年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022届吉林省长春汽车经济技术开发区中考数学猜题卷含解析

    2022届吉林省长春汽车经济技术开发区中考数学猜题卷含解析第1页
    2022届吉林省长春汽车经济技术开发区中考数学猜题卷含解析第2页
    2022届吉林省长春汽车经济技术开发区中考数学猜题卷含解析第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届吉林省长春汽车经济技术开发区中考数学猜题卷含解析

    展开

    这是一份2022届吉林省长春汽车经济技术开发区中考数学猜题卷含解析,共27页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.小明要去超市买甲、乙两种糖果,然后混合成5千克混合糖果,已知甲种糖果的单价为a元/千克,乙种糖果的单价为b元/千克,且a>b.根据需要小明列出以下三种混合方案:(单位:千克)

    甲种糖果
    乙种糖果
    混合糖果
    方案1
    2
    3
    5
    方案2
    3
    2
    5
    方案3
    2.5
    2.5
    5
    则最省钱的方案为( )
    A.方案1 B.方案2
    C.方案3 D.三个方案费用相同
    2.如图,在平行四边形ABCD中,AE:EB=1:2,E为AB上一点,AC与DE相交于点F, S△AEF=3,则S△FCD为(  )

    A.6 B.9 C.12 D.27
    3.下列计算或化简正确的是(  )
    A. B.
    C. D.
    4.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为(  )

    A.25° B.50° C.60° D.30°
    5.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴的正半轴相交于A,B两点,与y轴相交于点C,对称轴为直线x=2,且OA=OC.有下列结论:①abc<0;②3b+4c<0;③c>﹣1;④关于x的方程ax2+bx+c=0有一个根为﹣,其中正确的结论个数是(  )

    A.1 B.2 C.3 D.4
    6.如图,直线AB、CD相交于点O,EO⊥CD,下列说法错误的是( )

    A.∠AOD=∠BOC B.∠AOE+∠BOD=90°
    C.∠AOC=∠AOE D.∠AOD+∠BOD=180°
    7.如图是二次函数y=ax2+bx+c的图象,对于下列说法:①ac>0,②2a+b>0,③4ac<b2,④a+b+c<0,⑤当x>0时,y随x的增大而减小,其中正确的是(  )

    A.①②③ B.①②④ C.②③④ D.③④⑤
    8.下图是由八个相同的小正方体组合而成的几何体,其左视图是( )

    A. B. C. D.
    9.如图,在△ABC中,AC的垂直平分线分别交AC、BC于E,D两点,EC=4,△ABC的周长为23,则△ABD的周长为(  )

    A.13 B.15 C.17 D.19
    10.某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为( )
    A.x(x+1)=1035 B.x(x-1)=1035 C.x(x+1)=1035 D.x(x-1)=1035
    11.若|a|=﹣a,则a为(  )
    A.a是负数 B.a是正数 C.a=0 D.负数或零
    12.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是
    A.6.75×103吨 B.67.5×103吨 C.6.75×104吨 D.6.75×105吨
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.关于x的一元二次方程x2+4x﹣k=0有实数根,则k的取值范围是__________.
    14.哈尔滨市某楼盘以每平方米10000元的均价对外销售,经过连续两次上调后,均价为每平方米12100元,则平均每次上调的百分率为_____.
    15.如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为_____.

    16.分解因式:(2a+b)2﹣(a+2b)2= .
    17.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与
    直角边AB相交于点C.若点A的坐标为(,4),则△AOC的面积为 .
    18.如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为_____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图1,定义:在直角三角形ABC中,锐角α的邻边与对边的比叫做角α的余切,记作ctanα,即ctanα==,根据上述角的余切定义,解下列问题:
    (1)如图1,若BC=3,AB=5,则ctanB=_____;
    (2)ctan60°=_____;
    (3)如图2,已知:△ABC中,∠B是锐角,ctan C=2,AB=10,BC=20,试求∠B的余弦cosB的值.

    20.(6分)如图,已知抛物线(>0)与轴交于A,B两点(A点在B点的左边),与轴交于点C。
    (1)如图1,若△ABC为直角三角形,求的值;
    (2)如图1,在(1)的条件下,点P在抛物线上,点Q在抛物线的对称轴上,若以BC为边,以点B,C,P,Q为顶点的四边形是平行四边形,求P点的坐标;
    (3)如图2,过点A作直线BC的平行线交抛物线于另一点D,交轴交于点E,若AE:ED=1:4,求的值.

