年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022届湖北省孝感市孝昌县中考数学押题卷含解析

    2022届湖北省孝感市孝昌县中考数学押题卷含解析第1页
    2022届湖北省孝感市孝昌县中考数学押题卷含解析第2页
    2022届湖北省孝感市孝昌县中考数学押题卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届湖北省孝感市孝昌县中考数学押题卷含解析

    展开

    这是一份2022届湖北省孝感市孝昌县中考数学押题卷含解析,共22页。试卷主要包含了已知x=2﹣,则代数式等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,△ADE绕正方形ABCD的顶点A顺时针旋转90°,得△ABF,连接EF交AB于H,有如下五个结论①AE⊥AF;②EF:AF=:1;③AF2=FH•FE;④∠AFE=∠DAE+∠CFE ⑤ FB:FC=HB:EC.则正确的结论有( )

    A.2个 B.3个 C.4个 D.5个
    2.下列条件中不能判定三角形全等的是( )
    A.两角和其中一角的对边对应相等 B.三条边对应相等
    C.两边和它们的夹角对应相等 D.三个角对应相等
    3.如图,边长为2a的等边△ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是(   )

    A. B.a C. D.
    4.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是(  )

    A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+31
    5.已知关于x的一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=4,则m+n的值是(  )
    A.﹣10 B.10 C.﹣6 D.2
    6.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是(  )
    A. B. C. D.
    7.下列图案中,既是中心对称图形,又是轴对称图形的是(  )
    A. B. C. D.
    8.下列各数3.1415926,,,,,中,无理数有( )
    A.2个 B.3个 C.4个 D.5个
    9.已知x=2﹣,则代数式(7+4)x2+(2+)x+ 的值是(  )
    A.0 B. C.2+ D.2﹣
    10.如图,点O′在第一象限,⊙O′与x轴相切于H点,与y轴相交于A(0,2),B(0,8),则点O′的坐标是(  )

    A.(6,4) B.(4,6) C.(5,4) D.(4,5)
    二、填空题(共7小题,每小题3分,满分21分)
    11.不等式组的最大整数解为_____.
    12.甲、乙两名学生练习打字,甲打135个字所用时间与乙打180个字所用时间相同,已知甲平均每分钟比乙少打20个字,如果设甲平均每分钟打字的个数为x,那么符合题意的方程为:______.
    13.如图,已知正方形边长为4,以A为圆心,AB为半径作弧BD,M是BC的中点,过点M作EM⊥BC交弧BD于点E,则弧BE的长为_____.

    14.将直角边长为5cm的等腰直角△ABC绕点A逆时针旋转15°后,得到△AB′C′,则图中阴影部分的面积是_____cm1.

    15.如图,△ABC内接于⊙O,DA、DC分别切⊙O于A、C两点,∠ABC=114°,则∠ADC的度数为_______°.

    16.被历代数学家尊为“算经之首”的九章算术是中国古代算法的扛鼎之作九章算术中记载:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻一雀一燕交而处,衡适平并燕、雀重一斤问燕、雀一枚各重几何?”
    译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻将一只雀、一只燕交换位置而放,重量相等只雀、6只燕重量为1斤问雀、燕毎只各重多少斤?”设每只雀重x斤,每只燕重y斤,可列方程组为______.
    17.已知两圆相切,它们的圆心距为3,一个圆的半径是4,那么另一个圆的半径是_______.
    三、解答题(共7小题,满分69分)
    18.(10分)某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:
    (1)该商场服装营业员的人数为 ,图①中m的值为 ;
    (2)求统计的这组销售额数据的平均数、众数和中位数.

    19.(5分)如图,现有一块钢板余料,它是矩形缺了一角,.王师傅准备从这块余料中裁出一个矩形(为线段上一动点).设,矩形的面积为.
    (1)求与之间的函数关系式,并注明的取值范围;
    (2)为何值时,取最大值?最大值是多少?

    20.(8分)图1是某市2009年4月5日至14日每天最低气温的折线统计图.图2是该市2007年4月5日至14日每天最低气温的频数分布直方图,根据图1提供的信息,补全图2中频数分布直方图;在这10天中,最低气温的众数是____,中位数是____,方差是_____.请用扇形图表示出这十天里温度的分布情况.

