2022届安徽省合肥市包河区四十八中学中考联考数学试卷含解析
展开
这是一份2022届安徽省合肥市包河区四十八中学中考联考数学试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,若 || =-,则一定是,下列计算结果等于0的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.现有两根木棒,它们的长分别是20cm和30cm,若不改变木棒的长短,要钉成一个三角形木架,则应在下列四根木棒中选取( )
A.10cm的木棒 B.40cm的木棒 C.50cm的木棒 D.60cm的木棒
2.如图,热气球的探测器显示,从热气球A看一栋楼顶部B的仰角为30°,看这栋楼底部C的俯角为60°,热气球A与楼的水平距离为120米,这栋楼的高度BC为( )
A.160米 B.(60+160) C.160米 D.360米
3.若关于x的一元二次方程(k﹣1)x2+2x﹣2=0有两个不相等的实数根,则k的取值范围是( )
A.k> B.k≥ C.k>且k≠1 D.k≥且k≠1
4.若 || =-,则一定是( )
A.非正数 B.正数 C.非负数 D.负数
5.三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的一个根,则这个三角形的周长是( )
A.9 B.11 C.13 D.11或13
6.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A,B,C,D,得到四边形ABCD.若AC=10cm,∠BAC=36°,则图中阴影部分的面积为( )
A. B. C. D.
7.如图,在平行线l1、l2之间放置一块直角三角板,三角板的锐角顶点A,B分别在直线l1、l2上,若∠l=65°,则∠2的度数是( )
A.25° B.35° C.45° D.65°
8.已知一个多边形的内角和是1080°,则这个多边形是( )
A.五边形 B.六边形 C.七边形 D.八边形
9.下列计算结果等于0的是( )
A. B. C. D.
10.若55+55+55+55+55=25n,则n的值为( )
A.10 B.6 C.5 D.3
11.随着“三农”问题的解决,某农民近两年的年收入发生了明显变化,已知前年和去年的收入分别是60000元和80000元,下面是依据①②③三种农作物每种作物每年的收入占该年年收入的比例绘制的扇形统计图.依据统计图得出的以下四个结论正确的是( )
A.①的收入去年和前年相同
B.③的收入所占比例前年的比去年的大
C.去年②的收入为2.8万
D.前年年收入不止①②③三种农作物的收入
12.如图,AB为⊙O直径,已知为∠DCB=20°,则∠DBA为( )
A.50° B.20° C.60° D.70°
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.的系数是_____,次数是_____.
14.在□ABCD中,按以下步骤作图:①以点B为圆心,以BA长为半径作弧,交BC于点E;②分别以A,E为圆心,大于AE的长为半径作弧,两弧交于点F;③连接BF,延长线交AD于点G. 若∠AGB=30°,则∠C=_______°.
15.为参加2018年“宜宾市初中毕业生升学体育考试”,小聪同学每天进行立定跳远练习,并记录下其中7天的最好成绩(单位:m)分别为:2.21,2.12,2.1,2.39,2.1,2.40,2.1.这组数据的中位数和众数分别是_____.
16.一元二次方程x2+mx+3=0的一个根为- 1,则另一个根为 .
17.如图,在菱形ABCD中,对角线AC、BD相交于点O,点E是线段BO上的一个动点,点F为射线DC上一点,若∠ABC=60°,∠AEF=120°,AB=4,则EF可能的整数值是_____.
18.如图,直线y1=kx+n(k≠0)与抛物线y2=ax2+bx+c(a≠0)分别交于A(﹣1,0),B(2,﹣3)两点,那么当y1>y2时,x的取值范围是_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)计算下列各题:
(1)tan45°−sin60°•cos30°;
(2)sin230°+sin45°•tan30°.
20.(6分)在平面直角坐标系中,一次函数(a≠0)的图象与反比例函数的图象交于第二、第四象限内的A、B两点,与轴交于点C,过点A作AH⊥轴,垂足为点H,OH=3,tan∠AOH=,点B的坐标为(,-2).求该反比例函数和一次函数的解析式;求△AHO的周长.
21.(6分)济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.
请根据以上信息,回答下列问题:
(l)杨老师采用的调查方式是______(填“普查”或“抽样调查”);
(2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数______.
(3)请估计全校共征集作品的件数.
(4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.