    21.(6分)如图,在Rt△ABC中,∠C=90°,AB的垂直平分线交AC于点D,交AB于点E.
    (1)求证:△ADE~△ABC;
    (2)当AC=8,BC=6时,求DE的长.

    22.(8分)如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,作ED⊥EB交AB于点D,⊙O是△BED的外接圆.求证:AC是⊙O的切线;已知⊙O的半径为2.5,BE=4,求BC,AD的长.

    23.(8分)如图,在△ABC中,ABAC,AE是∠BAC的平分线,∠ABC的平分线BM交AE于点M,点O在AB上,以点O为圆心,OB的长为半径的圆经过点M,交BC于点G,交AB于点F.
    (1)求证:AE为⊙O的切线;
    (2)当BC=4,AC=6时,求⊙O的半径;
    (3)在(2)的条件下,求线段BG的长.

    24.(10分)如图,在中,,是边上的高线,平分交于点,经过,两点的交于点,交于点,为的直径.

    (1)求证:是的切线;
    (2)当,时,求的半径.
    25.(10分) 某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,如图是水平放置的破裂管道有水部分的截面.
    (1)请你用直尺和圆规作出这个输水管道的圆形截面的圆心(保留作图痕迹);
    (2)若这个输水管道有水部分的水面宽AB=8 cm,水面最深地方的高度为2 cm,求这个圆形截面的半径.

    26.(12分)已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.
    (1)如图1,求证:KE=GE;
    (2)如图2,连接CABG,若∠FGB=∠ACH,求证:CA∥FE;
    (3)如图3,在(2)的条件下,连接CG交AB于点N,若sinE=,AK=,求CN的长.

