2022届广西河池市十校联考最后数学试题含解析
展开
这是一份2022届广西河池市十校联考最后数学试题含解析,共19页。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,已知点A,B分别是反比例函数y=(x<0),y=(x>0)的图象上的点,且∠AOB=90°,tan∠BAO=,则k的值为( )
A.2 B.﹣2 C.4 D.﹣4
2.下列运算正确的是( )
A.(a﹣3)2=a2﹣9 B.()﹣1=2 C.x+y=xy D.x6÷x2=x3
3.反比例函数y=的图象如图所示,以下结论:①常数m<﹣1;②在每个象限内,y随x的增大而增大;③若点A(﹣1,h),B(2,k)在图象上,则h<k;④若点P(x,y)在上,则点P′(﹣x,﹣y)也在图象.其中正确结论的个数是( )
A.1 B.2 C.3 D.4
4.中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为( )
A.0.96×107 B.9.6×106 C.96×105 D.9.6×102
5.如图,二次函数y=ax1+bx+c(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点C,对称轴为直线x=1,且OA=OC.则下列结论:①abc>0;②9a+3b+c>0;③c>﹣1;④关于x的方程ax1+bx+c=0(a≠0)有一个根为﹣;⑤抛物线上有两点P(x1,y1)和Q(x1,y1),若x1<1<x1,且x1+x1>4,则y1>y1.其中正确的结论有( )
A.1个 B.3个 C.4个 D.5个
6.如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在点A下方,点E是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为( )
A.3 B.4﹣ C.4 D.6﹣2
7.点M(a,2a)在反比例函数y=的图象上,那么a的值是( )
A.4 B.﹣4 C.2 D.±2
8.如图,已知射线OM,以O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,那么∠AOB的度数是( )
A.90° B.60° C.45° D.30°
9.在△ABC中,∠C=90°,sinA=,则tanB等于( )
A. B.
C. D.
10.将不等式组的解集在数轴上表示,下列表示中正确的是( )
A. B. C. D.
二、填空题(本大题共6个小题,每小题3分,共18分)
11.若反比例函数y=的图象在每一个象限中,y随着x的增大而减小,则m的取值范围是_____.
12.下列说法正确的是_____.(请直接填写序号)
①“若a>b,则>.”是真命题.②六边形的内角和是其外角和的2倍.③函数y= 的自变量的取值范围是x≥﹣1.④三角形的中位线平行于第三边,并且等于第三边的一半.⑤正方形既是轴对称图形,又是中心对称图形.
13.计算的结果是______.
14.从1,2,3,4,5,6,7,8这八个数中,任意抽取一个数,这个数恰好是合数的概率是__________.
15.比较大小:4 (填入“>”或“<”号)
16.如图,在平面直角坐标系xOy中,点A的坐标为A(1,0),等腰直角三角形ABC的边AB在x轴的正半轴上,∠ABC=90°,点B在点A的右侧,点C在第一象限。将△ABC绕点A逆时针旋转75°,如果点C的对应点E恰好落在y轴的正半轴上,那么边AB的长为____.
三、解答题(共8题,共72分)
17.(8分)学校决定从甲、乙两名同学中选拔一人参加“诵读经典”大赛,在相同的测试条件下,甲、乙两人5次测试成绩(单位:分)如下:
甲:79,86,82,85,83.
乙:88,81,85,81,80.
请回答下列问题:甲成绩的中位数是______,乙成绩的众数是______;经计算知,.请你求出甲的方差,并从平均数和方差的角度推荐参加比赛的合适人选.
18.(8分)为响应国家的“一带一路”经济发展战略,树立品牌意识,我市质检部门对A、B、C、D四个厂家生产的同种型号的零件共2000件进行合格率检测,通过检测得出C厂家的合格率为95%,并根据检测数据绘制了如图1、图2两幅不完整的统计图.抽查D厂家的零件为 件,扇形统计图中D厂家对应的圆心角为 ;抽查C厂家的合格零件为 件,并将图1补充完整;通过计算说明合格率排在前两名的是哪两个厂家;若要从A、B、C、D四个厂家中,随机抽取两个厂家参加德国工业产品博览会,请用“列表法”或“画树形图”的方法求出(3)中两个厂家同时被选中的概率.