    21.(10分)如图,点G是正方形ABCD对角线CA的延长线一点,对角线BD与AC交于点O,以线段AG为边作一个正方形AEFG,连接EB、GD.
    (1)求证:EB=GD;
    (2)若AB=5,AG=2,求EB的长.

    22.(10分)如图①是一副创意卡通圆规,图②是其平面示意图,OA是支撑臂,OB是旋转臂.使用时,以点A为支撑点,铅笔芯端点B可绕点A旋转作出圆.已知OA=OB=10cm.
    (1)当∠AOB=18°时,求所作圆的半径(结果精确到0.01cm);
    (2)保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,求铅笔芯折断部分的长度(结果精确到0.01cm,参考数据:sin9°≈0.1564,cos9°≈0.9877,sin18°≈0.3090,cos18°≈0.9511,可使用科学计算器).

    23.(12分)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E
    (1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;
    (2)过点B作BG⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB= ,DH=1,∠OHD=80°,求∠BDE的大小.

    24.(14分)已知关于x的一元二次方程kx2﹣6x+1=0有两个不相等的实数根.
    (1)求实数k的取值范围;
    (2)写出满足条件的k的最大整数值,并求此时方程的根.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    由旋转性质得到△AFB≌△AED,再根据相似三角对应边的比等于相似比,即可分别求得各选项正确与否.
    【详解】
    解:由题意知,△AFB≌△AED
    ∴AF=AE,∠FAB=∠EAD,∠FAB+∠BAE=∠EAD+∠BAE=∠BAD=90°.
    ∴AE⊥AF,故此选项①正确;
    ∴∠AFE=∠AEF=∠DAE+∠CFE,故④正确;
    ∵△AEF是等腰直角三角形,有EF:AF=:1,故此选项②正确;
    ∵△AEF与△AHF不相似,
    ∴AF2=FH·FE不正确.故此选项③错误,
    ∵HB//EC,
    ∴△FBH∽△FCE,
    ∴FB:FC=HB:EC,故此选项⑤正确.
    故选:C
    【点睛】
    本题主要考查了正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质等知识,熟练地应用旋转的性质以及相似三角形的性质是解决问题的关键.
    2、D
    【解析】
    解:A、符合AAS,能判定三角形全等;
    B、符合SSS,能判定三角形全等;;
    C、符合SAS,能判定三角形全等;
    D、满足AAA,没有相对应的判定方法,不能由此判定三角形全等;
    故选D.
    3、A
    【解析】
    取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明∴△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.
    【详解】
    如图,取BC的中点G,连接MG,

    ∵旋转角为60°,
    ∴∠MBH+∠HBN=60°,
    又∵∠MBH+∠MBC=∠ABC=60°,
    ∴∠HBN=∠GBM,
    ∵CH是等边△ABC的对称轴,
    ∴HB=AB,
    ∴HB=BG,
    又∵MB旋转到BN,
    ∴BM=BN,
    在△MBG和△NBH中,