22.(8分)为了掌握我市中考模拟数学试题的命题质量与难度系数,命题教师赴我市某地选取一个水平相当的初三年级进行调研,命题教师将随机抽取的部分学生成绩(得分为整数,满分为160分)分为5组:第一组85~100;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图1和如图2所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:
(1)本次调查共随机抽取了该年级多少名学生?并将频数分布直方图补充完整;
(2)若将得分转化为等级,规定:得分低于100分评为“D”,100~130分评为“C”,130~145分评为“B”,145~160分评为“A”,那么该年级1600名学生中,考试成绩评为“B”的学生大约有多少名?
(3)如果第一组有两名女生和两名男生,第五组只有一名是男生,针对考试成绩情况,命题教师决定从第一组、第五组分别随机选出一名同学谈谈做题的感想,请你用列表或画树状图的方法求出所选两名学生刚好是一名女生和一名男生的概率.
23.(8分)如图,某校准备给长12米,宽8米的矩形室内场地进行地面装饰,现将其划分为区域Ⅰ(菱形),区域Ⅱ(4个全等的直角三角形),剩余空白部分记为区域Ⅲ;点为矩形和菱形的对称中心,,,,为了美观,要求区域Ⅱ的面积不超过矩形面积的,若设米.
甲
乙
丙
单价(元/米2)
(1)当时,求区域Ⅱ的面积.计划在区域Ⅰ,Ⅱ分别铺设甲,乙两款不同的深色瓷砖,区域Ⅲ铺设丙款白色瓷砖,
①在相同光照条件下,当场地内白色区域的面积越大,室内光线亮度越好.当为多少时,室内光线亮度最好,并求此时白色区域的面积.
②三种瓷砖的单价列表如下,均为正整数,若当米时,购买三款瓷砖的总费用最少,且最少费用为7200元,此时__________,__________.
24.(10分)已知:如图,一次函数与反比例函数的图象有两个交点和,过点作轴,垂足为点;过点作轴,垂足为点,且,连接.
求,,的值;求四边形的面积.
25.(10分)某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A:菜包、B:面包、C:鸡蛋、D:油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.
(1)按约定,“某顾客在该天早餐得到两个鸡蛋”是 事件(填“随机”、“必然”或“不可能”);
(2)请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.
26.(12分)为了丰富校园文化,促进学生全面发展.我市某区教育局在全区中小学开展“书法、武术、黄梅戏进校园”活动.今年3月份,该区某校举行了“黄梅戏”演唱比赛,比赛成绩评定为A,B,C,D,E五个等级,该校部分学生参加了学校的比赛,并将比赛结果绘制成如下两幅不完整的统计图,请根据图中信息,解答下列问题.
(1)求该校参加本次“黄梅戏”演唱比赛的学生人数;
(2)求扇形统计图B等级所对应扇形的圆心角度数;
(3)已知A等级的4名学生中有1名男生,3名女生,现从中任意选取2名学生作为全校训练的示范者,请你用列表法或画树状图的方法,求出恰好选1名男生和1名女生的概率.
27.(12分)春节期间,小丽一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.
租车公司:按日收取固定租金80元,另外再按租车时间计费.
共享汽车:无固定租金,直接以租车时间(时)计费.
如图是两种租车方式所需费用y1(元)、y2(元)与租车时间x(时)之间的函数图象,根据以上信息,回答下列问题:
(1)分别求出y1、y2与x的函数表达式;
(2)请你帮助小丽一家选择合算的租车方案.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
设应选取的木棒长为x,再根据三角形的三边关系求出x的取值范围.进而可得出结论.
【详解】
设应选取的木棒长为x,则30cm-20cm<x<30cm+20cm,即10cm<x<50cm.
故选B.
【点睛】
本题考查的是三角形的三边关系,熟知三角形任意两边之和大于第三边,任意两边差小于第三边是解答此题的关键.
2、C
【解析】
过点A作AD⊥BC于点D.根据三角函数关系求出BD、CD的长,进而可求出BC的长.
【详解】
如图所示,过点A作AD⊥BC于点D.
在Rt△ABD中,∠BAD=30°,AD=120m,BD=AD∙tan30°=120×=m;
在Rt△ADC中,∠DAC=60°,CD=AD∙tan60°=120×=m.
∴BC=BD+DC=m.
故选C.
【点睛】
本题主要考查三角函数,解答本题的关键是熟练掌握三角函数的有关知识,并牢记特殊角的三角函数值.
3、C
【解析】
根据题意得k-1≠0且△=2²-4(k-1)×(-2)>0,解得:k>且k≠1.
故选C
【点睛】
本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac,关键是熟练掌握:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.
4、A
【解析】
根据绝对值的性质进行求解即可得.
