终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022届湖南省新邵县中考数学全真模拟试题含解析

    立即下载
    加入资料篮
    2022届湖南省新邵县中考数学全真模拟试题含解析第1页
    2022届湖南省新邵县中考数学全真模拟试题含解析第2页
    2022届湖南省新邵县中考数学全真模拟试题含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届湖南省新邵县中考数学全真模拟试题含解析

    展开

    这是一份2022届湖南省新邵县中考数学全真模拟试题含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列说法错误的是,下列运算正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是(  )

    A.60° B.35° C.30.5° D.30°
    2.如图是根据我市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和平均数分别是( )

    A.30,28 B.26,26 C.31,30 D.26,22
    3.某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是( )

    A.94分,96分 B.96分,96分
    C.94分,96.4分 D.96分,96.4分
    4.如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C和D的坐标分别为(  )

    A.(2,2),(3,2) B.(2,4),(3,1)
    C.(2,2),(3,1) D.(3,1),(2,2)
    5.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )

    A.CB=CD B.∠BCA=∠DCA
    C.∠BAC=∠DAC D.∠B=∠D=90°
    6.下列说法错误的是(  )
    A.的相反数是2 B.3的倒数是
    C. D.,0,4这三个数中最小的数是0
    7.《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1,图2所示,图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1表示的算筹图用我们现在所熟悉的方程组形式表述出来,就是.类似地,图2所示的算筹图我们可以表述为(  )

    A. B. C. D.
    8.下列运算正确的是(  )
    A.5ab﹣ab=4 B.a6÷a2=a4 C. D.(a2b)3=a5b3
    9.如图,已知是中的边上的一点,,的平分线交边于,交于,那么下列结论中错误的是( )

    A.△BAC∽△BDA B.△BFA∽△BEC
    C.△BDF∽△BEC D.△BDF∽△BAE
    10.关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根为0,则a值为(  )
    A.1 B.﹣1 C.±1 D.0
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.当 __________时,二次函数 有最小值___________.
    12.已知,大正方形的边长为4厘米,小正方形的边长为2厘米,起始状态如图所示,大正方形固定不动,把小正方形向右平移,当两个正方形重叠部分的面积为2平方厘米时,小正方形平移的距离为_____厘米.

    13.如图,点A为函数y=(x>0)图象上一点,连接OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为______.

    14.鼓励科技创新、技术发明,北京市2012-2017年专利授权量如图所示.根据统计图中提供信息,预估2018年北京市专利授权量约______件,你的预估理由是______.

    15.如图所示,D、E之间要挖建一条直线隧道,为计算隧道长度,工程人员在线段AD和AE上选择了测量点B,C,已知测得AD=100,AE=200,AB=40,AC=20,BC=30,则通过计算可得DE长为_____.

    16.同一个圆的内接正方形和正三角形的边心距的比为_____.
    三、解答题(共8题,共72分)
    17.(8分) (1)计算:(a-b)2-a(a-2b);
    (2)解方程:=.
    18.(8分)春节期间,收发微信红包已经成为各类人群进行交流联系、增强感情的一部分,小王在年春节共收到红包元,年春节共收到红包元,求小王在这两年春节收到红包的年平均增长率.
    19.(8分)某景区内从甲地到乙地的路程是,小华步行从甲地到乙地游玩,速度为,走了后,中途休息了一段时间,然后继续按原速前往乙地,景区从甲地开往乙地的电瓶车每隔半小时发一趟车,速度是,若小华与第1趟电瓶车同时出发,设小华距乙地的路程为,第趟电瓶车距乙地的路程为,为正整数,行进时间为.如图画出了,与的函数图象.

    (1)观察图,其中 , ;
    (2)求第2趟电瓶车距乙地的路程与的函数关系式;
    (3)当时,在图中画出与的函数图象;并观察图象,得出小华在休息后前往乙地的途中,共有 趟电瓶车驶过.
    20.(8分)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C三类分别装袋,投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.直接写出甲投放的垃圾恰好是A类的概率;求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.
    21.(8分)某中学为了提高学生的消防意识,举行了消防知识竞赛,所有参赛学生分别设有一、二、三等奖和纪念奖,获奖情况已绘制成如图所示的两幅不完整的统计图,根据图中所经信息解答下列问题:
    (1)这次知识竞赛共有多少名学生?
    (2)“二等奖”对应的扇形圆心角度数,并将条形统计图补充完整;
    (3)小华参加了此次的知识竞赛,请你帮他求出获得“一等奖或二等奖”的概率.