    ∴△MBG≌△NBH(SAS),
    ∴MG=NH,
    根据垂线段最短,MG⊥CH时,MG最短,即HN最短,
    此时∵∠BCH=×60°=30°,CG=AB=×2a=a,
    ∴MG=CG=×a=,
    ∴HN=,
    故选A.
    【点睛】
    本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.
    4、C
    【解析】
    本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为n(n+1)和(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值.
    【详解】
    ∵A中13不是“正方形数”;选项B、D中等式右侧并不是两个相邻“三角形数”之和.
    故选:C.
    【点睛】
    此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.
    5、D
    【解析】
    根据“一元二次方程x2+mx+n=0的两个实数根分别为x1=2,x2=4”,结合根与系数的关系,分别列出关于m和n的一元一次不等式,求出m和n的值,代入m+n即可得到答案.
    【详解】
    解:根据题意得:
    x1+x2=﹣m=2+4,
    解得:m=﹣6,
    x1•x2=n=2×4,
    解得:n=8,
    m+n=﹣6+8=2,
    故选D.
    【点睛】
    本题考查了根与系数的关系,正确掌握根与系数的关系是解决问题的关键.
    6、B
    【解析】
    【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.
    【详解】小刚从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,
    故选B.
    【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.
    7、B
    【解析】
    根据轴对称图形与中心对称图形的概念解答.
    【详解】
    A.不是轴对称图形,是中心对称图形;
    B.是轴对称图形,是中心对称图形;
    C.不是轴对称图形,也不是中心对称图形;
    D.是轴对称图形,不是中心对称图形.
    故选B.
    【点睛】
    本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
    8、B
    【解析】
    根据无理数的定义即可判定求解.
    【详解】
    在3.1415926,,,,,中,
    ,3.1415926,是有理数,
    ,,是无理数,共有3个,
    故选:B.
    【点睛】
    本题主要考查了无理数的定义,其中初中范围内学习的无理数有:等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.
    9、C
    【解析】
    把x的值代入代数式,运用完全平方公式和平方差公式计算即可
    【详解】
    解:当x=2﹣时,
    (7+4)x2+(2+)x+
    =(7+4)(2﹣)2+(2+)(2﹣)+
    =(7+4)(7-4)+1+
    =49-48+1+
    =2+
    故选:C.
    【点睛】
    此题考查二次根式的化简求值,关键是代入后利用完全平方公式和平方差公式进行计算.
    10、D
    【解析】
    过O'作O'C⊥AB于点C,过O'作O'D⊥x轴于点D,由切线的性质可求得O'D的长,则可得O'B的长,由垂径定理可求得CB的长,在Rt△O'BC中,由勾股定理可求得O'C的长,从而可求得O'点坐标.
    【详解】

    如图,过O′作O′C⊥AB于点C,过O′作O′D⊥x轴于点D,连接O′B,
    ∵O′为圆心,
    ∴AC=BC,
    ∵A(0,2),B(0,8),
    ∴AB=8−2=6,
    ∴AC=BC=3,
    ∴OC=8−3=5,
    ∵⊙O′与x轴相切,
    ∴O′D=O′B=OC=5,
    在Rt△O′BC中,由勾股定理可得O′C===4,
    ∴P点坐标为(4,5),
    故选:D.
    【点睛】
    本题考查了切线的性质,坐标与图形性质,解题的关键是掌握切线的性质和坐标计算.

    二、填空题(共7小题,每小题3分,满分21分)
    11、﹣1.
    【解析】
    分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,从而得出其最大整数解.
    【详解】
    ,
    解不等式①得:
    x≤1,
    解不等式②得
    x-1>1x,
    x-1x>1,
    -x>1,
    x<-1,
    ∴ 不等式组的解集为x<-1,
    ∴ 不等式组的最大整数解为-1.
    故答案为-1.
    【点睛】
    本题考查了一元一次不等式组的整数解,解题的关键是熟练的掌握一元一次不等式组的整数解.
    12、
    【解析】
    设甲平均每分钟打x个字,则乙平均每分钟打(x+20)个字,根据工作时间=工作总量÷工作效率结合甲打135个字所用时间与乙打180个字所用时间相同,即可得出关于x的分式方程.
    【详解】
    ∵甲平均每分钟打x个字,
    ∴乙平均每分钟打(x+20)个字,
    根据题意得:,
    故答案为.
    【点睛】
    本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
    13、
    【解析】
    延长ME交AD于F,由M是BC的中点,MF⊥AD,得到F点为AD的中点,即AF=AD,则∠AEF=30°,得到∠BAE=30°,再利用弧长公式计算出弧BE的长.
    【详解】
    延长ME交AD于F,如图,∵M是BC的中点,MF⊥AD,∴F点为AD的中点,即AF=AD.
    又∵AE=AD,∴AE=2AF,∴∠AEF=30°,∴∠BAE=30°,∴弧BE的长==.
    故答案为.

