2022届江苏省句容市华阳中学中考试题猜想数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.在一幅长,宽的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整幅挂图的面积是,设金色纸边的宽为,那么满足的方程是( )
A. B.
C. D.
2.将函数的图象用下列方法平移后,所得的图象不经过点A(1,4)的方法是( )
A.向左平移1个单位 B.向右平移3个单位
C.向上平移3个单位 D.向下平移1个单位
3.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为( )
A. B. C. D.
4.若一个函数的图象是经过原点的直线,并且这条直线过点(-3,2a)和点(8a,-3),则a的值为( )
A. B. C. D.±
5.一列动车从A地开往B地,一列普通列车从B地开往A地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系.下列叙述错误的是( )
A.AB两地相距1000千米
B.两车出发后3小时相遇
C.动车的速度为
D.普通列车行驶t小时后,动车到达终点B地,此时普通列车还需行驶千米到达A地
6.将一圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是( )
A. B. C. D.
7.若数a使关于x的不等式组有解且所有解都是2x+6>0的解,且使关于y的分式方程+3=有整数解,则满足条件的所有整数a的个数是( )
A.5 B.4 C.3 D.2
8.将弧长为2πcm、圆心角为120°的扇形围成一个圆锥的侧面,则这个圆锥的高是( )
A. cm B.2 cm C.2cm D. cm
9.根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于( )
A.9 B.7 C.﹣9 D.﹣7
10.下列成语描述的事件为随机事件的是( )
A.水涨船高 B.守株待兔 C.水中捞月 D.缘木求鱼
二、填空题(共7小题,每小题3分,满分21分)
11.七巧板是我国祖先创造的一种智力玩具,它来源于勾股法,如图①整幅七巧板是由正方形ABCD分割成七小块(其中:五块等腰直角三角形、一块正方形和一块平行四边形)组成,如图②是由七巧板拼成的一个梯形,若正方形ABCD的边长为12cm,则梯形MNGH的周长是 cm(结果保留根号).
12.如图,在△ABC中,AD、BE分别是边BC、AC上的中线,AB=AC=5,cos∠C=,那么GE=_______.
13.已知,则=_____.
14.为迎接五月份全县中考九年级体育测试,小强每天坚持引体向上锻炼,他记录了某一周每天做引体向上的个数,如下表:
其中有三天的个数被墨汁覆盖了,但小强已经计算出这组数据唯一众数是13,平均数是12,那么这组数据的方差是_____.
15.如图,已知在△ABC中,∠A=40°,剪去∠A后成四边形,∠1+∠2=______°.
16.一个n边形的每个内角都为144°,则边数n为______.
17.如图,在x轴的正半轴上依次间隔相等的距离取点A1,A2,A3,A4,…,An,分别过这些点做x轴的垂线与反比例函数y=的图象相交于点P1,P2,P3,P4,…Pn,再分别过P2,P3,P4,…Pn作P2B1⊥A1P1,P3B2⊥A2P2,P4B3⊥A3P3,…,PnBn﹣1⊥An﹣1Pn﹣1,垂足分别为B1,B2,B3,B4,…,Bn﹣1,连接P1P2,P2P3,P3P4,…,Pn﹣1Pn,得到一组Rt△P1B1P2,Rt△P2B2P3,Rt△P3B3P4,…,Rt△Pn﹣1Bn﹣1Pn,则Rt△Pn﹣1Bn﹣1Pn的面积为_____.
三、解答题(共7小题,满分69分)
18.(10分)解方程.
19.(5分)如图,AB、AC分别是⊙O的直径和弦,OD⊥AC于点D.过点A作⊙O的切线与OD的延长线交于点P,PC、AB的延长线交于点F.
(1)求证:PC是⊙O的切线;
(2)若∠ABC=60°,AB=10,求线段CF的长.
20.(8分)如图,AB是圆O的直径,AC是圆O的弦,过点C的切线交AB的延长线于点D,若∠A=∠D,CD=2.
(1)求∠A的度数.
(2)求图中阴影部分的面积.
21.(10分)先化简,再求值:(﹣a)÷(1+),其中a是不等式﹣ <a<的整数解.
22.(10分)工人小王生产甲、乙两种产品,生产产品件数与所用时间之间的关系如表:
生产甲产品件数(件) | 生产乙产品件数(件) | 所用总时间(分钟) |
10 | 10 | 350 |
30 | 20 | 850 |
(1)小王每生产一件甲种产品和每生产一件乙种产品分别需要多少分钟?
(2)小王每天工作8个小时,每月工作25天.如果小王四月份生产甲种产品a件(a为正整数).