【详解】
∵|-x|=-x,
又|-x|≥1,
∴-x≥1,
即x≤1,
即x是非正数,
故选A.
【点睛】
本题考查了绝对值的性质,熟练掌握绝对值的性质是解题的关键.
绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;1的绝对值是1.
5、C
【解析】
试题分析:先求出方程x2-6x+8=0的解,再根据三角形的三边关系求解即可.
解方程x2-6x+8=0得x=2或x=4
当x=2时,三边长为2、3、6,而2+3<6,此时无法构成三角形
当x=4时,三边长为4、3、6,此时可以构成三角形,周长=4+3+6=13
故选C.
考点:解一元二次方程,三角形的三边关系
点评:解题的关键是熟记三角形的三边关系:任两边之和大于第三边,任两边之差小于第三边.
6、B
【解析】
试题解析:∵AC=10,∴AO=BO=5,∵∠BAC=36°,∴∠BOC=72°,∵矩形的对角线把矩形分成了四个面积相等的三角形,∴阴影部分的面积=扇形AOD的面积+扇形BOC的面积=2扇形BOC的面积==10π .故选B.
7、A
【解析】
如图,过点C作CD∥a,再由平行线的性质即可得出结论.
【详解】
如图,过点C作CD∥a,则∠1=∠ACD,
∵a∥b,
∴CD∥b,
∴∠2=∠DCB,
∵∠ACD+∠DCB=90°,
∴∠1+∠2=90°,
又∵∠1=65°,
∴∠2=25°,
故选A.
【点睛】
本题考查了平行线的性质与判定,根据题意作出辅助线,构造出平行线是解答此题的关键.
8、D
【解析】
根据多边形的内角和=(n﹣2)•180°,列方程可求解.
【详解】
设所求多边形边数为n,
∴(n﹣2)•180°=1080°,
解得n=8.
故选D.
【点睛】
本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.
9、A
【解析】
各项计算得到结果,即可作出判断.
【详解】
解:A、原式=0,符合题意;
B、原式=-1+(-1)=-2,不符合题意;
C、原式=-1,不符合题意;
D、原式=-1,不符合题意,
故选:A.
【点睛】
本题考查了有理数的运算,熟练掌握运算法则是解本题的关键.
10、D
【解析】
直接利用提取公因式法以及幂的乘方运算法则将原式变形进而得出答案.
【详解】
解:∵55+55+55+55+55=25n,
∴55×5=52n,
则56=52n,
解得:n=1.
故选D.
【点睛】
此题主要考查了幂的乘方运算,正确将原式变形是解题关键.
11、C
【解析】
A、前年①的收入为60000×=19500,去年①的收入为80000×=26000,此选项错误;
B、前年③的收入所占比例为×100%=30%,去年③的收入所占比例为×100%=32.5%,此选项错误;
C、去年②的收入为80000×=28000=2.8(万元),此选项正确;
D、前年年收入即为①②③三种农作物的收入,此选项错误,
故选C.
【点睛】
本题主要考查扇形统计图,解题的关键是掌握扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数,并且通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.
12、D
【解析】
题解析:∵AB为⊙O直径,∴∠ACB=90°,∴∠ACD=90°-∠DCB=90°-20°=70°,∴∠DBA=∠ACD=70°.故选D.
【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、 1
【解析】
根据单项式系数及次数的定义进行解答即可.
【详解】
根据单项式系数和次数的定义可知,﹣的系数是,次数是1.
【点睛】
本题考查了单项式,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解题的关键.
14、120
【解析】
首先证明∠ABG=∠GBE=∠AGB=30°,可得∠ABC=60°,再利用平行四边形的邻角互补即可解决问题.
【详解】
由题意得:∠GBA=∠GBE,
∵AD∥BC,
∴∠AGB=∠GBE=30°,
∴∠ABC=60°,
∵AB∥CD,
∴∠C=180°-∠ABC=120°,
故答案为:120.
【点睛】
本题考查基本作图、平行四边形的性质等知识,解题的关键是熟练掌握基本知识
15、2.40,2.1.
【解析】
∵把7天的成绩从小到大排列为:2.12,2.21,2.39,2.40,2.1,2.1,2.1.
∴它们的中位数为2.40,众数为2.1.
故答案为2.40,2.1.
点睛:本题考查了中位数和众数的求法,如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.一组数据中出现次数最多的数是这组数据的众数.
16、-1.
【解析】
因为一元二次方程的常数项是已知的,可直接利用两根之积的等式求解.