    【点睛】
    本题考查了弧长公式:l=.也考查了在直角三角形中,一直角边是斜边的一半,这条直角边所对的角为30度.
    14、
    【解析】
    ∵等腰直角△ABC绕点A逆时针旋转15°后得到△AB′C′,
    ∵∠CAC′=15°,
    ∴∠C′AB=∠CAB﹣∠CAC′=45°﹣15°=30°,AC′=AC=5,
    ∴阴影部分的面积=×5×tan30°×5=.
    15、48°
    【解析】
    如图,在⊙O上取一点K,连接AK、KC、OA、OC,由圆的内接四边形的性质可求出∠AKC的度数,利用圆周角定理可求出∠AOC的度数,由切线性质可知∠OAD=∠OCB=90°,可知∠ADC+∠AOC=180°,即可得答案.
    【详解】
    如图,在⊙O上取一点K,连接AK、KC、OA、OC.
    ∵四边形AKCB内接于圆,
    ∴∠AKC+∠ABC=180°,
    ∵∠ABC=114°,
    ∴∠AKC=66°,
    ∴∠AOC=2∠AKC=132°,
    ∵DA、DC分别切⊙O于A、C两点,
    ∴∠OAD=∠OCB=90°,
    ∴∠ADC+∠AOC=180°,
    ∴∠ADC=48°

    故答案为48°.
    【点睛】
    本题考查圆内接四边形的性质、周角定理及切线性质,圆内接四边形的对角互补;在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半;圆的切线垂直于过切点的直径;熟练掌握相关知识是解题关键.
    16、
    【解析】
    设雀、燕每1只各重x斤、y斤,根据等量关系:今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤,列出方程组求解即可.
    【详解】
    设雀、燕每1只各重x斤、y斤,根据题意,得

    整理,得
    故答案为
    【点睛】
    考查二元一次方程组得应用,解题的关键是分析题意,找出题中的等量关系.
    17、1或1
    【解析】
    由两圆相切,它们的圆心距为3,其中一个圆的半径为4,即可知这两圆内切,然后分别从若大圆的半径为4与若小圆的半径为4去分析,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可求得另一个圆的半径.
    【详解】
    ∵两圆相切,它们的圆心距为3,其中一个圆的半径为4,
    ∴这两圆内切,
    ∴若大圆的半径为4,则另一个圆的半径为:4-3=1,
    若小圆的半径为4,则另一个圆的半径为:4+3=1.
    故答案为:1或1
    【点睛】
    此题考查了圆与圆的位置关系.此题难度不大,解题的关键是注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系,注意分类讨论思想的应用.

    三、解答题(共7小题,满分69分)
    18、(1)25;28;(2)平均数:1.2;众数:3;中位数:1.
    【解析】
    (1)观察统计图可得,该商场服装部营业员人数为2+5+7+8+3=25人,m%=1-32%-12%-8%-20%=28%,即m=28;
    (2)计算出所有营业员的销售总额除以营业员的总人数即可的平均数;观察统计图,根据众数、中位数的定义即可得答案.
    【详解】
    解:(1)根据条形图2+5+7+8+3=25(人),
    m=100-20-32-12-8=28;
    故答案为:25;28;
    (2)观察条形统计图,

    ∴这组数据的平均数是1.2.
    ∵在这组数据中,3 出现了8次,出现的次数最多,
    ∴这组数据的众数是3.
    ∵将这组数据按照由小到大的顺序排列,其中处于中间位置的数是1,
    ∴这组数据的中位数是1.
    【点睛】
    此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.
    19、(1);(1)时,取最大值,为.
    【解析】
    (1)分别延长DE,FP,与BC的延长线相交于G,H,由AF=x知CH=x-4,根据,即 可得z=,利用矩形的面积公式即可得出解析式;
    (1)将(1)中所得解析式配方成顶点式,利用二次函数的性质解答可得.
    【详解】
    解:(1)分别延长DE,FP,与BC的延长线相交于G,H,

    ∵AF=x,
    ∴CH=x-4,
    设AQ=z,PH=BQ=6-z,
    ∵PH∥EG,
    ∴,即,
    化简得z=,
    ∴y=•x=-x1+x (4≤x≤10);