19.(8分)许昌文峰塔又称文明寺塔,为全国重点文物保护单位,某校初三数学兴趣小组的同学想要利用学过的知识测量文峰塔的高度,他们找来了测角仪和卷尺,在点A处测得塔顶C的仰角为30°,向塔的方向移动60米后到达点B,再次测得塔顶C的仰角为60°,试通过计算求出文峰塔的高度CD.(结果保留两位小数)
20.(8分)如图,四边形ABCD的四个顶点分别在反比例函数y=与y=(x>0,0<m<n)的图象上,对角线BD∥y轴,且BD⊥AC于点P.已知点B的横坐标为1.
(1)当m=1,n=20时.
①若点P的纵坐标为2,求直线AB的函数表达式.
②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.
(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.
21.(8分)讲授“轴对称”时,八年级教师设计了如下:四种教学方法:
① 教师讲,学生听
② 教师让学生自己做
③ 教师引导学生画图发现规律
④ 教师让学生对折纸,观察发现规律,然后画图
为调查教学效果,八年级教师将上述教学方法作为调研内容发到全年级8个班420名同学手中,要求每位同学选出自己最喜欢的一种.他随机抽取了60名学生的调查问卷,统计如图
(1) 请将条形统计图补充完整;
(2) 计算扇形统计图中方法③的圆心角的度数是 ;
(3) 八年级同学中最喜欢的教学方法是哪一种?选择这种教学方法的约有多少人?
22.(10分)已知a,b,c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判定△ABC的形状.
23.(12分)某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:
①该产品90天售量(n件)与时间(第x天)满足一次函数关系,部分数据如下表:
时间(第x天)
1
2
3
10
…
日销售量(n件)
198
196
194
?
…
②该产品90天内每天的销售价格与时间(第x天)的关系如下表:
时间(第x天)
1≤x<50
50≤x≤90
销售价格(元/件)
x+60
100
(1)求出第10天日销售量;
(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品的销售利润最大?最大利润是多少?(提示:每天销售利润=日销售量×(每件销售价格-每件成本))
(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.
24.计算:.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】
首先过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,易得△OBD∽△AOC,又由点A,B分别在反比例函数y= (x<0),y=(x>0)的图象上,即可得S△OBD= ,S△AOC=|k|,然后根据相似三角形面积的比等于相似比的平方,即可求出k的值
【详解】
解:过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,
∴∠ACO=∠ODB=90°,
∴∠OBD+∠BOD=90°,
∵∠AOB=90°,
∴∠BOD+∠AOC=90°,
∴∠OBD=∠AOC,
∴△OBD∽△AOC,
又∵∠AOB=90°,tan∠BAO= ,
∴=,
∴ = ,即 ,
解得k=±4,
又∵k<0,
∴k=-4,
故选:D.
【点睛】
此题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法。
2、B
【解析】
分析:根据完全平方公式、负整数指数幂,合并同类项以及同底数幂的除法的运算法则进行计算即可判断出结果.
详解:A. (a﹣3)2=a2﹣6a+9,故该选项错误;
B. ()﹣1=2,故该选项正确;
C.x与y不是同类项,不能合并,故该选项错误;
D. x6÷x2=x6-2=x4,故该选项错误.
故选B.
点睛:可不是主要考查了完全平方公式、负整数指数幂,合并同类项以及同度数幂的除法的运算,熟记它们的运算法则是解题的关键.
3、B
【解析】
根据反比例函数的图象的位置确定其比例系数的符号,利用反比例函数的性质进行判断即可.
【详解】
解:∵反比例函数的图象位于一三象限,
∴m>0
故①错误;
当反比例函数的图象位于一三象限时,在每一象限内,y随x的增大而减小,故②错误;
将A(﹣1,h),B(2,k)代入y=,得到h=﹣m,2k=m,
∵m>0
∴h<k
故③正确;
将P(x,y)代入y=得到m=xy,将P′(﹣x,﹣y)代入y=得到m=xy,
故P(x,y)在图象上,则P′(﹣x,﹣y)也在图象上
故④正确,
故选:B.
【点睛】
本题考查了反比例函数的性质,牢记反比例函数的比例系数的符号与其图象的关系是解决本题的关键.
4、B
【解析】
试题分析:“960万”用科学记数法表示为9.6×106,故选B.