    22.(10分)先化简,再求值:,其中.
    23.(12分)如图,已知点D在反比例函数y=的图象上,过点D作x轴的平行线交y轴于点B(0,3).过点A(5,0)的直线y=kx+b与y轴于点C,且BD=OC,tan∠OAC=.
    (1)求反比例函数y=和直线y=kx+b的解析式;
    (2)连接CD,试判断线段AC与线段CD的关系,并说明理由;
    (3)点E为x轴上点A右侧的一点,且AE=OC,连接BE交直线CA与点M,求∠BMC的度数.

    24.某校在一次大课间活动中,采用了四种活动形式:A、跑步,B、跳绳,C、做操,D、游戏.全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图.

    请结合统计图,回答下列问题:
    (1)本次调查学生共    人,a=   ,并将条形图补充完整;
    (2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?
    (3)学校让每班在A、B、C、D四种活动形式中,随机抽取两种开展活动,请用树状图或列表的方法,求每班抽取的两种形式恰好是“跑步”和“跳绳”的概率.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、D
    【解析】
    根据圆心角、弧、弦的关系定理得到∠AOB= ∠AOC,再根据圆周角定理即可解答.
    【详解】
    连接OB,
    ∵点B是弧的中点,
    ∴∠AOB= ∠AOC=60°,
    由圆周角定理得,∠D= ∠AOB=30°,
    故选D.

    【点睛】
    此题考查了圆心角、弧、弦的关系定理,解题关键在于利用好圆周角定理.
    2、B.
    【解析】
    试题分析:由图可知,把7个数据从小到大排列为22,22,23,1,28,30,31,中位数是第4位数,第4位是1,所以中位数是1.平均数是(22×2+23+1+28+30+31)÷7=1,所以平均数是1.故选B.
    考点:中位数;加权平均数.
    3、D
    【解析】
    解:总人数为6÷10%=60(人),
    则91分的有60×20%=12(人),
    98分的有60-6-12-15-9=18(人),
    第30与31个数据都是96分,这些职工成绩的中位数是(96+96)÷2=96;
    这些职工成绩的平均数是(92×6+91×12+96×15+98×18+100×9)÷60
    =(552+1128+1110+1761+900)÷60
    =5781÷60
    =96.1.
    故选D.
    【点睛】
    本题考查1.中位数;2.扇形统计图;3.条形统计图;1.算术平均数,掌握概念正确计算是关键.
    4、C
    【解析】
    直接利用位似图形的性质得出对应点坐标乘以得出即可.
    【详解】
    解:∵线段AB两个端点的坐标分别为A(4,4),B(6,2),
    以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,
    ∴端点的坐标为:(2,2),(3,1).
    故选C.
    【点睛】
    本题考查位似变换;坐标与图形性质,数形结合思想解题是本题的解题关键.
    5、B
    【解析】
    由图形可知AC=AC,结合全等三角形的判定方法逐项判断即可.
    【详解】
    解:在△ABC和△ADC中
    ∵AB=AD,AC=AC,
    ∴当CB=CD时,满足SSS,可证明△ABC≌△ACD,故A可以;
    当∠BCA=∠DCA时,满足SSA,不能证明△ABC≌△ACD,故B不可以;
    当∠BAC=∠DAC时,满足SAS,可证明△ABC≌△ACD,故C可以;
    当∠B=∠D=90°时,满足HL,可证明△ABC≌△ACD,故D可以;
    故选:B.
    【点睛】
    本题考查了全等三角形的判定方法,熟练掌握判定定理是解题关键.
    6、D
    【解析】
    试题分析:﹣2的相反数是2,A正确;
    3的倒数是,B正确;
    (﹣3)﹣(﹣5)=﹣3+5=2,C正确;
    ﹣11,0,4这三个数中最小的数是﹣11,D错误,
    故选D.
    考点:1.相反数;2.倒数;3.有理数大小比较;4.有理数的减法.
    7、A
    【解析】
    根据图形,结合题目所给的运算法则列出方程组.
    【详解】
    图2所示的算筹图我们可以表述为:.
    故选A.
    【点睛】
    本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.
    8、B
    【解析】
    根据同底数幂的除法,合并同类项,积的乘方的运算法则进行逐一运算即可.
    【详解】
    解:A、5ab﹣=4ab,此选项运算错误,
    B、a6÷a2=a4,此选项运算正确,
    C、,选项运算错误,
    D、(a2b)3=a6b3,此选项运算错误,
    故选B.
    【点睛】
    此题考查了同底数幂的除法,合并同类项,积的乘方,熟练掌握运算法则是解本题的关键.
    9、C
    【解析】
    根据相似三角形的判定,采用排除法,逐项分析判断.
    【详解】
    ∵∠BAD=∠C,
    ∠B=∠B,
    ∴△BAC∽△BDA.故A正确.
    ∵BE平分∠ABC,
    ∴∠ABE=∠CBE,
    ∴△BFA∽△BEC.故B正确.
    ∴∠BFA=∠BEC,
    ∴∠BFD=∠BEA,
    ∴△BDF∽△BAE.故D正确.
    而不能证明△BDF∽△BEC,故C错误.
    故选C.
    【点睛】
    本题考查相似三角形的判定.识别两三角形相似,除了要掌握定义外,还要注意正确找出两三角形的对应边和对应角.
    10、B
    【解析】
    根据一元二次方程的定义和一元二次方程的解的定义得出:a﹣1≠0,a2﹣1=0,求出a的值即可.
    【详解】
    解:把x=0代入方程得:a2﹣1=0,
    解得:a=±1,
    ∵(a﹣1)x2+x+a2﹣1=0是关于x的一元二次方程,
    ∴a﹣1≠0,
    即a≠1,
    ∴a的值是﹣1.
    故选:B.
    【点睛】
    本题考查了对一元二次方程的定义,一元二次方程的解等知识点的理解和运用,注意根据已知得出a﹣1≠0,a2﹣1=0,不要漏掉对一元二次方程二次项系数不为0的考虑.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1 5
    【解析】
    二次函数配方,得:,所以,当x=1时,y有最小值5,
    故答案为1,5.
    12、1或5.
    【解析】
    小正方形的高不变,根据面积即可求出小正方形平移的距离.
    【详解】
    解:当两个正方形重叠部分的面积为2平方厘米时,重叠部分宽为2÷2=1,
    ①如图,小正方形平移距离为1厘米;

