2022届海西市重点中学中考数学最后一模试卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为( )
A.100° B.110° C.115° D.120°
2.2017年,山西省经济发展由“疲”转“兴”,经济增长步入合理区间,各项社会事业发展取得显著成绩,全面建成小康社会迈出崭新步伐.2018年经济总体保持平稳,第一季度山西省地区生产总值约为3122亿元,比上年增长6.2%.数据3122亿元用科学记数法表示为( )
A.3122×10 8元 B.3.122×10 3元
C.3122×10 11 元 D.3.122×10 11 元
3.如图是用八块相同的小正方体搭建的几何体,它的左视图是( )
A. B.
C. D.
4.如果将抛物线向右平移1个单位,那么所得的抛物线的表达式是
A. B. C. D.
5.如图,在中,D、E分别在边AB、AC上,,交AB于F,那么下列比例式中正确的是
A. B. C. D.
6.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为
A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1
7.一艘在南北航线上的测量船,于A点处测得海岛B在点A的南偏东30°方向,继续向南航行30海里到达C点时,测得海岛B在C点的北偏东15°方向,那么海岛B离此航线的最近距离是( )(结果保留小数点后两位)(参考数据:≈1.732,≈1.414)
A.4.64海里 B.5.49海里 C.6.12海里 D.6.21海里
8.已知:如图,在平面直角坐标系xOy中,等边△AOB的边长为6,点C在边OA上,点D在边AB上,且OC=3BD,反比例函数y=(k≠0)的图象恰好经过点C和点D,则k的值为( )
A. B. C. D.
9.抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的( )
A.中位数 B.众数 C.平均数 D.方差
10.如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为3,则k的值是( )
A.3 B.﹣3 C.6 D.﹣6
11.某种圆形合金板材的成本y(元)与它的面积(cm2)成正比,设半径为xcm,当x=3时,y=18,那么当半径为6cm时,成本为( )
A.18元 B.36元 C.54元 D.72元
12.如图,已知Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转,使点D落在射线CA上,DE的延长线交BC于F,则∠CFD的度数为( )
A.80° B.90° C.100° D.120°
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(﹣1,0),(﹣4,0),将△ABC沿x轴向左平移,当点C落在直线y=﹣2x﹣6上时,则点C沿x轴向左平移了_____个单位长度.
14.如图,四边形ABCD是菱形,∠BAD=60°,AB=6,对角线AC与BD相交于点O,点E在AC上,若OE=2,则CE的长为_______
15.如图,直线与双曲线(k≠0)相交于A(﹣1,)、B两点,在y轴上找一点P,当PA+PB的值最小时,点P的坐标为_________.
16.函数的自变量x的取值范围是_____.
17.在一个暗箱里放有a个除颜色外其他完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在0.25,那么可以推算出a大约是_________.
18.如图,直线与轴交于点,与轴交于点,点在轴的正半轴上,,过点作轴交直线于点,若反比例函数的图象经过点,则的值为_________________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,已知平行四边形ABCD,点M、N分别是边DC、BC的中点,设=,= ,求向量关于、的分解式.
20.(6分)菏泽市牡丹区中学生运动会即将举行,各个学校都在积极地做准备,某校为奖励在运动会上取得好成绩的学生,计划购买甲、乙两种奖品共100件,已知甲种奖品的单价是30元,乙种奖品的单价是20元.
(1)若购买这批奖品共用2800元,求甲、乙两种奖品各购买了多少件?
(2)若购买这批奖品的总费用不超过2900元,则最多购买甲种奖品多少件?
21.(6分)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.
(1)求证:四边形DEBF是矩形;
(2)若AF平分∠DAB,AE=3,BF=4,求▱ABCD的面积.
22.(8分)解方程组: .
23.(8分)先化简后求值:已知:x=﹣2,求的值.
24.(10分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.求该企业从2014年到2016年利润的年平均增长率;若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?