【详解】
∵一元二次方程x2+mx+1=0的一个根为-1,设另一根为x1,
由根与系数关系:-1•x1=1,
解得x1=-1.
故答案为-1.
17、2,3,1.
【解析】
分析:根据题意得出EF的取值范围,从而得出EF的值.
详解:∵AB=1,∠ABC=60°, ∴BD=1,
当点E和点B重合时,∠FBD=90°,∠BDC=30°,则EF=1;
当点E和点O重合时,∠DEF=30°,则△EFD为等腰三角形,则EF=FD=2,
∴EF可能的整数值为2、3、1.
点睛:本题主要考查的就是菱形的性质以及直角三角形的勾股定理,属于中等难度的题型.解决这个问题的关键就是找出当点E在何处时取到最大值和最小值,从而得出答案.
18、﹣1<x<2
【解析】
根据图象得出取值范围即可.
【详解】
解:因为直线y1=kx+n(k≠0)与抛物线y2=ax2+bx+c(a≠0)分别交于A(﹣1,0),B(2,﹣3)两点,
所以当y1>y2时,﹣1<x<2,
故答案为﹣1<x<2
【点睛】
此题考查二次函数与不等式,关键是根据图象得出取值范围.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1);(2).
【解析】
(1)原式=1﹣×=1﹣=;
(2)原式=×+×=.
【点睛】
本题考查特殊角的三角函数值,熟练掌握每个特殊角的三角函数值是解此题的关键.
20、(1)一次函数为,反比例函数为;(2)△AHO的周长为12
【解析】
分析:(1)根据正切函数可得AH=4,根据反比例函数的特点k=xy为定值,列出方程,求出k的值,便可求出反比例函数的解析式;根据k的值求出B两点的坐标,用待定系数法便可求出一次函数的解析式.
(2)由(1)知AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案.
详解:(1)∵tan∠AOH==
∴AH=OH=4
∴A(-4,3),代入,得
k=-4×3=-12
∴反比例函数为
∴
∴m=6
∴B(6,-2)
∴
∴=,b=1
∴一次函数为
(2)
△AHO的周长为:3+4+5=12
点睛:此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式.
21、(1)抽样调查(2)150°(3)180件(4)
【解析】
分析:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.
(2)由题意得:所调查的4个班征集到的作品数为:6÷=24(件),C班作品的件数为:24-4-6-4=10(件);继而可补全条形统计图;
(3)先求出抽取的4个班每班平均征集的数量,再乘以班级总数可得;
(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两名学生性别相同的情况,再利用概率公式即可求得答案.
详解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.
故答案为抽样调查.
(2)所调查的4个班征集到的作品数为:6÷=24件,
C班有24﹣(4+6+4)=10件,
补全条形图如图所示,
扇形统计图中C班作品数量所对应的圆心角度数360°×=150°;
故答案为150°;
(3)∵平均每个班=6件,
∴估计全校共征集作品6×30=180件.
(4)画树状图得:
∵共有20种等可能的结果,两名学生性别相同的有8种情况,
∴恰好选取的两名学生性别相同的概率为.
点睛:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时古典概型求法:(1)算出所有基本事件的个数n;(2)求出事件A包含的所有基本事件数m;(3)代入公式P(A)=,求出P(A)..
22、(1)50(2)420(3)P=
【解析】试题分析:(1)首先根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);则可求得第五组人数为:50﹣4﹣8﹣20﹣14=4(名);即可补全统计图;
(2)由题意可求得130~145分所占比例,进而求出答案;
(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所选两名学生刚好是一名女生和一名男生的情况,再利用概率公式求解即可求得答案.
试题解析:(1)根据题意得:本次调查共随机抽取了该年级学生数为:20÷40%=50(名);
则第五组人数为:50﹣4﹣8﹣20﹣14=4(名);
如图:
(2)根据题意得:考试成绩评为“B”的学生大约有×1600=448(名),
答:考试成绩评为“B”的学生大约有448名;
(3)画树状图得:
∵共有16种等可能的结果,所选两名学生刚好是一名女生和一名男生的有8种情况,
∴所选两名学生刚好是一名女生和一名男生的概率为: =.
考点:1、树状图法与列表法求概率的知识,2、直方图与扇形统计图的知识
视频
23、(1)8m2;(2)68m2;(3) 40,8
【解析】
(1)根据中心对称图形性质和,,,可得,即可解当时,4个全等直角三角形的面积;
(2)白色区域面积即是矩形面积减去一二部分的面积,分别用含x的代数式表示出菱形和四个全等直角三角形的面积,列出含有x的解析式表示白色区域面积,并化成顶点式,根据,,,求出自变量的取值范围,再根据二次函数的增减性即可解答;
(3)计算出x=2时各部分面积以及用含m、n的代数式表示出费用,因为m,n均为正整数,解得m=40,n=8.
