终身会员
搜索
    上传资料 赚现金

    2022届河北省石家庄市长安区重点达标名校中考数学押题试卷含解析

    立即下载
    加入资料篮
    2022届河北省石家庄市长安区重点达标名校中考数学押题试卷含解析第1页
    2022届河北省石家庄市长安区重点达标名校中考数学押题试卷含解析第2页
    2022届河北省石家庄市长安区重点达标名校中考数学押题试卷含解析第3页
    还剩14页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届河北省石家庄市长安区重点达标名校中考数学押题试卷含解析

    展开

    这是一份2022届河北省石家庄市长安区重点达标名校中考数学押题试卷含解析,共17页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.已知一组数据a,b,c的平均数为5,方差为4,那么数据a﹣2,b﹣2,c﹣2的平均数和方差分别是.(  )
    A.3,2 B.3,4 C.5,2 D.5,4
    2.如图,在△ABC中,点D,E分别在边AB,AC上,且,则的值为

    A. B. C. D.
    3.如图所示,数轴上两点A,B分别表示实数a,b,则下列四个数中最大的一个数是(   )

    A.a     B.b   C. D.
    4.已知抛物线y=x2+3向左平移2个单位,那么平移后的抛物线表达式是(  )
    A.y=(x+2)2+3 B.y=(x﹣2)2+3 C.y=x2+1 D.y=x2+5
    5.下列计算正确的是()
    A.2x2-3x2=x2 B.x+x=x2 C.-(x-1)=-x+1 D.3+x=3x
    6.在一次中学生田径运动会上,参加跳远的名运动员的成绩如下表所示:
    成绩(米)






    人数






    则这名运动员成绩的中位数、众数分别是( )
    A. B. C., D.
    7.如图,由四个正方体组成的几何体的左视图是( )

    A. B. C. D.
    8.若代数式有意义,则实数x的取值范围是( )
    A.x≠1 B.x≥0 C.x≠0 D.x≥0且x≠1
    9.如图,将△OAB绕O点逆时针旋转60°得到△OCD,若OA=4,∠AOB=35°,则下列结论错误的是(  )

    A.∠BDO=60° B.∠BOC=25° C.OC=4 D.BD=4
    10.在一次男子马拉松长跑比赛中,随机抽取了10名选手,记录他们的成绩(所用的时间)如下:
    选手
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    时间(min)
    129
    136
    140
    145
    146
    148
    154
    158
    165
    175
    由此所得的以下推断不正确的是( )
    A.这组样本数据的平均数超过130
    B.这组样本数据的中位数是147
    C.在这次比赛中,估计成绩为130 min的选手的成绩会比平均成绩差
    D.在这次比赛中,估计成绩为142 min的选手,会比一半以上的选手成绩要好
    二、填空题(共7小题,每小题3分,满分21分)
    11.若一次函数y=-2x+b(b为常数)的图象经过第二、三、四象限,则b的值可以是_________.(写出一个即可)
    12.分解因式:4x2﹣36=___________.
    13.飞机着陆后滑行的距离S(单位:米)与滑行的时间t(单位:秒)之间的函数关系式是s=60t﹣1.2t2,那么飞机着陆后滑行_____秒停下.
    14.如下图,在直径AB的半圆O中,弦AC、BD相交于点E,EC=2,BE=1. 则cos∠BEC=________.

    15.关于x的方程(m﹣5)x2﹣3x﹣1=0有两个实数根,则m满足_____.
    16.若⊙O所在平面内一点P到⊙O的最大距离为6,最小距离为2,则⊙O的半径为_____.
    17.的相反数是______,的倒数是______.
    三、解答题(共7小题,满分69分)
    18.(10分)国家发改委公布的《商品房销售明码标价规定》,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房都持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.求平均每次下调的百分率;某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案发供选择:
    ①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?
    19.(5分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:
    接受问卷调查的学生共有   人,扇形统计图中“基本了解”部分所对应扇形的圆心角为   度;请补全条形统计图;若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.
    20.(8分)如图1,抛物线y=ax2+bx+4过A(2,0)、B(4,0)两点,交y轴于点C,过点C作x轴的平行线与抛物线上的另一个交点为D,连接AC、BC.点P是该抛物线上一动点,设点P的横坐标为m(m>4).
    (1)求该抛物线的表达式和∠ACB的正切值;
    (2)如图2,若∠ACP=45°,求m的值;
    (3)如图3,过点A、P的直线与y轴于点N,过点P作PM⊥CD,垂足为M,直线MN与x轴交于点Q,试判断四边形ADMQ的形状,并说明理由.