25.(10分)如图,一次函数y=﹣x+的图象与反比例函数y=(k>0)的图象交于A,B两点,过A点作x轴的垂线,垂足为M,△AOM面积为1.
(1)求反比例函数的解析式;
(2)在y轴上求一点P,使PA+PB的值最小,并求出其最小值和P点坐标.
26.(12分)某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,健民体育活动中心从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.该网店甲、乙两种羽毛球每筒的售价各是多少元?根据健民体育活动中心消费者的需求量,活动中心决定用不超过2550元钱购进甲、乙两种羽毛球共50筒,那么最多可以购进多少筒甲种羽毛球?
27.(12分)如图1,四边形ABCD,边AD、BC的垂直平分线相交于点O.连接OA、OB、OC、OD.OE是边CD的中线,且∠AOB+∠COD=180°
(1)如图2,当△ABO是等边三角形时,求证:OE=AB;
(2)如图3,当△ABO是直角三角形时,且∠AOB=90°,求证:OE=AB;
(3)如图4,当△ABO是任意三角形时,设∠OAD=α,∠OBC=β,
①试探究α、β之间存在的数量关系?
②结论“OE=AB”还成立吗?若成立,请你证明;若不成立,请说明理由.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
连接AD,BD,由圆周角定理可得∠ABD=20°,∠ADB=90°,从而可求得∠BAD=70°,再由圆的内接四边形对角互补得到∠BCD=110°.
【详解】
如下图,连接AD,BD,
∵同弧所对的圆周角相等,∴∠ABD=∠AED=20°,
∵AB为直径,∴∠ADB=90°,
∴∠BAD=90°-20°=70°,
∴∠BCD=180°-70°=110°.
故选B
【点睛】
本题考查圆中的角度计算,熟练运用圆周角定理和内接四边形的性质是关键.
2、D
【解析】
可以用排除法求解.
【详解】
第一,根据科学记数法的形式可以排除A选项和C选项,B选项明显不对,所以选D.
【点睛】
牢记科学记数法的规则是解决这一类题的关键.
3、B
【解析】
根据几何体的左视图是从物体的左面看得到的视图,对各个选项中的图形进行分析,即可得出答案.
【详解】
左视图是从左往右看,左侧一列有2层,右侧一列有1层1,选项B中的图形符合题意,
故选B.
【点睛】
本题考查了简单组合体的三视图,理解掌握三视图的概念是解答本题的关键.主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图.
4、D
【解析】
本题主要考查二次函数的解析式
【详解】
解:根据二次函数的解析式形式可得,设顶点坐标为(h,k),则二次函数的解析式为.由原抛物线解析式可得a=1,且原抛物线的顶点坐标为(0,0),向右平移1个单位后的顶点坐标为(1,0),故平移后的解析式为.
故选D.
【点睛】
本题主要考查二次函数的顶点式,根据顶点的平移可得到二次函数平移后的解析式.
5、C
【解析】
根据平行线分线段成比例定理和相似三角形的性质找准线段的对应关系,对各选项分析判断.
【详解】
A、∵EF∥CD,DE∥BC,∴,,∵CE≠AC,∴,故本选项错误;
B、∵EF∥CD,DE∥BC,∴,,∴,∵AD≠DF,∴,故本选项错误;
C、∵EF∥CD,DE∥BC,∴,,∴,故本选项正确;
D、∵EF∥CD,DE∥BC,∴,,∴,∵AD≠DF,∴,故本选项错误.
故选C.
【点睛】
本题考查了平行线分线段成比例的运用及平行于三角形一边的直线截其它两边,所得的新三角形与原三角形相似的定理的运用,在解答时寻找对应线段是关健.
6、B
【解析】
试题分析:根据作图方法可得点P在第二象限角平分线上,
则P点横纵坐标的和为0,即2a+b+1=0,
∴2a+b=﹣1.故选B.