    27.(12分)发现
    如图1,在有一个“凹角∠A1A2A3”n边形A1A2A3A4……An中(n为大于3的整数),∠A1A2A3=∠A1+∠A3+∠A4+∠A5+∠A6+……+∠An﹣(n﹣4)×180°.
    验证如图2,在有一个“凹角∠ABC”的四边形ABCD中,证明:∠ABC=∠A+∠C+∠D.证明3,在有一个“凹角∠ABC”的六边形ABCDEF中,证明;∠ABC=∠A+∠C+∠D+∠E+∠F﹣360°.
    延伸如图4,在有两个连续“凹角A1A2A3和∠A2A3A4”的四边形A1A2A3A4……An中(n为大于4的整数),∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A6……+∠An﹣(n﹣  )×180°.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    求出三种方案混合糖果的单价,比较后即可得出结论.
    【详解】
    方案1混合糖果的单价为,
    方案2混合糖果的单价为,
    方案3混合糖果的单价为.
    ∵a>b,
    ∴,
    ∴方案1最省钱.
    故选:A.
    【点睛】
    本题考查了加权平均数,求出各方案混合糖果的单价是解题的关键.
    2、D
    【解析】
    先根据AE:EB=1:2得出AE:CD=1:3,再由相似三角形的判定定理得出△AEF∽△CDF,由相似三角形的性质即可得出结论.
    【详解】
    解:∵四边形ABCD是平行四边形,AE:EB=1:2,
    ∴AE:CD=1:3,
    ∵AB∥CD,
    ∴∠EAF=∠DCF,
    ∵∠DFC=∠AFE,
    ∴△AEF∽△CDF,
    ∵S△AEF=3,
    ∴==()2,
    解得S△FCD=1.
    故选D.
    【点睛】
    本题考查的是相似三角形的判定与性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.
    3、D
    【解析】
    解:A.不是同类二次根式,不能合并,故A错误;
    B. ,故B错误;
    C.,故C错误;
    D.,正确.
    故选D.
    4、A
    【解析】
    如图,∵∠BOC=50°,
    ∴∠BAC=25°,
    ∵AC∥OB,
    ∴∠OBA=∠BAC=25°,
    ∵OA=OB,
    ∴∠OAB=∠OBA=25°.
    故选A.
    5、B
    【解析】
    由二次函数图象的开口方向、对称轴及与y轴的交点可分别判断出a、b、c的符号,从而可判断①;由对称轴=2可知a=,由图象可知当x=1时,y>0,可判断②;由OA=OC,且OA<1,可判断③;把-代入方程整理可得ac2-bc+c=0,结合③可判断④;从而可得出答案.
    【详解】
    解:∵图象开口向下,∴a<0,
    ∵对称轴为直线x=2,∴>0,∴b>0,
    ∵与y轴的交点在x轴的下方,∴c<0,
    ∴abc>0,故①错误.
    ∵对称轴为直线x=2,∴=2,∴a=,
    ∵由图象可知当x=1时,y>0,
    ∴a+b+c>0,∴4a+4b+4c>0,∴4()+4b+4c>0,
    ∴3b+4c>0,故②错误.
    ∵由图象可知OA<1,且OA=OC,
    ∴OC<1,即-c<1,
    ∴c>-1,故③正确.
    ∵假设方程的一个根为x=-,把x=-代入方程可得+c=0,
    整理可得ac-b+1=0,
    两边同时乘c可得ac2-bc+c=0,
    ∴方程有一个根为x=-c,
    由③可知-c=OA,而当x=OA是方程的根,
    ∴x=-c是方程的根,即假设成立,故④正确.
    综上可知正确的结论有三个:③④.
    故选B.
    【点睛】
    本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程、不等式的关系是解题的关键.特别是利用好题目中的OA=OC,是解题的关键.
    6、C
    【解析】
    根据对顶角性质、邻补角定义及垂线的定义逐一判断可得.
    【详解】
    A、∠AOD与∠BOC是对顶角,所以∠AOD=∠BOC,此选项正确;
    B、由EO⊥CD知∠DOE=90°,所以∠AOE+∠BOD=90°,此选项正确;
    C、∠AOC与∠BOD是对顶角,所以∠AOC=∠BOD,此选项错误;
    D、∠AOD与∠BOD是邻补角,所以∠AOD+∠BOD=180°,此选项正确;
    故选C.
    【点睛】
    本题主要考查垂线、对顶角与邻补角,解题的关键是掌握对顶角性质、邻补角定义及垂线的定义.
    7、C
    【解析】
    根据二次函数的图象与性质即可求出答案.
    【详解】
    解:①由图象可知:a>0,c<0,
    ∴ac<0,故①错误;
    ②由于对称轴可知:<1,
    ∴2a+b>0,故②正确;
    ③由于抛物线与x轴有两个交点,
    ∴△=b2﹣4ac>0,故③正确;
    ④由图象可知:x=1时,y=a+b+c<0,
    故④正确;
    ⑤当x>时,y随着x的增大而增大,故⑤错误;
    故选:C.
    【点睛】
    本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于基础题型.
    8、B
    【解析】
    解:找到从左面看所得到的图形,从左面可看到从左往右三列小正方形的个数为:2,3,1.
    故选B.
    9、B
    【解析】
    ∵DE垂直平分AC,
    ∴AD=CD,AC=2EC=8,
    ∵C△ABC=AC+BC+AB=23,
    ∴AB+BC=23-8=15,
    ∴C△ABD=AB+AD+BD=AB+DC+BD=AB+BC=15.
    故选B.
    10、B
    【解析】
    试题分析:如果全班有x名同学,那么每名同学要送出(x-1)张,共有x名学生,那么总共送的张数应该是x(x-1)张,即可列出方程.
    ∵全班有x名同学,
    ∴每名同学要送出(x-1)张;
    又∵是互送照片,
    ∴总共送的张数应该是x(x-1)=1.
    故选B
    考点:由实际问题抽象出一元二次方程.
    11、D
    【解析】
    根据绝对值的性质解答.
    【详解】
    解:当a≤0时,|a|=-a,
    ∴|a|=-a时,a为负数或零,
    故选D.
    【点睛】
    本题考查的是绝对值的性质,①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数-a;③当a是零时,a的绝对值是零.
    12、C
    【解析】
    试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).67500一共5位,从而67 500=6.75×2.故选C.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、k≥﹣1
    【解析】
    分析:根据方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出结论.
    详解:∵关于x的一元二次方程x2+1x-k=0有实数根,
    ∴△=12-1×1×(-k)=16+1k≥0,
    解得:k≥-1.
    故答案为k≥-1.
    点睛:本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.
    14、10%
    【解析】
    设平均每次上调的百分率是x,因为经过两次上调,且知道调前的价格和调后的价格,从而列方程求出解.
    【详解】
    设平均每次上调的百分率是x,
    依题意得,
    解得:,(不合题意,舍去).
    答:平均每次上调的百分率为10%.
    故答案是:10%.
    【点睛】
    此题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.
    15、72°
    【解析】
    首先根据正五边形的性质得到AB=BC=AE,∠ABC=∠BAE=108°,然后利用三角形内角和定理得∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,最后利用三角形的外角的性质得到∠AFE=∠BAC+∠ABE=72°.
    【详解】
    ∵五边形ABCDE为正五边形,
    ∴AB=BC=AE,∠ABC=∠BAE=108°,
    ∴∠BAC=∠BCA=∠ABE=∠AEB=(180°−108°)÷2=36°,
    ∴∠AFE=∠BAC+∠ABE=72°,
    故答案为72°.
    【点睛】
    本题考查的是正多边形和圆,利用数形结合求解是解答此题的关键
    16、3(a+b)(a﹣b).
    【解析】
    (2a+b)2﹣(a+2b)2=4a2+4ab+b2-(a2+4ab+4b2)= 4a2+4ab+b2-a2-4ab-4b2=3a2-3b2=3(a2-b2)=3(a+b)(a-b)
    17、2
    【解析】
    解:∵OA的中点是D,点A的坐标为(﹣6,4),
    ∴D(﹣1,2),
    ∵双曲线y=经过点D,
    ∴k=﹣1×2=﹣6,
    ∴△BOC的面积=|k|=1.
    又∵△AOB的面积=×6×4=12,
    ∴△AOC的面积=△AOB的面积﹣△BOC的面积=12﹣1=2.
    18、﹣2
    【解析】
    要求函数的解析式只要求出B点的坐标就可以,过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.根据条件得到△ACO∽△ODB,得到:=1,然后用待定系数法即可.
    【详解】
    过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.