①用含a的代数式表示小王四月份生产乙种产品的件数;
②已知每生产一件甲产品可得1.50元,每生产一件乙种产品可得2.80元,若小王四月份的工资不少于1500元,求a的取值范围.
23.(12分)化简:(x+7)(x-6)-(x-2)(x+1)
24.(14分)如图,AB是⊙O的直径,D为⊙O上一点,过弧BD上一点T作⊙O的切线TC,且TC⊥AD于点C.
(1)若∠DAB=50°,求∠ATC的度数;
(2)若⊙O半径为2,TC=,求AD的长.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
根据矩形的面积=长×宽,我们可得出本题的等量关系应该是:(风景画的长+2个纸边的宽度)×(风景画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程.
【详解】
由题意,设金色纸边的宽为,
得出方程:(80+2x)(50+2x)=5400,
整理后得:
故选:B.
【点睛】
本题主要考查了由实际问题得出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据等量关系列出方程是解题关键.
2、D
【解析】
A.平移后,得y=(x+1)2,图象经过A点,故A不符合题意;
B.平移后,得y=(x−3)2,图象经过A点,故B不符合题意;
C.平移后,得y=x2+3,图象经过A点,故C不符合题意;
D.平移后,得y=x2−1图象不经过A点,故D符合题意;
故选D.
3、C
【解析】
设大马有x匹,小马有y匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可.
【详解】
解:设大马有x匹,小马有y匹,由题意得:,
故选C.
【点睛】
此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.
4、D
【解析】
根据一次函数的图象过原点得出一次函数式正比例函数,设一次函数的解析式为y=kx,把点(−3,2a)与点(8a,−3)代入得出方程组 ,求出方程组的解即可.
【详解】
解:设一次函数的解析式为:y=kx,
把点(−3,2a)与点(8a,−3)代入得出方程组 ,
由①得:,
把③代入②得: ,
解得:.
故选:D.
【点睛】
本题考查了用待定系数法求一次函数的解析式,主要考查学生运用性质进行计算的能力.
5、C
【解析】
可以用物理的思维来解决这道题.
【详解】
未出发时,x=0,y=1000,所以两地相距1000千米,所以A选项正确;y=0时两车相遇,x=3,所以B选项正确;设动车速度为V1,普车速度为V2,则3(V1+ V2)=1000,所以C选项错误;D选项正确.
【点睛】
理解转折点的含义是解决这一类题的关键.
6、C
【解析】
严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来.
【详解】
根据题意知,剪去的纸片一定是一个四边形,且对角线互相垂直.
故选C.
【点睛】
本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.
7、D
【解析】
由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a的值即可.
【详解】
不等式组整理得:,
由不等式组有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,
即-2<a≤4,即a=-1,0,1,2,3,4,
分式方程去分母得:5-y+3y-3=a,即y=,
由分式方程有整数解,得到a=0,2,共2个,
故选:D.
【点睛】
本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.
8、B
【解析】
由弧长公式可求解圆锥母线长,再由弧长可求解圆锥底面半径长,再运用勾股定理即可求解圆锥的高.
【详解】
解:设圆锥母线长为Rcm,则2π=,解得R=3cm;设圆锥底面半径为rcm,则2π=2πr,解得r=1cm.由勾股定理可得圆锥的高为=2cm.
故选择B.
【点睛】
本题考查了圆锥的概念和弧长的计算.
9、C
【解析】
先求出x=7时y的值,再将x=4、y=-1代入y=2x+b可得答案.
【详解】
∵当x=7时,y=6-7=-1,
∴当x=4时,y=2×4+b=-1,
解得:b=-9,
故选C.
【点睛】
本题主要考查函数值,解题的关键是掌握函数值的计算方法.
10、B
【解析】试题解析:水涨船高是必然事件,A不正确;
守株待兔是随机事件,B正确;
水中捞月是不可能事件,C不正确
缘木求鱼是不可能事件,D不正确;
故选B.
考点:随机事件.
二、填空题(共7小题,每小题3分,满分21分)
11、24+24
【解析】
仔细观察梯形从而发现其各边与原正方形各边之间的关系,则不难求得梯形的周长.
【详解】
解:观察图形得MH=GN=AD=12,HG=AC,
AD=DC=12,
AC=12,
HG=6.
梯形MNGH的周长=HG+HM+MN+NG=2HM+4HG=24+24.
故答案为24+24.
【点睛】
此题主要考查学生对等腰梯形的性质及正方形的性质的运用及观察分析图形的能力.