7、B
【解析】
根据题意画出图如图所示:作BD⊥AC,取BE=CE,根据三角形内角和和等腰三角形的性质得出BA=BE,AD=DE,设BD=x,Rt△ABD中,根据勾股定理得AD=DE= x,AB=BE=CE=2x,由AC=AD+DE+EC=2 x+2x=30,解之即可得出答案.
【详解】
根据题意画出图如图所示:作BD⊥AC,取BE=CE,
∵AC=30,∠CAB=30°∠ACB=15°,
∴∠ABC=135°,
又∵BE=CE,
∴∠ACB=∠EBC=15°,
∴∠ABE=120°,
又∵∠CAB=30°
∴BA=BE,AD=DE,
设BD=x,
在Rt△ABD中,
∴AD=DE= x,AB=BE=CE=2x,
∴AC=AD+DE+EC=2 x+2x=30,
∴x= = ≈5.49,
故答案选:B.
【点睛】
本题考查了三角形内角和定理与等腰直角三角形的性质,解题的关键是熟练的掌握三角形内角和定理与等腰直角三角形的性质.
8、A
【解析】
试题分析:过点C作CE⊥x轴于点E,过点D作DF⊥x轴于点F,如图所示.
设BD=a,则OC=3a.
∵△AOB为边长为1的等边三角形,∴∠COE=∠DBF=10°,OB=1.
在Rt△COE中,∠COE=10°,∠CEO=90°,OC=3a,∴∠OCE=30°,∴OE=a,CE= = a,∴点C(a, a).
同理,可求出点D的坐标为(1﹣a,a).
∵反比例函数(k≠0)的图象恰好经过点C和点D,∴k=a×a=(1﹣a)×a,∴a=,k=.故选A.
9、A
【解析】
7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.
【详解】
由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少,
故选A.
【点睛】
本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟练掌握相关的定义是解题的关键.
10、D
【解析】
试题分析:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△CAB=3,而S△OAB=|k|,∴|k|=3,∵k<0,∴k=﹣1.故选D.
考点:反比例函数系数k的几何意义.
11、D
【解析】
设y与x之间的函数关系式为y=kπx2,由待定系数法就可以求出解析式,再求出x=6时y的值即可得.
【详解】
解:根据题意设y=kπx2,
∵当x=3时,y=18,
∴18=kπ•9,
则k=,
∴y=kπx2=•π•x2=2x2,
当x=6时,y=2×36=72,
故选:D.
【点睛】
本题考查了二次函数的应用,解答时求出函数的解析式是关键.
12、B
【解析】
根据旋转的性质得出全等,推出∠B=∠D,求出∠B+∠BEF=∠D+∠AED=90°,根据三角形外角性质得出∠CFD=∠B+∠BEF,代入求出即可.
【详解】
解:∵将△ABC绕点A顺时针旋转得到△ADE,
∴△ABC≌△ADE,
∴∠B=∠D,
∵∠CAB=∠BAD=90°,∠BEF=∠AED,∠B+∠BEF+∠BFE=180°,∠D+∠BAD+∠AED=180°,
∴∠B+∠BEF=∠D+∠AED=180°﹣90°=90°,
∴∠CFD=∠B+∠BEF=90°,
故选:B.
【点睛】
本题考查了旋转的性质,全等三角形的性质和判定,三角形内角和定理,三角形外角性质的应用,掌握旋转变换的性质是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
先根据勾股定理求得AC的长,从而得到C点坐标,然后根据平移的性质,将C点纵轴代入直线解析式求解即可得到答案.
【详解】
解:在Rt△ABC中,AB=﹣1﹣(﹣1)=3,BC=5,
∴AC==1,
∴点C的坐标为(﹣1,1).
当y=﹣2x﹣6=1时,x=﹣5,
∵﹣1﹣(﹣5)=1,
∴点C沿x轴向左平移1个单位长度才能落在直线y=﹣2x﹣6上.
故答案为1.
【点睛】
本题主要考查平移的性质,解此题的关键在于先利用勾股定理求得相关点的坐标,然后根据平移的性质将其纵坐标代入直线函数式求解即可.