【详解】
(1) ∵为长方形和菱形的对称中心,,∴
∵,,∴
∴当时,,
(2)∵,
∴-,
∵,,
∴解不等式组得,
∵,结合图像,当时,随的增大而减小.
∴当时, 取得最大值为
(3)∵当时,SⅠ=4x2=16 m2,=12 m2,=68m2,总费用:16×2m+12×5n+68×2m=7200,化简得:5n+14m=600,因为m,n均为正整数,解得m=40,n=8.
【点睛】
本题考查中心对称图形性质,菱形、直角三角形的面积计算,二次函数的最值问题,解题关键是用含x的二次函数解析式表示出白色区面积.
24、(1),,.(2)6
【解析】
(1)用代入法可求解,用待定系数法求解;(2)延长,交于点,则.根据求解.
【详解】
解:(1)∵点在上,
∴,
∵点在上,且,
∴.
∵过,两点,
∴,
解得,
∴,,.
(2)如图,延长,交于点,则.
∵轴,轴,
∴,,
∴,,
∴
.
∴四边形的面积为6.
【点睛】
考核知识点:反比例函数和一次函数的综合运用.数形结合分析问题是关键.
25、(1)不可能;(2).
【解析】
(1)利用确定事件和随机事件的定义进行判断;
(2)画树状图展示所有12种等可能的结果数,再找出其中某顾客该天早餐刚好得到菜包和油条的结果数,然后根据概率公式计算.
【详解】
(1)某顾客在该天早餐得到两个鸡蛋”是不可能事件;
故答案为不可能;
(2)画树状图:
共有12种等可能的结果数,其中某顾客该天早餐刚好得到菜包和油条的结果数为2,
所以某顾客该天早餐刚好得到菜包和油条的概率=.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
26、(1)50;(2)115.2°;(3).
【解析】
(1)先求出参加本次比赛的学生人数;(2)由(1)求出的学生人数,即可求出B等级所对应扇形的圆心角度数;(3)首先根据题意列表或画出树状图,然后由求得所有等可能的结果,再利用概率公式即可求得答案.
解:(1)参加本次比赛的学生有:(人)
(2)B等级的学生共有:(人).
∴所占的百分比为:
∴B等级所对应扇形的圆心角度数为:.
(3)列表如下:
男
女1
女2
女3
男
﹣﹣﹣
(女,男)
(女,男)
(女,男)
女1
(男,女)
﹣﹣﹣
(女,女)
(女,女)
女2
(男,女)
(女,女)
﹣﹣﹣
(女,女)
女3
(男,女)
(女,女)
(女,女)
﹣﹣﹣
∵共有12种等可能的结果,选中1名男生和1名女生结果的有6种.
∴P(选中1名男生和1名女生).
“点睛”本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.通过扇形统计图求出扇形的圆心角度数,应用数形结合的思想是解决此类题目的关键.
27、(1)y1=kx+80,y2=30x;(2)见解析.
【解析】
(1)设y1=kx+80,将(2,110)代入求解即可;设y2=mx,将(5,150)代入求解即可;
(2)分y1=y2,y1<y2,y1>y2三种情况分析即可.
【详解】
解:(1)由题意,设y1=kx+80,
将(2,110)代入,得110=2k+80,解得k=15,
则y1与x的函数表达式为y1=15x+80;
设y2=mx,
将(5,150)代入,得150=5m,解得m=30,
则y2与x的函数表达式为y2=30x;
(2)由y1=y2得,15x+80=30x,解得x=;
由y1<y2得,15x+80<30x,解得x>;
由y1>y2得,15x+80>30x,解得x<.
故当租车时间为小时时,两种选择一样;
当租车时间大于小时时,选择租车公司合算;
当租车时间小于小时时,选择共享汽车合算.
【点睛】
本题考查了一次函数的应用及分类讨论的数学思想,解答本题的关键是掌握待定系数法求函数解析式的方法.
相关试卷
这是一份2024年安徽省合肥市包河区中考数学二模试卷(含解析)试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年安徽省合肥市包河区中考数学三模试卷(含解析),共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年安徽省合肥市包河区中考一模数学试题(含解析),共21页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。