∴直线AC的解析式为:,
联立抛物线解析式得:,
解得:或,
∴,
如图1,设H是直线AC下方轴x上一点,AH=a且S△ACH=4,
∴,
解得:,
∴,
过H作l∥AC,
∴直线l的解析式为,
联立抛物线解析式,解得,
∴,
即:在直线AC下方的抛物线上不存在点P,使;
(3)如图2,过D,E分别作x轴的垂线,垂足分别为G,H,
设,,直线DE的解析式为,
联立直线DE的解析式与抛物线解析式联立,得,
∴,,
∵DG⊥x轴,
∴DG∥OM,
∴,
∴,
即,
∴,同理可得
∴,
∴,
即,
∴,
∴直线DE的解析式为,
∴直线DE必经过一定点.
【点睛】
本题主要考查了二次函数的综合应用,熟练掌握二次函数与一次函数的综合应用,交点的求法,待定系数法求函数解析式等方法式解决本题的关键.
21、(1)一台A型无人机售价800元,一台B型无人机的售价1000元;
(2)①y=﹣200x+50000;②购进A型、B型无人机各16台、34台时,才能使总费用最少.
【解析】
(1)根据3台A型无人机和4台B型无人机共需6400元,4台A型无人机和3台B型无人机共需6200元,可以列出相应的方程组,从而可以解答本题;
(2)①根据题意可以得到y与x的函数关系式;
②根据①中的函数关系式和B型无人机的数量不少于A型无人机的数量的2倍,可以求得购进A型、B型无人机各多少台,才能使总费用最少.
【详解】
解:(1)设一台型无人机售价元,一台型无人机的售价元,
,
解得,,
答:一台型无人机售价元,一台型无人机的售价元;
(2)①由题意可得,
即y与x的函数关系式为;
②∵B型无人机的数量不少于A型无人机的数量的2倍,
,
解得,,
,
∴当时,y取得最小值,此时,
答:购进型、型无人机各台、台时,才能使总费用最少.
【点睛】
本题考查二元一次方程组的应用、一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和方程的知识解答.
22、(I)65°;(II)72°
【解析】
(I)如图①,连接OB,先利用切线的性质得∠OBF=90°,而OA⊥CD,所以∠OED=90°,利用四边形内角和可计算出∠AOB=130°,然后根据等腰三角形性质和三角形内角和计算出∠1=∠A=25°,从而得到∠2=65°,最后利用三角形内角和定理计算∠BGF的度数;
(II)如图②,连接OB,BO的延长线交AC于H,利用切线的性质得OB⊥BF,再利用AC∥BF得到BH⊥AC,与(Ⅰ)方法可得到∠AOB=144°,从而得到∠OBA=∠OAB=18°,接着计算出∠OAH=54°,然后根据圆周角定理得到∠BDG的度数.
【详解】
解:(I)如图①,连接OB,
∵BF为⊙O的切线,
∴OB⊥BF,
∴∠OBF=90°,
∵OA⊥CD,
∴∠OED=90°,
∴∠AOB=180°﹣∠F=180°﹣50°=130°,
∵OA=OB,
∴∠1=∠A=(180°﹣130°)=25°,
∴∠2=90°﹣∠1=65°,
∴∠BGF=180°﹣∠2﹣∠F=180°﹣65°﹣50°=65°;
(II)如图②,连接OB,BO的延长线交AC于H,
∵BF为⊙O的切线,
∴OB⊥BF,
∵AC∥BF,
∴BH⊥AC,
与(Ⅰ)方法可得到∠AOB=180°﹣∠F=180°﹣36°=144°,
∵OA=OB,
∴∠OBA=∠OAB=(180°﹣144°)=18°,
∵∠AOB=∠OHA+∠OAH,
∴∠OAH=144°﹣90°=54°,
∴∠BAC=∠OAH+∠OAB=54°+18°=72°,
∴∠BDG=∠BAC=72°.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.
23、(1)=4;(2)=n.
【解析】
试题分析:(1)根据题目中的式子的变化规律可以写出第四个等式;
(2)根据题目中的式子的变化规律可以猜想出第n等式并加以证明.
试题解析:解:(1)由题目中式子的变化规律可得,第四个等式是:=4;
(2)第n个等式是:=n.证明如下:
∵= = =n
∴第n个等式是:=n.
点睛:本题考查规律型:数字的变化类,解答本题的关键是明确题目中式子的变化规律,求出相应的式子.
24、(1)线段AB的垂直平分线(或中垂线);(2)AC=5.