14、5或
【解析】
分析:由菱形的性质证出△ABD是等边三角形,得出BD=AB=6,由勾股定理得出,即可得出答案.
详解:∵四边形ABCD是菱形,
∴AB=AD=6,AC⊥BD,OB=OD,OA=OC,
∵
∴△ABD是等边三角形,
∴BD=AB=6,
∴
∴
∴
∵点E在AC上,
∴当E在点O左边时
当点E在点O右边时
∴或;
故答案为或.
点睛:考查菱形的性质,注意分类讨论思想在数学中的应用,不要漏解.
15、(0,).
【解析】
试题分析:把点A坐标代入y=x+4得a=3,即A(﹣1,3),把点A坐标代入双曲线的解析式得3=﹣k,即k=﹣3,联立两函数解析式得:,解得:,,即点B坐标为:(﹣3,1),作出点A关于y轴的对称点C,连接BC,与y轴的交点即为点P,使得PA+PB的值最小,则点C坐标为:(1,3),设直线BC的解析式为:y=ax+b,把B、C的坐标代入得:,解得:,所以函数解析式为:y=x+,则与y轴的交点为:(0,).
考点:反比例函数与一次函数的交点问题;轴对称-最短路线问题.
16、x≠1
【解析】
根据分母不等于2列式计算即可得解.
【详解】
由题意得,x-1≠2,
解得x≠1.
故答案为x≠1.
【点睛】
本题考查的知识点为:分式有意义,分母不为2.
17、12
【解析】
在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,根据红球的个数除以总数等于频率,求解即可.
【详解】
∵摸到红球的频率稳定在0.25,
∴
解得:a=12
故答案为:12
【点睛】
此题主要考查了利用频率估计概率,解答此题的关键是利用红球的个数除以总数等于频率.
18、1
【解析】
先求出直线y=x+2与坐标轴的交点坐标,再由三角形的中位线定理求出CD,得到C点坐标.
【详解】
解:令x=0,得y=x+2=0+2=2,
∴B(0,2),
∴OB=2,
令y=0,得0=x+2,解得,x=-6,
∴A(-6,0),
∴OA=OD=6,
∵OB∥CD,
∴CD=2OB=4,
∴C(6,4),
把c(6,4)代入y= (k≠0)中,得k=1,
故答案为:1.
【点睛】
本题考查了一次函数与反比例函数的综合,需要掌握求函数图象与坐标轴的交点坐标方法,三角形的中位线定理,待定系数法.本题的关键是求出C点坐标.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、答案见解析
【解析】
试题分析:连接BD,由已知可得MN是△BCD的中位线,则MN=BD,根据向量减法表示出BD即可得.
试题解析:连接BD,
∵点M、N分别是边DC、BC的中点,∴MN是△BCD的中位线,
∴MN∥BD,MN= BD,
∵ ,
∴ .
20、(1)甲80件,乙20件;(2)x≤90
【解析】
(1)甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,利用共用2800元,列出方程后求解即可;
(2) 设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,根据购买这批奖品的总费用不超过2900元列不等式求解即可.
【详解】
解:(1)设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,
根据题意得30x+20(100﹣x)=2800,
解得x=80,
则100﹣x=20,
答:甲种奖品购买了80件,乙种奖品购买了20件;
(2)设甲种奖品购买了x件,乙种奖品购买了(100﹣x)件,
根据题意得:30x+20(100﹣x)≤2900,
解得:x≤90,
【点睛】
本题主要考查一元一次方程与一元一次不等式的应用,根据已知条件正确列出方程与不等式是解题的关键.
21、(1)证明见解析(2)3
【解析】
试题分析:(1)根据平行四边形的性质,可证DF∥EB,然后根据一组对边平行且相等的四边形为平行四边形可证四边形DEBF是平行四边形,然后根据有一个角是直角的平行四边形是矩形可证;
(2)根据(1)可知DE=BF,然后根据勾股定理可求AD的长,然后根据角平分线的性质和平行线的性质可求得DF=AD,然后可求CD的长,最后可用平行四边形的面积公式可求解.