    设点A的坐标是(m,n),则AC=n,OC=m.
    ∵∠AOB=90°,
    ∴∠AOC+∠BOD=90°.
    ∵∠DBO+∠BOD=90°,
    ∴∠DBO=∠AOC.
    ∵∠BDO=∠ACO=90°,
    ∴△BDO∽△OCA.
    ∴,
    ∵OB=1OA,
    ∴BD=1m,OD=1n.
    因为点A在反比例函数y=的图象上,
    ∴mn=1.
    ∵点B在反比例函数y=的图象上,
    ∴B点的坐标是(-1n,1m).
    ∴k=-1n•1m=-4mn=-2.
    故答案为-2.
    【点睛】
    本题考查了反比例函数图象上点的坐标特征,相似三角形的判定和性质,利用相似三角形的性质求得点B的坐标(用含n的式子表示)是解题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1);(2);(3).
    【解析】
    试题分析:(1)先利用勾股定理计算出AC=4,然后根据余切的定义求解;
    (2)根据余切的定义得到ctan60°=,然后把tan60°=代入计算即可;
    (3)作AH⊥BC于H,如图2,先在Rt△ACH中利用余切的定义得到ctanC==2,则可设AH=x,CH=2x,BH=BC﹣CH=20﹣2x,接着再在Rt△ABH中利用勾股定理得到(20﹣2x)2+x2=102,解得x1=6,x2=10(舍去),所以BH=8,然后根据余弦的定义求解.
    解:(1)∵BC=3,AB=5,
    ∴AC==4,
    ∴ctanB==;
    (2)ctan60°===;
    (3)作AH⊥BC于H,如图2,
    在Rt△ACH中,ctanC==2,
    设AH=x,则CH=2x,
    ∴BH=BC﹣CH=20﹣2x,
    在Rt△ABH中,∵BH2+AH2=AB2,
    ∴(20﹣2x)2+x2=102,解得x1=6,x2=10(舍去),
    ∴BH=20﹣2×6=8,
    ∴cosB===.