    ②如图,小正方形平移距离为4+1=5厘米.

    故答案为1或5,
    【点睛】
    此题考查了平移的性质,要明确,平移前后图形的形状和面积不变.画出图形即可直观解答.
    13、6.
    【解析】
    作辅助线,根据反比例函数关系式得:S△AOD=, S△BOE=,再证明△BOE∽△AOD,由性质得OB与OA的比,由同高两三角形面积的比等于对应底边的比可以得出结论.
    【详解】
    如图,分别作BE⊥x轴,AD⊥x轴,垂足分别为点E、D,

    ∴BE∥AD,
    ∴△BOE∽△AOD,
    ∴,
    ∵OA=AC,
    ∴OD=DC,
    ∴S△AOD=S△ADC=S△AOC,
    ∵点A为函数y=(x>0)的图象上一点,
    ∴S△AOD=,
    同理得:S△BOE=,
    ∴,
    ∴,
    ∴,
    ∴,
    ∴,
    故答案为6.
    14、113407, 北京市近两年的专利授权量平均每年增加6458.5件.
    【解析】
    依据北京市近两年的专利授权量的增长速度,即可预估2018年北京市专利授权量.
    【详解】
    解:∵北京市近两年的专利授权量平均每年增加:(件),
    ∴预估2018年北京市专利授权量约为106948+6458.5≈113407(件),
    故答案为:113407,北京市近两年的专利授权量平均每年增加6458.5件.
    【点睛】
    此题考查统计图的意义,解题的关键在于看懂图中数据.
    15、1.
    【解析】
    先根据相似三角形的判定得出△ABC∽△AED,再利用相似三角形的性质解答即可.
    【详解】