试题解析:(1)∵四边形ABCD是平行四边形,
∴DC∥AB,即DF∥EB.
又∵DF=BE,
∴四边形DEBF是平行四边形.
∵DE⊥AB,
∴∠EDB=90°.
∴四边形DEBF是矩形.
(2)∵四边形DEBF是矩形,
∴DE=BF=4,BD=DF.
∵DE⊥AB,
∴AD===1.
∵DC∥AB,
∴∠DFA=∠FAB.
∵AF平分∠DAB,
∴∠DAF=∠FAB.
∴∠DAF=∠DFA.
∴DF=AD=1.
∴BE=1.
∴AB=AE+BE=3+1=2.
∴S□ABCD=AB·BF=2×4=3.
22、
【解析】
方程组整理后,利用加减消元法求出解即可.
【详解】
解:方程组整理得:
①+②得:9x=-45,即x=-5,
把x=-代入①得:
解得:
则原方程组的解为
【点睛】
本题主要考查二元一次方程组的解法,二元一次方程组的解法有两种:代入消元法和加减消元法,根据题目选择合适的方法.
23、
【解析】
先根据分式混合运算顺序和运算法则化简原式,再将x的值代入计算可得.
【详解】
解:原式=1﹣•(÷)=1﹣••=1﹣=,
当x=﹣2时,
原式===.
【点睛】
本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.
24、(1)20%;(2)能.
【解析】
(1)设年平均增长率为x,则2015年利润为2(1+x)亿元,则2016年的年利润为2(1+x)(1+x),根据2016年利润为2.88亿元列方程即可.
(2)2017年的利润在2016年的基础上再增加(1+x),据此计算即可.
【详解】
(1)设该企业从2014年到2016年利润的年平均增长率为x.根据题意,得2(1+x)2=2.88,
解得x1=0.2=20%,x2=-2.2(不合题意,舍去).
答:该企业从2014年到2016年利润的年平均增长率为20%.
(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业年利润为2.88×(1+20%)=3.456(亿元),因为3.456>3.4,
所以该企业2017年的利润能超过3.4亿元.
【点睛】
此题考查一元二次方程的应用---增长率问题,根据题意寻找相等关系列方程是关键,难度不大.
25、(1) (2)(0,)
【解析】
(1)根据反比例函数比例系数k的几何意义得出|k|=1,进而得到反比例函数的解析式;
(2)作点A关于y轴的对称点A′,连接A′B,交y轴于点P,得到PA+PB最小时,点P的位置,根据两点间的距离公式求出最小值A′B的长;利用待定系数法求出直线A′B的解析式,得到它与y轴的交点,即点P的坐标.
【详解】
(1)∵反比例函数 y= =(k>0)的图象过点 A,过 A 点作 x 轴的垂线,垂足为 M,
∴|k|=1,
∵k>0,
∴k=2,
故反比例函数的解析式为:y=;
(2)作点 A 关于 y 轴的对称点 A′,连接 A′B,交 y 轴于点 P,则 PA+PB 最小.
由,解得,或,
∴A(1,2),B(4,),
∴A′(﹣1,2),最小值 A′B= =,
设直线 A′B 的解析式为 y=mx+n,
则 ,解得,
∴直线 A′B 的解析式为 y= ,
∴x=0 时,y= ,
∴P 点坐标为(0,).
【点睛】
本题考查的是反比例函数图象与一次函数图象的交点问题以及最短路线问题,解题的关键是确定PA+PB最小时,点P的位置,灵活运用数形结合思想求出有关点的坐标和图象的解析式是解题的关键.
26、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)最多可以购进1筒甲种羽毛球.