    考点:解直角三角形.
    20、(1);(2)点P的坐标为 ;(3).
    【解析】
    (1)利用三角形相似可求AO•OB,再由一元二次方程根与系数关系求AO•OB构造方程求n;
    (2)求出B、C坐标,设出点Q坐标,利用平行四边形对角线互相平分性质,分类讨论点P坐标,分别代入抛物线解析式,求出Q点坐标;
    (3)设出点D坐标(a,b),利用相似表示OA,再由一元二次方程根与系数关系表示OB,得到点B坐标,进而找到b与a关系,代入抛物线求a、n即可.
    【详解】
    (1)若△ABC为直角三角形
    ∴△AOC∽△COB
    ∴OC2=AO•OB
    当y=0时,0=x2-x-n
    由一元二次方程根与系数关系
    -OA•OB=OC2
    n2==−2n
    解得n=0(舍去)或n=2
    ∴抛物线解析式为y=;
    (2)由(1)当=0时
    解得x1=-1,x2=4
    ∴OA=1,OB=4
    ∴B(4,0),C(0,-2)
    ∵抛物线对称轴为直线x=-=−
    ∴设点Q坐标为(,b)
    由平行四边形性质可知
    当BQ、CP为平行四边形对角线时,点P坐标为(,b+2)
    代入y=x2-x-2
    解得b=,则P点坐标为(,)
    当CQ、PB为为平行四边形对角线时,点P坐标为(-,b-2)
    代入y=x2-x-2
    解得b=,则P坐标为(-,)
    综上点P坐标为(,),(-,);
    (3)设点D坐标为(a,b)
    ∵AE:ED=1:4
    则OE=b,OA=a
    ∵AD∥AB
    ∴△AEO∽△BCO
    ∵OC=n

    ∴OB=
    由一元二次方程根与系数关系得,
    ∴b=a2
    将点A(-a,0),D(a,a2)代入y=x2-x-n

    解得a=6或a=0(舍去)
    则n= .
    【点睛】
    本题是代数几何综合题,考查了二次函数图象性质、一元二次方程根与系数关系、三角形相似以及平行四边形的性质,解答关键是综合运用数形结合分类讨论思想.
    21、(1)见解析;(2).
    【解析】
    (1)根据两角对应相等,两三角形相似即可判定;
    (2)利用相似三角形的性质即可解决问题.
    【详解】
    (1)∵DE⊥AB,∴∠AED=∠C=90°.
    ∵∠A=∠A,∴△AED∽△ACB.
    (2)在Rt△ABC中,∵AC=8,BC=6,∴AB1.
    ∵DE垂直平分AB,∴AE=EB=2.
    ∵△AED∽△ACB,∴,∴,∴DE.
    【点睛】
    本题考查了相似三角形的判定和性质、勾股定理、线段的垂直平分线的性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.
    22、(1)证明见解析;(2)BC=,AD=.
    【解析】
    分析:(1)连接OE,由OB=OE知∠OBE=∠OEB、由BE平分∠ABC知∠OBE=∠CBE,据此得∠OEB=∠CBE,从而得出OE∥BC,进一步即可得证;
    (2)证△BDE∽△BEC得,据此可求得BC的长度,再证△AOE∽△ABC得,据此可得AD的长.
    详解:(1)如图,连接OE,

    ∵OB=OE,
    ∴∠OBE=∠OEB,
    ∵BE平分∠ABC,
    ∴∠OBE=∠CBE,
    ∴∠OEB=∠CBE,
    ∴OE∥BC,
    又∵∠C=90°,
    ∴∠AEO=90°,即OE⊥AC,
    ∴AC为⊙O的切线;
    (2)∵ED⊥BE,
    ∴∠BED=∠C=90°,
    又∵∠DBE=∠EBC,
    ∴△BDE∽△BEC,
    ∴,即,
    ∴BC=;
    ∵∠AEO=∠C=90°,∠A=∠A,
    ∴△AOE∽△ABC,
    ∴,即,
    解得:AD=.
    点睛:本题主要考查切线的判定与性质,解题的关键是掌握切线的判定与性质及相似三角形的判定与性质.
    23、(1)证明见解析;(2);(3)1.
    【解析】
    (1)连接OM,如图1,先证明OM∥BC,再根据等腰三角形的性质判断AE⊥BC,则OM⊥AE,然后根据切线的判定定理得到AE为⊙O的切线;
    (2)设⊙O的半径为r,利用等腰三角形的性质得到BE=CE=BC=2,再证明△AOM∽△ABE,则利用相似比得到,然后解关于r的方程即可;
    (3)作OH⊥BE于H,如图,易得四边形OHEM为矩形,则HE=OM=,所以BH=BE-HE=,再根据垂径定理得到BH=HG=,所以BG=1.
    【详解】
    解:(1)证明:连接OM,如图1,