    21.(10分)如图1,图2分别是某款篮球架的实物图与示意图,已知底座BC=1.5米,底座BC与支架AC所成的角∠ACB=60°,支架AF的长为2.50米,篮板顶端F点到篮筐D的距离FD=1.3米,篮板底部支架HE与支架AF所成的角∠FHE=45°,求篮筐D到地面的距离.(精确到0.01米参考数据:≈1.73,≈1.41)

    22.(10分)如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D.求证:BE=CF ;当四边形ACDE为菱形时,求BD的长.

    23.(12分) “大美湿地,水韵盐城”.某校数学兴趣小组就“最想去的盐城市旅游景点”随机调查了本校部分学生,要求每位同学选择且只能选择一个最想去的景点,下面是根据调查结果进行数据整理后绘制出的不完整的统计图:

    请根据图中提供的信息,解答下列问题:
    (1)求被调查的学生总人数;
    (2)补全条形统计图,并求扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
    (3)若该校共有800名学生,请估计“最想去景点B“的学生人数.
    24.(14分)小丁每天从某报社以每份0.5元买进报纸200分,然后以每份1元卖给读者,报纸卖不完,当天可退回报社,但报社只按每份0.2元退给小丁,如果小丁平均每天卖出报纸x份,纯收入为y元.
    (1)求y与x之间的函数关系式(要求写出自变量x的取值范围);
    (2)如果每月以30天计算,小丁每天至少要买多少份报纸才能保证每月收入不低于2000元?



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.
    考点: 平均数;方差.
    2、C
    【解析】
    ∵,∠A=∠A,
    ∴△ABC∽△AED。∴。
    ∴。故选C。
    3、D
    【解析】
    ∵负数小于正数,在(0,1)上的实数的倒数比实数本身大.
    ∴<a<b< ,
    故选D.
    4、A
    【解析】
    结合向左平移的法则,即可得到答案.
    【详解】
    解:将抛物线y=x2+3向左平移2个单位可得y=(x+2)2+3,
    故选A.
    【点睛】
    此类题目主要考查二次函数图象的平移规律,解题的关键是要搞清已知函数解析式确定平移后的函数解析式,还是已知平移后的解析式求原函数解析式,然后根据图象平移规律“左加右减、上加下减“进行解答.
    5、C
    【解析】
    根据合并同类项法则和去括号法则逐一判断即可得.
    【详解】
    解:A.2x2-3x2=-x2,故此选项错误;
    B.x+x=2x,故此选项错误;
    C.-(x-1)=-x+1,故此选项正确;
    D.3与x不能合并,此选项错误;
    故选C.
    【点睛】
    本题考查了整式的加减,熟练掌握运算法则是解题的关键.
    6、D
    【解析】
    根据中位数、众数的定义即可解决问题.
    【详解】
    解:这些运动员成绩的中位数、众数分别是4.70,4.1.
    故选:D.
    【点睛】
    本题考查中位数、众数的定义,解题的关键是记住中位数、众数的定义,属于中考基础题.
    7、B
    【解析】
    从左边看可以看到两个小正方形摞在一起,故选B.
    8、D
    【解析】
    试题分析:∵代数式有意义,
    ∴,
    解得x≥0且x≠1.
    故选D.
    考点:二次根式,分式有意义的条件.
    9、D
    【解析】
    由△OAB绕O点逆时针旋转60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,据此可判断C;由△AOC、△BOD是等边三角形可判断A选项;由∠AOB=35°,∠AOC=60°可判断B选项,据此可得答案.
    【详解】
    解:∵△OAB绕O点逆时针旋转60°得到△OCD,
    ∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C选项正确;
    则△AOC、△BOD是等边三角形,∴∠BDO=60°,故A选项正确;
    ∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B选项正确.
    故选D.
    【点睛】
    本题考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等及等边三角形的判定和性质.
    10、C
    【解析】
    分析:要求平均数只要求出数据之和再除以总个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可求解.
    详解:平均数=(129+136+140+145+146+148+154+158+165+175)÷10=149.6(min),故这组样本数据的平均数超过130,A正确,C错误;因为表中是按从小到大的顺序排列的,一共10名选手,中位数为第五位和第六位的平均数,故中位数是(146+148)÷2=147(min),故B正确,D正确.故选C.
    点睛:本题考查的是平均数和中位数的定义.要注意,当所给数据有单位时,所求得的平均数和中位数与原数据的单位相同,不要漏单位.