    (1)y=-x1+x=-(x-)1+,
    当x=dm时,y取最大值,最大值是dm1.
    【点睛】
    本题考查了二次函数的应用,解题的关键是根据相似三角形的性质得出矩形另一边AQ的长及二次函数的性质.
    20、 (1)作图见解析;(2)7,7.5,2.8;(3)见解析.
    【解析】
    (1)根据图1找出8、9、10℃的天数,然后补全统计图即可;
    (2)根据众数的定义,找出出现频率最高的温度;按照从低到高排列,求出第5、6两个温度的平均数即为中位数;先求出平均数,再根据方差的定义列式进行计算即可得解;
    (3)求出7、8、9、10、11℃的天数在扇形统计图中所占的度数,然后作出扇形统计图即可.
    【详解】
    (1)由图1可知,8℃有2天,9℃有0天,10℃有2天,
    补全统计图如图;

    (2)根据条形统计图,7℃出现的频率最高,为3天,
    所以,众数是7;
    按照温度从小到大的顺序排列,第5个温度为7℃,第6个温度为8℃,
    所以,中位数为(7+8)=7.5;
    平均数为(6×2+7×3+8×2+10×2+11)=×80=8,
    所以,方差=[2×(6﹣8)2+3×(7﹣8)2+2×(8﹣8)2+2×(10﹣8)2+(11﹣8)2],
    =(8+3+0+8+9),
    =×28,
    =2.8;
    (3)6℃的度数,×360°=72°,
    7℃的度数,×360°=108°,
    8℃的度数,×360°=72°,
    10℃的度数,×360°=72°,
    11℃的度数,×360°=36°,
    作出扇形统计图如图所示.

    【点睛】
    本题考查读频数分布直方图的能力和利用统计图获取信息的能力.同时考查中位数、众数的求法:给定n个数据,按从小到大排序,如果n为奇数,位于中间的那个数就是中位数;如果n为偶数,位于中间两个数的平均数就是中位数.任何一组数据,都一定存在中位数的,但中位数不一定是这组数据量的数.给定一组数据,出现次数最多的那个数,称为这组数据的众数.
    21、(1)证明见解析;(2) ;
    【解析】
    (1)根据正方形的性质得到∠GAD=∠EAB,证明△GAD≌△EAB,根据全等三角形的性质证明;(2)根据正方形的性质得到BD⊥AC,AC=BD=5,根据勾股定理计算即可.
    【详解】
    (1)在△GAD和△EAB中,∠GAD=90°+∠EAD,∠EAB=90°+∠EAD,
    ∴∠GAD=∠EAB,
    在△GAD和△EAB中,,
    ∴△GAD≌△EAB,
    ∴EB=GD;
    (2)∵四边形ABCD是正方形,AB=5,
    ∴BD⊥AC,AC=BD=5,
    ∴∠DOG=90°,OA=OD=BD=,
    ∵AG=2 ,
    ∴OG=OA+AG=,
    由勾股定理得,GD==,
    ∴EB=.
    【点睛】
    本题考查的是正方形的性质、全等三角形的判定和性质,掌握正方形的对角线相等、垂直且互相平分是解题的关键.
    22、 (1)3.13cm(2)铅笔芯折断部分的长度约是0.98cm
    【解析】
    试题分析:(1)根据题意作辅助线OC⊥AB于点C,根据OA=OB=10cm,∠OCB=90°,∠AOB=18°,可以求得∠BOC的度数,从而可以求得AB的长;
    (2)由题意可知,作出的圆与(1)中所作圆的大小相等,则AE=AB,然后作出相应的辅助线,画出图形,从而可以求得BE的长,本题得以解决.
    试题解析:(1)作OC⊥AB于点C,如右图2所示,由题意可得,OA=OB=10cm,∠OCB=90°,∠AOB=18°,∴∠BOC=9°,∴AB=2BC=2OB•sin9°≈2×10×0.1564≈3.13cm,即所作圆的半径约为3.13cm;
    (2)作AD⊥OB于点D,作AE=AB,如下图3所示,∵保持∠AOB=18°不变,在旋转臂OB末端的铅笔芯折断了一截的情况下,作出的圆与(1)中所作圆的大小相等,∴折断的部分为BE,∵∠AOB=18°,OA=OB,∠ODA=90°,∴∠OAB=81°,∠OAD=72°,∴∠BAD=9°,∴BE=2BD=2AB•sin9°≈2×3.13×0.1564≈0.98cm,即铅笔芯折断部分的长度是0.98cm.