    ∵BM是∠ABC的平分线,
    ∴∠OBM=∠CBM,
    ∵OB=OM,
    ∴∠OBM=∠OMB,
    ∴∠CBM=∠OMB,
    ∴OM∥BC,
    ∵AB=AC,AE是∠BAC的平分线,
    ∴AE⊥BC,
    ∴OM⊥AE,
    ∴AE为⊙O的切线;
    (2)解:设⊙O的半径为r,
    ∵AB=AC=6,AE是∠BAC的平分线,
    ∴BE=CE=BC=2,
    ∵OM∥BE,
    ∴△AOM∽△ABE,
    ∴,即,解得r=,
    即设⊙O的半径为;
    (3)解:作OH⊥BE于H,如图,

    ∵OM⊥EM,ME⊥BE,
    ∴四边形OHEM为矩形,
    ∴HE=OM=,
    ∴BH=BE﹣HE=2﹣=,
    ∵OH⊥BG,
    ∴BH=HG=,
    ∴BG=2BH=1.
    24、(1)见解析;(2)的半径是.
    【解析】
    (1)连结,易证,由于是边上的高线,从而可知,所以是的切线.
    (2)由于,从而可知,由,可知:,易证,所以,再证明,所以,从而可求出.
    【详解】
    解:(1)连结.
    ∵平分,
    ∴,又,
    ∴,
    ∴,
    ∵是边上的高线,
    ∴,
    ∴,
    ∴是的切线.
    (2)∵,
    ∴,,
    ∴是中点,
    ∴,
    ∵,
    ∴,
    ∵,,
    ∴,
    ∴,
    又∵,
    ∴,
    在中,

    ∴,
    ∴,

    而,
    ∴,
    ∴,
    ∴的半径是.

    【点睛】
    本题考查圆的综合问题,涉及锐角三角函数,相似三角形的判定与性质,等腰三角形的性质等知识,综合程度较高,需要学生综合运用知识的能力.
    25、(1)详见解析;(2)这个圆形截面的半径是5 cm.
    【解析】
    (1)根据尺规作图的步骤和方法做出图即可;
    (2)先过圆心作半径,交于点,设半径为,得出、的长,在中,根据勾股定理求出这个圆形截面的半径.
    【详解】
    (1)如图,作线段AB的垂直平分线l,与弧AB交于点C,作线段AC的垂直平分线l′与直线l交于点O,点O即为所求作的圆心.

    (2)如图,过圆心O作半径CO⊥AB,交AB于点D,
    设半径为r,则AD=AB=4,OD=r-2,
    在Rt△AOD中,r2=42+(r-2)2,解得r=5,
    答:这个圆形截面的半径是5 cm.
    【点睛】
    此题考查了垂径定理和勾股定理,关键是根据题意画出图形,再根据勾股定理进行求解.
    26、(1)证明见解析;(2)△EAD是等腰三角形.证明见解析;(3).
    【解析】
    试题分析:
    (1)连接OG,则由已知易得∠OGE=∠AHK=90°,由OG=OA可得∠AGO=∠OAG,从而可得∠KGE=∠AKH=∠EKG,这样即可得到KE=GE;
    (2)设∠FGB=α,由AB是直径可得∠AGB=90°,从而可得∠KGE=90°-α,结合GE=KE可得∠EKG=90°-α,这样在△GKE中可得∠E=2α,由∠FGB=∠ACH可得∠ACH=2α,这样可得∠E=∠ACH,由此即可得到CA∥EF;
    (3)如下图2,作NP⊥AC于P,
    由(2)可知∠ACH=∠E,由此可得sinE=sin∠ACH=,设AH=3a,可得AC=5a,CH=4a,则tan∠CAH=,由(2)中结论易得∠CAK=∠EGK=∠EKG=∠AKC,从而可得CK=AC=5a,由此可得HK=a,tan∠AKH=,AK=a,结合AK=可得a=1,则AC=5;在四边形BGKH中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,结合∠AKH+∠GKG=180°,∠ACG=∠ABG可得∠ACG=∠AKH,
    在Rt△APN中,由tan∠CAH=,可设PN=12b,AP=9b,由tan∠ACG=tan∠AKH=3可得CP=4b,由此可得AC=AP+CP==5,则可得b=,由此即可在Rt△CPN中由勾股定理解出CN的长.
    试题解析:
    (1)如图1,连接OG.