12、
【解析】
过点E作EF⊥BC交BC于点F,分别求得AD=3,BD=CD=4,EF=,DF=2,BF=6,再结合△BGD∽△BEF即可.
【详解】
过点E作EF⊥BC交BC于点F.
∵AB=AC, AD为BC的中线 ∴AD⊥BC ∴EF为△ADC的中位线.
又∵cos∠C=,AB=AC=5,∴AD=3,BD=CD=4,EF=,DF=2
∴BF=6
∴在Rt△BEF中BE==,
又∵△BGD∽△BEF
∴,即BG=.
GE=BE-BG=
故答案为.
【点睛】
本题考查的知识点是三角形的相似,解题的关键是熟练的掌握三角形的相似.
13、
【解析】
由可知值,再将化为的形式进行求解即可.
【详解】
解:∵,
∴,
∴原式=.
【点睛】
本题考查了分式的化简求值.
14、
【解析】
分析:根据已知条件得到被墨汁覆盖的三个数为:10,13,13,根据方差公式即可得到结论.
详解:∵平均数是12,
∴这组数据的和=12×7=84,
∴被墨汁覆盖三天的数的和=84−4×12=36,
∵这组数据唯一众数是13,
∴被墨汁覆盖的三个数为:10,13,13,
故答案为
点睛:考查方差,算术平均数,众数,根据这组数据唯一众数是13,得到被墨汁覆盖的三个数为:10,13,13是解题的关键.
15、220.
【解析】
试题分析:△ABC中,∠A=40°,=;如图,剪去∠A后成四边形∠1+∠2+=;∠1+∠2=220°
考点:内角和定理
点评:本题考查三角形、四边形的内角和定理,掌握内角和定理是解本题的关键
16、10
【解析】
解:因为正多边形的每个内角都相等,每个外角都相等,根据相邻两个内角和外角关系互补,可以求出这个多边形的每个外角等于36°,因为多边形的外角和是360°,所以这个多边形的边数等于360°÷36°=10,
故答案为:10
17、
【解析】
解:设OA1=A1A2=A2A3=…=An-2An-1=An-1An=a,
∵当x=a时,,∴P1的坐标为(a,),
当x=2a时,,∴P2的坐标为(2a,),
……
∴Rt△P1B1P2的面积为,
Rt△P2B2P3的面积为,
Rt△P3B3P4的面积为,
……
∴Rt△Pn-1Bn-1Pn的面积为.
故答案为:
三、解答题(共7小题,满分69分)
18、原分式方程无解.
【解析】
根据解分式方程的方法可以解答本方程,去分母将分式方程化为整式方程,解整式方程,验证.
【详解】
方程两边乘(x﹣1)(x+2),得x(x+2)﹣(x﹣1)(x+2)=3
即:x2+2x﹣x2﹣x+2=3
整理,得x=1
检验:当x=1时,(x﹣1)(x+2)=0,
∴原方程无解.
【点睛】
本题考查解分式方程,解题的关键是明确解放式方程的计算方法.
19、(1)证明见解析(2)1
【解析】
(1)连接OC,可以证得△OAP≌△OCP,利用全等三角形的对应角相等,以及切线的性质定理可以得到:∠OCP=90°,即OC⊥PC,即可证得;
(2)先证△OBC是等边三角形得∠COB=60°,再由(1)中所证切线可得∠OCF=90°,结合半径OC=1可得答案.
【详解】
(1)连接OC.
∵OD⊥AC,OD经过圆心O,∴AD=CD,∴PA=PC.
在△OAP和△OCP中,∵,∴△OAP≌△OCP(SSS),∴∠OCP=∠OAP.
∵PA是半⊙O的切线,∴∠OAP=90°,∴∠OCP=90°,即OC⊥PC,∴PC是⊙O的切线.
(2)∵OB=OC,∠OBC=60°,∴△OBC是等边三角形,∴∠COB=60°.
∵AB=10,∴OC=1.
由(1)知∠OCF=90°,∴CF=OC•tan∠COB=1.
【点睛】
本题考查了切线的性质定理以及判定定理,以及直角三角形三角函数的应用,证明圆的切线的问题常用的思路是根据切线的判定定理转化成证明垂直的问题.
20、 (1) ∠A=30°;(2)
【解析】
(1)连接OC,由过点C的切线交AB的延长线于点D,推出OC⊥CD,推出∠OCD=90°,即∠D+∠COD=90°,由OA=OC,推出∠A=∠ACO,由∠A=∠D,推出∠A=∠ACO=∠D
再由∠A+∠ACD+∠D=180°﹣90°=90°即可得出.