    考点:解直角三角形的应用;探究型.
    23、(1)详见解析;(2)∠BDE=20°.
    【解析】
    (1)根据已知条件易证BC∥DF,根据平行线的性质可得∠F=∠PBC;再利用同角的补角相等证得∠F=∠PCB,所以∠PBC=∠PCB,由此即可得出结论;(2)连接OD,先证明四边形DHBC是平行四边形,根据平行四边形的性质可得BC=DH=1,在Rt△ABC中,用锐角三角函数求出∠ACB=60°,进而判断出DH=OD,求出∠ODH=20°,再求得∠NOH=∠DOC=40°,根据三角形外角的性质可得∠OAD=∠DOC=20°,最后根据圆周角定理及平行线的性质即可求解.
    【详解】
    (1)如图1,∵AC是⊙O的直径,
    ∴∠ABC=90°,
    ∵DE⊥AB,
    ∴∠DEA=90°,
    ∴∠DEA=∠ABC,
    ∴BC∥DF,
    ∴∠F=∠PBC,
    ∵四边形BCDF是圆内接四边形,
    ∴∠F+∠DCB=180°,
    ∵∠PCB+∠DCB=180°,
    ∴∠F=∠PCB,
    ∴∠PBC=∠PCB,
    ∴PC=PB;
    (2)如图2,连接OD,

    ∵AC是⊙O的直径,
    ∴∠ADC=90°,
    ∵BG⊥AD,
    ∴∠AGB=90°,
    ∴∠ADC=∠AGB,
    ∴BG∥DC,
    ∵BC∥DE,
    ∴四边形DHBC是平行四边形,
    ∴BC=DH=1,
    在Rt△ABC中,AB=,tan∠ACB=,
    ∴∠ACB=60°,
    ∴BC=AC=OD,
    ∴DH=OD,
    在等腰△DOH中,∠DOH=∠OHD=80°,
    ∴∠ODH=20°,
    设DE交AC于N,
    ∵BC∥DE,
    ∴∠ONH=∠ACB=60°,
    ∴∠NOH=180°﹣(∠ONH+∠OHD)=40°,
    ∴∠DOC=∠DOH﹣∠NOH=40°,
    ∵OA=OD,
    ∴∠OAD=∠DOC=20°,
    ∴∠CBD=∠OAD=20°,
    ∵BC∥DE,
    ∴∠BDE=∠CBD=20°.
    【点睛】
    本题考查了圆内接四边形的性质、圆周角定理、平行四边形的判定与性质、等腰三角形的性质等知识点,解决第(2)问,作出辅助线,求得∠ODH=20°是解决本题的关键.
    24、(1)(2) ,
    【解析】
    【分析】(1)根据一元二次方程的定义可知k≠0,再根据方程有两个不相等的实数根,可知△>0,从而可得关于k的不等式组,解不等式组即可得;
    (2)由(1)可写出满足条件的k的最大整数值,代入方程后求解即可得.
    【详解】(1) 依题意,得,
    解得且;
    (2) ∵是小于9的最大整数,

    此时的方程为,
    解得,.
    【点睛】本题考查了一元二次方程根的判别式、一元二次方程的定义、解一元二次方程等,熟练一元二次方程根的判别式与一元二次方程的根的情况是解题的关键.

    相关试卷

    湖北省孝感市云梦县2021-2022学年中考押题数学预测卷含解析:

    这是一份湖北省孝感市云梦县2021-2022学年中考押题数学预测卷含解析,共15页。试卷主要包含了实数的倒数是,已知某几何体的三视图,下列运算正确的是,的相反数是等内容,欢迎下载使用。

    湖北省孝昌县2022年中考数学押题卷含解析:

    这是一份湖北省孝昌县2022年中考数学押题卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,花园甜瓜是乐陵的特色时令水果,﹣6的倒数是,把a•的根号外的a移到根号内得等内容,欢迎下载使用。

    2022年湖北省沙洋县中考数学押题卷含解析:

    这是一份2022年湖北省沙洋县中考数学押题卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,化简的结果为等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map