    ∵EF切⊙O于G,
    ∴OG⊥EF,
    ∴∠AGO+∠AGE=90°,
    ∵CD⊥AB于H,
    ∴∠AHD=90°,
    ∴∠OAG=∠AKH=90°,
    ∵OA=OG,
    ∴∠AGO=∠OAG,
    ∴∠AGE=∠AKH,
    ∵∠EKG=∠AKH,
    ∴∠EKG=∠AGE,
    ∴KE=GE.
    (2)设∠FGB=α,
    ∵AB是直径,
    ∴∠AGB=90°,
    ∴∠AGE=∠EKG=90°﹣α,
    ∴∠E=180°﹣∠AGE﹣∠EKG=2α,
    ∵∠FGB=∠ACH,
    ∴∠ACH=2α,
    ∴∠ACH=∠E,
    ∴CA∥FE.
    (3)作NP⊥AC于P.
    ∵∠ACH=∠E,
    ∴sin∠E=sin∠ACH=,设AH=3a,AC=5a,
    则CH=,tan∠CAH=,
    ∵CA∥FE,
    ∴∠CAK=∠AGE,
    ∵∠AGE=∠AKH,
    ∴∠CAK=∠AKH,
    ∴AC=CK=5a,HK=CK﹣CH=4a,tan∠AKH==3,AK=,
    ∵AK=,
    ∴,
    ∴a=1.AC=5,
    ∵∠BHD=∠AGB=90°,
    ∴∠BHD+∠AGB=180°,
    在四边形BGKH中,∠BHD+∠HKG+∠AGB+∠ABG=360°,
    ∴∠ABG+∠HKG=180°,
    ∵∠AKH+∠HKG=180°,
    ∴∠AKH=∠ABG,
    ∵∠ACN=∠ABG,
    ∴∠AKH=∠ACN,
    ∴tan∠AKH=tan∠ACN=3,
    ∵NP⊥AC于P,
    ∴∠APN=∠CPN=90°,
    在Rt△APN中,tan∠CAH=,设PN=12b,则AP=9b,
    在Rt△CPN中,tan∠ACN==3,
    ∴CP=4b,
    ∴AC=AP+CP=13b,
    ∵AC=5,
    ∴13b=5,
    ∴b=,
    ∴CN===.

    27、(1)见解析;(2)见解析;(3)1.
    【解析】
    (1)如图2,延长AB交CD于E,可知∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,即可解答
    (2)如图3,延长AB交CD于G,可知∠ABC=∠BGC+∠C,即可解答
    (3)如图4,延长A2A3交A5A4于C,延长A3A2交A1An于B,可知∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,再找出规律即可解答
    【详解】
    (1)如图2,延长AB交CD于E,
    则∠ABC=∠BEC+∠C,∠BEC=∠A+∠D,
    ∴∠ABC=∠A+∠C+∠D;
    (2)如图3,延长AB交CD于G,则∠ABC=∠BGC+∠C,
    ∵∠BGC=180°﹣∠BGC,∠BGD=3×180°﹣(∠A+∠D+∠E+∠F),
    ∴∠ABC=∠A+∠C+∠D+∠E+∠F﹣310°;
    (3)如图4,延长A2A3交A5A4于C,延长A3A2交A1An于B,
    则∠A1A2A3+∠A2A3A4=∠A1+∠2+∠A4+∠4,
    ∵∠1+∠3=(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An),
    而∠2+∠4=310°﹣(∠1+∠3)=310°﹣[(n﹣2﹣2)×180°﹣(∠A5+∠A1……+∠An)],
    ∴∠A1A2A3+∠A2A3A4=∠A1+∠A4+∠A5+∠A1……+∠An﹣(n﹣1)×180°.
    故答案为1.



    【点睛】
    此题考查多边形的内角和外角,,解题的关键是熟练掌握三角形的外角的性质,属于中考常考题型

    相关试卷

    2024年吉林省长春市长春汽车经济技术开发区中考一模数学试题:

    这是一份2024年吉林省长春市长春汽车经济技术开发区中考一模数学试题,共10页。

    2023年吉林省长春市汽车经济技术开发区中考一模数学试题(含解析):

    这是一份2023年吉林省长春市汽车经济技术开发区中考一模数学试题(含解析),共28页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    吉林省长春汽车经济技术开发区2022年中考考前最后一卷数学试卷含解析:

    这是一份吉林省长春汽车经济技术开发区2022年中考考前最后一卷数学试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,方程x2﹣3x+2=0的解是,下列运算正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map