    又∵∠A=∠A,
    ∴△ABC∽△AED,

    ∵BC=30,
    ∴DE=1,
    故答案为1.
    【点睛】
    考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.
    16、
    【解析】
    先画出同一个圆的内接正方形和内接正三角形,设⊙O的半径为R,求出正方形的边心距和正三角形的边心距,再求出比值即可.
    【详解】
    设⊙O的半径为r,⊙O的内接正方形ABCD,如图,

    过O作OQ⊥BC于Q,连接OB、OC,即OQ为正方形ABCD的边心距,
    ∵四边形BACD是正方形,⊙O是正方形ABCD的外接圆,
    ∴O为正方形ABCD的中心,
    ∴∠BOC=90°,
    ∵OQ⊥BC,OB=CO,
    ∴QC=BQ,∠COQ=∠BOQ=45°,
    ∴OQ=OC×cos45°=R;
    设⊙O的内接正△EFG,如图,

    过O作OH⊥FG于H,连接OG,即OH为正△EFG的边心距,
    ∵正△EFG是⊙O的外接圆,
    ∴∠OGF=∠EGF=30°,
    ∴OH=OG×sin30°=R,
    ∴OQ:OH=(R):(R)=:1,
    故答案为:1.
    【点睛】
    本题考查了正多边形与圆、解直角三角形,等边三角形的性质、正方形的性质等知识点,能综合运用知识点进行推理和计算是解此题的关键.

    三、解答题(共8题,共72分)
    17、 (1) b2 (2)1
    【解析】
    分析:(1)、根据完全平方公式以及多项式的乘法计算法则将括号去掉,然后进行合并同类项即可得出答案;(2)、收下进行去分母,将其转化为整式方程,从而得出方程的解,最后需要进行验根.
    详解:(1) 解:原式=a2-2ab+b2-a2+2ab =b2 ;
    (2) 解:, 解得:x=1,
    经检验 x=1为原方程的根, 所以原方程的解为x=1.
    点睛:本题主要考查的是多项式的乘法以及解分式方程,属于基础题型.理解计算法则是解题的关键.分式方程最后必须要进行验根.
    18、小王在这两年春节收到的年平均增长率是
    【解析】
    增长后的量=增长前的量×(1+增长率),2018年收到微信红包金额400(1+x)元,在2018年的基础上再增长x,就是2019年收到微信红包金额400(1+x)(1+x)元,由此可列出方程400(1+x)2=484,求解即可.
    【详解】
    解:设小王在这两年春节收到的红包的年平均增长率是.
    依题意得:
    解得(舍去).
    答:小王在这两年春节收到的年平均增长率是
    【点睛】
    本题考查了一元二次方程的应用.对于增长率问题,增长前的量×(1+年平均增长率)年数=增长后的量.
    19、(1)0.8;2.1;(2);(2)图像见解析,2
    【解析】
    (1)根据小华走了4千米后休息了一段时间和小华的速度即可求出a的值,用剩下的路程除以速度即可求出休息后所用的时间,再加上1.5即为b的值;
    (2)先求出电瓶车的速度,再根据路程=两地间距-速度×时间即可得出答案;
    (2)结合的图象即可画出的图象,观察图象即可得出答案.
    【详解】
    解:(1),

    故答案为:0.8;2.1.
    (2)根据题意得:
    电瓶车的速度为
    ∴.
    (2)画出函数图象,如图所示.
    观察函数图象,可知:小华在休息后前往乙地的途中,共有2趟电瓶车驶过.
    故答案为:2.

    【点睛】
    本题主要考查一次函数的应用,能够从图象上获取有效信息是解题的关键.
    20、(1)(2).
    【解析】
    (1)根据总共三种,A只有一种可直接求概率;
    (2)列出其树状图,然后求出能出现的所有可能,及符合条件的可能,根据概率公式求解即可.
    【详解】
    解: (1)甲投放的垃圾恰好是A类的概率是.
    (2)列出树状图如图所示:

    由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.
    所以, (乙投放的垃圾恰有一袋与甲投放的垃圾是同类).
    即,乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是.
    21、 (1)200;(2)72°,作图见解析;(3).
    【解析】
    (1)用一等奖的人数除以所占的百分比求出总人数;
    (2)用总人数乘以二等奖的人数所占的百分比求出二等奖的人数,补全统计图,再用360°乘以二等奖的人数所占的百分比即可求出“二等奖”对应的扇形圆心角度数;
    (3)用获得一等奖和二等奖的人数除以总人数即可得出答案.
    【详解】
    解:(1)这次知识竞赛共有学生=200(名);
    (2)二等奖的人数是:200×(1﹣10%﹣24%﹣46%)=40(人),
    补图如下:

    “二等奖”对应的扇形圆心角度数是:360°×=72°;
    (3)小华获得“一等奖或二等奖”的概率是: =.
    【点睛】
    本题主要考查了条形统计图以及扇形统计图,利用统计图获取信息是解本题的关键.
    22、,4.
    【解析】
    先括号内通分,然后计算除法,最后代入化简即可.
    【详解】
    原式= .
    当时,原式=4.
    【点睛】
    此题考查分式的化简求值,解题关键在于掌握运算法则.
    23、(1),(2)AC⊥CD(3)∠BMC=41°
    【解析】
    分析:(1)由A点坐标可求得OA的长,再利用三角函数的定义可求得OC的长,可求得C、D点坐标,再利用待定系数法可求得直线AC的解析式;
    (2)由条件可证明△OAC≌△BCD,再由角的和差可求得∠OAC+∠BCA=90°,可证得AC⊥CD;(3)连接AD,可证得四边形AEBD为平行四边形,可得出△ACD为等腰直角三角形,则可求得答案.
    本题解析:
    (1)∵A(1,0),∴OA=1.∵tan∠OAC=,∴,解得OC=2,
    ∴C(0,﹣2),∴BD=OC=2,∵B(0,3),BD∥x轴,∴D(﹣2,3),
    ∴m=﹣2×3=﹣6,∴y=﹣,
    设直线AC关系式为y=kx+b,∵过A(1,0),C(0,﹣2),
    ∴,解得,∴y=x﹣2;
    (2)∵B(0,3),C(0,﹣2),∴BC=1=OA,
    在△OAC和△BCD中
    ,∴△OAC≌△BCD(SAS),∴AC=CD,
    ∴∠OAC=∠BCD,∴∠BCD+∠BCA=∠OAC+∠BCA=90°,
    ∴AC⊥CD;
    (3)∠BMC=41°.
    如图,连接AD,

    ∵AE=OC,BD=OC,AE=BD,∴BD∥x轴,
    ∴四边形AEBD为平行四边形,
    ∴AD∥BM,∴∠BMC=∠DAC,
    ∵△OAC≌△BCD,∴AC=CD,
    ∵AC⊥CD,∴△ACD为等腰直角三角形,
    ∴∠BMC=∠DAC=41°.
    24、(1)300,10; (2)有800人;(3) .
    【解析】试题分析:
    试题解析:(1)120÷40%=300,
    a%=1﹣40%﹣30%﹣20%=10%,
    ∴a=10,
    10%×300=30,
    图形如下:

    (2)2000×40%=800(人),
    答:估计该校选择“跑步”这种活动的学生约有800人;
    (3)画树状图为:

    共有12种等可能的结果数,其中每班所抽到的两项方式恰好是“跑步”和“跳绳”的结果数为2,
    所以每班所抽到的两项方式恰好是“跑步”和“跳绳”的概率=.
    考点:1.用样本估计总体;2.扇形统计图;3.条形统计图;4.列表法与树状图法.

    相关试卷

    湖南省长郡教育集团2022-2023学年中考数学全真模拟试题含解析:

    这是一份湖南省长郡教育集团2022-2023学年中考数学全真模拟试题含解析,共14页。

    2022年湖南省邵阳市新宁县中考数学全真模拟试题含解析:

    这是一份2022年湖南省邵阳市新宁县中考数学全真模拟试题含解析,共18页。试卷主要包含了一、单选题,-的立方根是,下列计算正确的是,计算6m6÷等内容,欢迎下载使用。

    2022年湖南省长沙市怡雅校中考数学全真模拟试题含解析:

    这是一份2022年湖南省长沙市怡雅校中考数学全真模拟试题含解析,共21页。试卷主要包含了下列事件是确定事件的是,下列二次根式,最简二次根式是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map