【解析】
(1)垂直平分线:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线
(2)根据题意垂直平分线定理可得AD=BD,得到CD=2,又因为已知sin∠DAC=,故可过点D作AC垂线,求得DF=1,利用勾股定理可求得AF,CF,即可求出AC长.
【详解】
(1)小明所求作的直线DE是线段AB的垂直平分线(或中垂线);
故答案为线段AB的垂直平分线(或中垂线);
(2)过点D作DF⊥AC,垂足为点F,如图,
∵DE是线段AB的垂直平分线,
∴AD=BD=7
∴CD=BC﹣BD=2,
在Rt△ADF中,∵sin∠DAC=,
∴DF=1,
在Rt△ADF中,AF=,
在Rt△CDF中,CF=,
∴AC=AF+CF=.
【点睛】
本题考查了垂直平分线的尺规作图方法,三角函数和勾股定理求线段长度,解本题的关键是充分利用中垂线,将已知条件与未知条件结合起来解题.
25、见解析
【解析】
分析:(1)根据求出点的坐标,用待定系数法即可求出抛物线的解析式.
(2)分两种情况进行讨论即可.
(3)存在. 假设直线l上存在点M,抛物线上存在点N,使得以A、O、M、N为顶点的四边形为平行四边形.分当平行四边形是平行四边形时,当平行四边形AONM是平行四边形时,当四边形AMON为平行四边形时,三种情况进行讨论.
详解:(1)易证,得,
∴OC=2,∴C(0,2),
∵抛物线过点A(-1,0),B(4,0)
因此可设抛物线的解析式为
将C点(0,2)代入得:,即
∴抛物线的解析式为
(2)如图2,
当时,则P1(,2),
当 时,
∴OC∥l,
∴,
∴P2H=·OC=5,
∴P2 (,5)
因此P点的坐标为(,2)或(,5).
(3)存在.
假设直线l上存在点M,抛物线上存在点N,使得以A、O、M、N为顶点的四边形为平行四边形.
如图3,
当平行四边形是平行四边形时,M(,),(,),
当平行四边形AONM是平行四边形时,M(,),N(,),
如图4,当四边形AMON为平行四边形时,MN与OA互相平分,此时可设M(,m),则
∵点N在抛物线上,
∴-m=-·(-+1)( --4)=-,
∴m=,
此时M(,), N(-,-).
综上所述,M(,),N(,)或M(,),N(,) 或 M(,), N(-,-).
点睛:属于二次函数综合题,考查相似三角形的判定与性质,待定系数法求二次函数解析式等,注意分类讨论的思想方法在数学中的应用.
26、-1.
【解析】
根据分式的加法和除法可以化简题目中的式子,然后在、2、3中选择一个使得原分式有意义的值代入化简后的式子即可解答本题.
【详解】
,
当时,原式.
故答案为:-1.
【点睛】
本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
27、 (1)△CPD.理由参见解析;(2)证明参见解析;(3)PC2=PE•PF.理由参见解析.
【解析】
(1)根据菱形的性质,利用SAS来判定两三角形全等;(2)根据第一问的全等三角形结论及已知,利用两组角相等则两三角形相似来判定即可;(3)根据相似三角形的对应边成比例及全等三角形的对应边相等即可得到结论.
【详解】
解:(1)△APD≌△CPD.
理由:∵四边形ABCD是菱形,
∴AD=CD,∠ADP=∠CDP.
又∵PD=PD,∴△APD≌△CPD(SAS).
(2)∵△APD≌△CPD,
∴∠DAP=∠DCP,
∵CD∥AB,
∴∠DCF=∠DAP=∠CFB,
又∵∠FPA=∠FPA,
∴△APE∽△FPA(两组角相等则两三角形相似).
(3)猜想:PC2=PE•PF.
理由:∵△APE∽△FPA,
∴即PA2=PE•PF.
∵△APD≌△CPD,
∴PA=PC.
∴PC2=PE•PF.
【点睛】
本题考查1.相似三角形的判定与性质;2.全等三角形的判定;3.菱形的性质,综合性较强.
相关试卷
这是一份浙江宁波鄞州区市级名校2021-2022学年中考数学模拟预测题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,某排球队名场上队员的身高等内容,欢迎下载使用。
这是一份2022届江苏省扬州市大丰区第一共同体市级名校中考数学模拟预测试卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
这是一份2022届哈尔滨市级名校中考数学模拟预测题含解析,共22页。试卷主要包含了的绝对值是,的负倒数是等内容,欢迎下载使用。