(2)先求∠COD度数及OC长度,即可求出图中阴影部分的面积.
【详解】
解:(1)连结OC
∵CD为⊙O的切线
∴OC⊥CD
∴∠OCD=90°
又∵OA=OC
∴∠A=∠ACO
又∵∠A=∠D
∴∠A=∠ACO=∠D
而∠A+∠ACD+∠D=180°﹣90°=90°
∴∠A=30°
(2)由(1)知:∠D=∠A=30°
∴∠COD=60°
又∵CD=2
∴OC=2
∴S阴影=.
【点睛】
本题考查的知识点是扇形面积的计算及切线的性质,解题的关键是熟练的掌握扇形面积的计算及切线的性质.
21、,1.
【解析】
首先化简(﹣a)÷(1+),然后根据a是不等式﹣<a<的整数解,求出a的值,再把求出的a的值代入化简后的算式,求出算式的值是多少即可.
【详解】
解:(﹣a)÷(1+)=×=,
∵a是不等式﹣<a<的整数解,∴a=﹣1,1,1,
∵a≠1,a+1≠1,∴a≠1,﹣1,∴a=1,
当a=1时,
原式==1.
22、(1)小王每生产一件甲种产品和每生产一件乙种产品分别需要15分钟、20分钟;(2)①600-;② a≤1.
【解析】
(1)设生产一件甲种产品和每生产一件乙种产品分别需要x分钟、y分钟,根据图示可得:生产10件甲产品,10件乙产品用时350分钟,生产30件甲产品,20件乙产品,用时850分钟,列方程组求解;
(2)①根据生产一件甲种产品和每生产一件乙种产品分别需要的时间关系即可表示出结果;
②根据“小王四月份的工资不少于1500元”即可列出不等式.
【详解】
(1)设生产一件甲种产品需x分钟,生产一件乙种产品需y分钟,由题意得:
,
解这个方程组得:,
答:小王每生产一件甲种产品和每生产一件乙种产品分别需要15分钟、20分钟;
(2)①∵生产一件甲种产品需15分钟,生产一件乙种产品需20分钟,
∴一小时生产甲产品4件,生产乙产品3件,
所以小王四月份生产乙种产品的件数:3(25×8﹣)=600-;
②依题意:1.5a+2.8(600-)≥1500,
1680﹣0.6a≥1500,
解得:a≤1.
【点睛】
本题考查了二元一次方程组的应用、一元一次不等式的应用,正确理解题意,找准题中的等量关系列出方程组、不等关系列出不等式是解题的关键.
23、2x-40.
【解析】
原式利用多项式乘以多项式法则计算,去括号合并即可.
【详解】
解:原式=x2-6x+7x-42-x2-x+2x+2=2x-40.
【点睛】
此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
24、(2)65°;(2)2.
【解析】
试题分析:(2)连接OT,根据角平分线的性质,以及直角三角形的两个锐角互余,证得CT⊥OT,CT为⊙O的切线;
(2)证明四边形OTCE为矩形,求得OE的长,在直角△OAE中,利用勾股定理即可求解.
试题解析:(2)连接OT,∵OA=OT,∴∠OAT=∠OTA,又∵AT平分∠BAD,∴∠DAT=∠OAT,∴∠DAT=∠OTA,∴OT∥AC,又∵CT⊥AC,∴CT⊥OT,∴CT为⊙O的切线;
(2)过O作OE⊥AD于E,则E为AD中点,又∵CT⊥AC,∴OE∥CT,∴四边形OTCE为矩形,∵CT=,∴OE=,又∵OA=2,∴在Rt△OAE中,AE=,∴AD=2AE=2.
考点:2.切线的判定与性质;2.勾股定理;3.圆周角定理.
2023-2024学年江苏省句容市华阳中学九上数学期末质量检测模拟试题含答案: 这是一份2023-2024学年江苏省句容市华阳中学九上数学期末质量检测模拟试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
2023-2024学年江苏省镇江市句容市华阳教育集团七年级(上)月考数学试卷(10月份)(含解析): 这是一份2023-2024学年江苏省镇江市句容市华阳教育集团七年级(上)月考数学试卷(10月份)(含解析),共11页。试卷主要包含了填空题,选择题,解答题等内容,欢迎下载使用。
江苏省句容市华阳中学2021-2022学年中考一模数学试题含解析: 这是一份江苏省句容市华阳中学2021-2022学年中考一模数学试题含解析,共24页。试卷主要包含了若,,则的值是等内容,欢迎下载使用。