    二、填空题(共7小题,每小题3分,满分21分)
    11、-1
    【解析】
    试题分析:根据一次函数的图象经过第二、三、四象限,可以得出k<1,b<1,随便写出一个小于1的b值即可.∵一次函数y=﹣2x+b(b为常数)的图象经过第二、三、四象限, ∴k<1,b<1.
    考点:一次函数图象与系数的关系
    12、4(x+3)(x﹣3)
    【解析】
    分析:首先提取公因式4,然后再利用平方差公式进行因式分解.
    详解:原式=.
    点睛:本题主要考查的是因式分解,属于基础题型.因式分解的方法有提取公因式、公式法和十字相乘法等,如果有公因式首先都要提取公因式.
    13、1
    【解析】
    飞机停下时,也就是滑行距离最远时,即在本题中需求出s最大时对应的t值.
    【详解】
    由题意,s=﹣1.2t2+60t=﹣1.2(t2﹣50t+61﹣61)=﹣1.2(t﹣1)2+750
    即当t=1秒时,飞机才能停下来.
    故答案为1.
    【点睛】
    本题考查了二次函数的应用.解题时,利用配方法求得t=2时,s取最大值.
    14、
    【解析】
    分析:连接BC,则∠BCE=90°,由余弦的定义求解.
    详解:连接BC,根据圆周角定理得,∠BCE=90°,
    所以cos∠BEC=.
    故答案为.
    点睛:本题考查了圆周角定理的余弦的定义,求一个锐角的余弦时,需要把这个锐角放到直角三角形中,再根据余弦的定义求解,而圆中直径所对的圆周角是直角.
    15、m≥且m≠1.
    【解析】
    根据一元二次方程的定义和判别式的意义得到m﹣1≠0且 然后求出两个不等式的公共部分即可.
    【详解】
    解:根据题意得m﹣1≠0且
    解得且m≠1.
    故答案为: 且m≠1.
    【点睛】
    本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.
    16、2或1
    【解析】
    点P可能在圆内.也可能在圆外,因而分两种情况进行讨论.
    【详解】
    解:当这点在圆外时,则这个圆的半径是(6-2)÷2=2;
    当点在圆内时,则这个圆的半径是(6+2)÷2=1.
    故答案为2或1.
    【点睛】
    此题主要考查点与圆的位置关系,解题的关键是注意此题应分为两种情况来解决.
    17、2,
    【解析】
    试题分析:根据相反数和倒数的定义分别进行求解,﹣2的相反数是2,
    ﹣2的倒数是.
    考点:倒数;相反数.

    三、解答题(共7小题,满分69分)
    18、 (1) 每次下调10% (2) 第一种方案更优惠.
    【解析】
    (1)设出平均每次下调的百分率为x,利用预订每平方米销售价格×(1-每次下调的百分率)2=开盘每平方米销售价格列方程解答即可.
    (2)求出打折后的售价,再求出不打折减去送物业管理费的钱,再进行比较,据此解答.
    【详解】
    解:(1)设平均每次下调的百分率为x,根据题意得
    5000×(1-x)2=4050
       解得x=10%或x=1.9(舍去)
    答:平均每次下调10%.
    (2)9.8折=98%,
    100×4050×98%=396900(元)
    100×4050-100×1.5×12×2=401400(元),
    396900<401400,所以第一种方案更优惠.
    答:第一种方案更优惠.
    【点睛】
    本题考查一元二次方程的应用,能找到等量关系式,并根据等量关系式正确列出方程是解决本题的关键.
    19、 (1) 60,90;(2)见解析;(3) 300人
    【解析】
    (1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“基本了解”部分所对应扇形的圆心角;
    (2)由(1)可求得了解的人数,继而补全条形统计图;
    (3)利用样本估计总体的方法,即可求得答案.
    【详解】
    解:(1)∵了解很少的有30人,占50%,
    ∴接受问卷调查的学生共有:30÷50%=60(人);
    ∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°;
    故答案为60,90;
    (2)60﹣15﹣30﹣10=5;
    补全条形统计图得:

    (3)根据题意得:900×=300(人),
    则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.
    【点睛】
    本题考查了条形统计图与扇形统计图,解题的关键是熟练的掌握条形统计图与扇形统计图的相关知识点.
    20、(1)y=x2﹣3x+1;tan∠ACB=;(2)m=;(3)四边形ADMQ是平行四边形;理由见解析.
    【解析】
    (1)由点A、B坐标利用待定系数法求解可得抛物线解析式为y=x2-3x+1,作BG⊥CA,交CA的延长线于点G,证△GAB∽△OAC得=,据此知BG=2AG.在Rt△ABG中根据BG2+AG2=AB2,可求得AG=.继而可得BG=,CG=AC+AG=,根据正切函数定义可得答案;
    (2)作BH⊥CD于点H,交CP于点K,连接AK,易得四边形OBHC是正方形,应用“全角夹半角”可得AK=OA+HK,设K(1,h),则BK=h,HK=HB-KB=1-h,AK=OA+HK=2+(1-h)=6-h.在Rt△ABK中,由勾股定理求得h=,据此求得点K(1,).待定系数法求出直线CK的解析式为y=-x+1.设点P的坐标为(x,y)知x是方程x2-3x+1=-x+1的一个解.解之求得x的值即可得出答案;
    (3)先求出点D坐标为(6,1),设P(m,m2-3m+1)知M(m,1),H(m,0).及PH=m2-3m+1),OH=m,AH=m-2,MH=1.①当1<m<6时,由△OAN∽△HAP知=.据此得ON=m-1.再证△ONQ∽△HMQ得=.据此求得OQ=m-1.从而得出AQ=DM=6-m.结合AQ∥DM可得答案.②当m>6时,同理可得.
    【详解】
    解:(1)将点A(2,0)和点B(1,0)分别代入y=ax2+bx+1,得,
    解得:;
    ∴该抛物线的解析式为y=x2﹣3x+1,
    过点B作BG⊥CA,交CA的延长线于点G(如图1所示),则∠G=90°.

    ∵∠COA=∠G=90°,∠CAO=∠BAG,
    ∴△GAB∽△OAC.
    ∴=2.
    ∴BG=2AG,
    在Rt△ABG中,∵BG2+AG2=AB2,
    ∴(2AG)2+AG2=22,解得: AG=.
    ∴BG=,CG=AC+AG=2+=.
    在Rt△BCG中,tan∠ACB═.
    (2)如图2,过点B作BH⊥CD于点H,交CP于点K,连接AK.易得四边形OBHC是正方形.

    应用“全角夹半角”可得AK=OA+HK,
    设K(1,h),则BK=h,HK=HB﹣KB=1﹣h,AK=OA+HK=2+(1﹣h)=6﹣h,
    在Rt△ABK中,由勾股定理,得AB2+BK2=AK2,
    ∴22+h2=(6﹣h)2.解得h=,
    ∴点K(1,),
    设直线CK的解析式为y=hx+1,
    将点K(1,)代入上式,得=1h+1.解得h=﹣,
    ∴直线CK的解析式为y=﹣x+1,
    设点P的坐标为(x,y),则x是方程x2﹣3x+1=﹣x+1的一个解,
    将方程整理,得3x2﹣16x=0,
    解得x1=,x2=0(不合题意,舍去)
    将x1=代入y=﹣x+1,得y=,
    ∴点P的坐标为(,),
    ∴m=;
    (3)四边形ADMQ是平行四边形.理由如下:
    ∵CD∥x轴,
    ∴yC=yD=1,
    将y=1代入y=x2﹣3x+1,得1=x2﹣3x+1,
    解得x1=0,x2=6,
    ∴点D(6,1),
    根据题意,得P(m, m2﹣3m+1),M(m,1),H(m,0),
    ∴PH=m2﹣3m+1,OH=m,AH=m﹣2,MH=1,
    ①当1<m<6时,DM=6﹣m,
    如图3,