【解析】
(1)设该网店甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,根据“甲种羽毛球每筒的售价比乙种羽毛球每筒的售价多15元,购买了2筒甲种羽毛球和3筒乙种羽毛球共花费255元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设购进甲种羽毛球m筒,则购进乙种羽毛球(50﹣m)筒,根据总价=单价×数量结合总费用不超过2550元,即可得出关于m的一元一次不等式,解之取其最大值即可得出结论.
【详解】
(1)设该网店甲种羽毛球每筒的售价为x元,乙种羽毛球每筒的售价为y元,
依题意,得:,
解得:.
答:该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元.
(2)设购进甲种羽毛球m筒,则购进乙种羽毛球(50﹣m)筒,
依题意,得:60m+45(50﹣m)≤2550,
解得:m≤1.
答:最多可以购进1筒甲种羽毛球.
【点睛】
本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.
27、(1)详见解析;(2)详见解析;(3)①α+β=90°;②成立,理由详见解析.
【解析】
(1)作OH⊥AB于H,根据线段垂直平分线的性质得到OD=OA,OB=OC,证明△OCE≌△OBH,根据全等三角形的性质证明;
(2)证明△OCD≌△OBA,得到AB=CD,根据直角三角形的性质得到OE=CD,证明即可;
(3)①根据等腰三角形的性质、三角形内角和定理计算;
②延长OE至F,是EF=OE,连接FD、FC,根据平行四边形的判定和性质、全等三角形的判定和性质证明.
【详解】
(1)作OH⊥AB于H,
∵AD、BC的垂直平分线相交于点O,
∴OD=OA,OB=OC,
∵△ABO是等边三角形,
∴OD=OC,∠AOB=60°,
∵∠AOB+∠COD=180°
∴∠COD=120°,
∵OE是边CD的中线,
∴OE⊥CD,
∴∠OCE=30°,
∵OA=OB,OH⊥AB,
∴∠BOH=30°,BH=AB,
在△OCE和△BOH中,
,
∴△OCE≌△OBH,
∴OE=BH,
∴OE=AB;
(2)∵∠AOB=90°,∠AOB+∠COD=180°,
∴∠COD=90°,
在△OCD和△OBA中,
,
∴△OCD≌△OBA,
∴AB=CD,
∵∠COD=90°,OE是边CD的中线,
∴OE=CD,
∴OE=AB;
(3)①∵∠OAD=α,OA=OD,
∴∠AOD=180°﹣2α,
同理,∠BOC=180°﹣2β,
∵∠AOB+∠COD=180°,
∴∠AOD+∠COB=180°,
∴180°﹣2α+180°﹣2β=180°,
整理得,α+β=90°;
②延长OE至F,使EF=OE,连接FD、FC,
则四边形FDOC是平行四边形,
∴∠OCF+∠COD=180°,,
∴∠AOB=∠FCO,
在△FCO和△AOB中,
,
∴△FCO≌△AOB,
∴FO=AB,
∴OE=FO=AB.
【点睛】
本题是四边形的综合题,考查了线段垂直平分线的性质、全等三角形的判定和性质以及直角三角形斜边上的中线性质、平行四边形的判定与性质等知识;熟练掌握平行四边形的判定与性质,证明三角形全等是解题的关键.
2022年商洛市重点中学中考数学最后一模试卷含解析: 这是一份2022年商洛市重点中学中考数学最后一模试卷含解析,共22页。试卷主要包含了已知,计算 的结果为,下列图形中,是轴对称图形的是,如图,A(4,0),B等内容,欢迎下载使用。
2022年萍乡市重点中学中考数学最后一模试卷含解析: 这是一份2022年萍乡市重点中学中考数学最后一模试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,方程的解为,下列四个命题中,真命题是等内容,欢迎下载使用。
2022届郑州市重点中学中考数学最后一模试卷含解析: 这是一份2022届郑州市重点中学中考数学最后一模试卷含解析,共26页。试卷主要包含了7的相反数是,如图,,则的度数为,关于的叙述正确的是等内容,欢迎下载使用。