考点:科学记数法—表示较大的数.
5、D
【解析】
根据抛物线的图象与系数的关系即可求出答案.
【详解】
解:由抛物线的开口可知:a<0,由抛物线与y轴的交点可知:c<0,由抛物线的对称轴可知:>0,∴b>0,∴abc>0,故①正确;
令x=3,y>0,∴9a+3b+c>0,故②正确;
∵OA=OC<1,∴c>﹣1,故③正确;
∵对称轴为直线x=1,∴﹣=1,∴b=﹣4a.
∵OA=OC=﹣c,∴当x=﹣c时,y=0,∴ac1﹣bc+c=0,∴ac﹣b+1=0,∴ac+4a+1=0,∴c=,∴设关于x的方程ax1+bx+c=0(a≠0)有一个根为x,∴x﹣c=4,∴x=c+4=,故④正确;
∵x1<1<x1,∴P、Q两点分布在对称轴的两侧,
∵1﹣x1﹣(x1﹣1)=1﹣x1﹣x1+1=4﹣(x1+x1)<0,
即x1到对称轴的距离小于x1到对称轴的距离,∴y1>y1,故⑤正确.
故选D.
【点睛】
本题考查的是二次函数图象与系数的关系,二次函数y=ax1+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定.本题属于中等题型.
6、B
【解析】
分析:首先得到当点E旋转至y轴上时DE最小,然后分别求得AD、OE′的长,最后求得DE′的长即可.
详解:如图,当点E旋转至y轴上时DE最小;
∵△ABC是等边三角形,D为BC的中点,
∴AD⊥BC
∵AB=BC=2
∴AD=AB•sin∠B=,
∵正六边形的边长等于其半径,正六边形的边长为2,
∴OE=OE′=2
∵点A的坐标为(0,6)
∴OA=6
∴DE′=OA-AD-OE′=4-
故选B.
点睛:本题考查了正多边形的计算及等边三角形的性质,解题的关键是从图形中整理出直角三角形.
7、D
【解析】
根据点M(a,2a)在反比例函数y=的图象上,可得:,然后解方程即可求解.
【详解】
因为点M(a,2a)在反比例函数y=的图象上,可得:
,
,
解得:,
故选D.
【点睛】
本题主要考查反比例函数图象的上点的特征,解决本题的关键是要熟练掌握反比例函数图象上点的特征.
8、B
【解析】
首先连接AB,由题意易证得△AOB是等边三角形,根据等边三角形的性质,可求得∠AOB的度数.
【详解】
连接AB,
根据题意得:OB=OA=AB,
∴△AOB是等边三角形,
∴∠AOB=60°.
故答案选:B.
【点睛】
本题考查了等边三角形的判定与性质,解题的关键是熟练的掌握等边三角形的判定与性质.
9、B
【解析】
法一,依题意△ABC为直角三角形,∴∠A+∠B=90°,∴cosB=,∵,∴sinB=,∵tanB==故选B
法2,依题意可设a=4,b=3,则c=5,∵tanb=故选B
10、B
【解析】
先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可.
解:不等式可化为:,即.
∴在数轴上可表示为.故选B.
“点睛”不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、m>1
【解析】
∵反比例函数的图象在其每个象限内,y随x的增大而减小,
∴>0,
解得:m>1,
故答案为m>1.
12、②④⑤
【解析】
根据不等式的性质可确定①的对错,根据多边形的内外角和可确定②的对错,根据函数自变量的取值范围可确定③的对错,根据三角形中位线的性质可确定④的对错,根据正方形的性质可确定⑤的对错.
【详解】
①“若a>b,当c<0时,则
相关试卷
这是一份广西桂林市灌阳县重点名校2022年十校联考最后数学试题含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,比较4,,的大小,正确的是,如图,,,则的大小是等内容,欢迎下载使用。
这是一份2022年鲍沟中学十校联考最后数学试题含解析,共23页。试卷主要包含了考生必须保证答题卡的整洁,下列运算,结果正确的是,若分式方程无解,则a的值为等内容,欢迎下载使用。
这是一份2022年安徽省临泉十校联考最后数学试题含解析,共23页。试卷主要包含了若a与﹣3互为倒数,则a=,已知∠BAC=45等内容,欢迎下载使用。