    ∵△OAN∽△HAP,
    ∴,
    ∴=,
    ∴ON===m﹣1,
    ∵△ONQ∽△HMQ,
    ∴,
    ∴,
    ∴,
    ∴OQ=m﹣1,
    ∴AQ=OA﹣OQ=2﹣(m﹣1)=6﹣m,
    ∴AQ=DM=6﹣m,
    又∵AQ∥DM,
    ∴四边形ADMQ是平行四边形.
    ②当m>6时,同理可得:四边形ADMQ是平行四边形.
    综上,四边形ADMQ是平行四边形.
    【点睛】
    本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、平行四边形的判定与性质及勾股定理、三角函数等知识点.
    21、3.05米
    【解析】
    延长FE交CB的延长线于M, 过A作AG⊥FM于G, 解直角三角形即可得到正确结论.
    【详解】
    解:
    如图:延长FE交CB的延长线于M,过A作AG⊥FM于G,
    在Rt△ABC中,tan∠ACB=,
    ∴AB=BC•tan60°=1.5×1.73=2.595,
    ∴GM=AB=2.595,
    在Rt△AGF中,∵∠FAG=∠FHE=45°,sin∠FAG=,
    ∴sin45°=,
    ∴FG=1.76,
    ∴DM=FG+GM﹣DF≈3.05米.
    答:篮框D到地面的距离是3.05米.
    【点睛】
    本题主要考查直角三角形和三角函数,构造合适的辅助线是本题解题的关键.
    22、(1)证明见解析(2)-1
    【解析】
    (1)先由旋转的性质得AE=AB,AF=AC,∠EAF=∠BAC,则∠EAF+∠BAF=∠BAC+∠BAF,即∠EAB=∠FAC,利用AB=AC可得AE=AF,得出△ACF≌△ABE,从而得出BE=CF;
    (2)由菱形的性质得到DE=AE=AC=AB=1,AC∥DE,根据等腰三角形的性质得∠AEB=∠ABE,根据平行线得性质得∠ABE=∠BAC=45°,所以∠AEB=∠ABE=45°,于是可判断△ABE为等腰直角三角形,所以BE=AC=,于是利用BD=BE﹣DE求解.
    【详解】
    (1)∵△AEF是由△ABC绕点A按顺时针方向旋转得到的,
    ∴AE=AB,AF=AC,∠EAF=∠BAC,
    ∴∠EAF+∠BAF=∠BAC+∠BAF,
    即∠EAB=∠FAC,
    在△ACF和△ABE中,
    △ACF≌△ABE
    BE=CF.
    (2)∵四边形ACDE为菱形,AB=AC=1,
    ∴DE=AE=AC=AB=1,AC∥DE,
    ∴∠AEB=∠ABE,∠ABE=∠BAC=45°,
    ∴∠AEB=∠ABE=45°,
    ∴△ABE为等腰直角三角形,
    ∴BE=AC=,
    ∴BD=BE﹣DE=.
    考点:1.旋转的性质;2.勾股定理;3.菱形的性质.
    23、(1)40;(2)72;(3)1.
    【解析】
    (1)用最想去A景点的人数除以它所占的百分比即可得到被调查的学生总人数;
    (2)先计算出最想去D景点的人数,再补全条形统计图,然后用360°乘以最想去D景点的人数所占的百分比即可得到扇形统计图中表示“最想去景点D”的扇形圆心角的度数;
    (3)用800乘以样本中最想去A景点的人数所占的百分比即可.
    【详解】
    (1)被调查的学生总人数为8÷20%=40(人);
    (2)最想去D景点的人数为40﹣8﹣14﹣4﹣6=8(人),补全条形统计图为:

    扇形统计图中表示“最想去景点D”的扇形圆心角的度数为×360°=72°;
    (3)800×=1,所以估计“最想去景点B“的学生人数为1人.
    24、(1)y=0.8x﹣60(0≤x≤200)(2)159份
    【解析】
    解:(1)y=(1﹣0.5)x﹣(0.5﹣0.2)(200﹣x)=0.8x﹣60(0≤x≤200).
    (2)根据题意得:30(0.8x﹣60)≥2000,解得x≥.
    ∴小丁每天至少要买159份报纸才能保证每月收入不低于2000元.
    (1)因为小丁每天从某市报社以每份0.5元买出报纸200份,然后以每份1元卖给读者,报纸卖不完,当天可退回报社,但报社只按每份0.2元退给小丁,所以如果小丁平均每天卖出报纸x份,纯收入为y元,则y=(1﹣0.5)x﹣(0.5﹣0.2)(200﹣x)即y=0.8x﹣60,其中0≤x≤200且x为整数.
    (2)因为每月以30天计,根据题意可得30(0.8x﹣60)≥2000,解之求解即可.

    相关试卷

    2022届山东省青岛39中重点达标名校中考数学押题试卷含解析:

    这是一份2022届山东省青岛39中重点达标名校中考数学押题试卷含解析,共18页。试卷主要包含了方程=的解为,下列运算正确的是等内容,欢迎下载使用。

    2022届山东省冠县重点达标名校中考数学押题试卷含解析:

    这是一份2022届山东省冠县重点达标名校中考数学押题试卷含解析,共17页。试卷主要包含了答题时请按要求用笔,一、单选题等内容,欢迎下载使用。

    2022届河北省邯郸市涉县重点达标名校中考押题数学预测卷含解析:

    这是一份2022届河北省邯郸市涉县重点达标名校中考押题数学预测卷含解析,共18页。试卷主要包含了答题时请按要求用笔,把a•的根号外的a移到根号内得,下列运算正确的是,-3的相反数是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map