终身会员
搜索
    上传资料 赚现金

    2022届福建省长泰一中学、华安一中学、龙海二中学毕业升学考试模拟卷数学卷含解析

    立即下载
    加入资料篮
    2022届福建省长泰一中学、华安一中学、龙海二中学毕业升学考试模拟卷数学卷含解析第1页
    2022届福建省长泰一中学、华安一中学、龙海二中学毕业升学考试模拟卷数学卷含解析第2页
    2022届福建省长泰一中学、华安一中学、龙海二中学毕业升学考试模拟卷数学卷含解析第3页
    还剩16页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届福建省长泰一中学、华安一中学、龙海二中学毕业升学考试模拟卷数学卷含解析

    展开

    这是一份2022届福建省长泰一中学、华安一中学、龙海二中学毕业升学考试模拟卷数学卷含解析,共19页。试卷主要包含了cs30°=,我市连续7天的最高气温为等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,直线、及木条在同一平面上,将木条绕点旋转到与直线平行时,其最小旋转角为( ).

    A. B. C. D.
    2.下列事件中,属于必然事件的是( )
    A.三角形的外心到三边的距离相等
    B.某射击运动员射击一次,命中靶心
    C.任意画一个三角形,其内角和是 180°
    D.抛一枚硬币,落地后正面朝上
    3.矩形ABCD的顶点坐标分别为A(1,4)、B(1,1)、C(5,1),则点D的坐标为( )
    A.(5,5) B.(5,4) C.(6,4) D.(6,5)
    4.如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为(  )

    A.8 B.8 C.4 D.6
    5.cos30°=( )
    A. B. C. D.
    6.某几何体由若干个大小相同的小正方体搭成,其主视图与左视图如图所示,则搭成这个几何体的小正方体最少有(  )

    A.4个 B.5个 C.6个 D.7个
    7.如图,在△ABC中,DE∥BC交AB于D,交AC于E,错误的结论是(      ).

    A. B. C. D.
    8.哥哥与弟弟的年龄和是18岁,弟弟对哥哥说:“当我的年龄是你现在年龄的时候,你就是18岁”.如果现在弟弟的年龄是x岁,哥哥的年龄是y岁,下列方程组正确的是(  )
    A. B.
    C. D.
    9.我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是( )
    A.28°,30° B.30°,28° C.31°,30° D.30°,30°
    10.如图,等腰直角三角形的顶点A、C分别在直线a、b上,若a∥b,∠1=30°,则∠2的度数为(  )

    A.30° B.15° C.10° D.20°
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.分解因式:3a2﹣12=___.
    12.为迎接文明城市的验收工作,某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是_____.
    13.在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是_____.
    14.某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.
    15.如图,在△ABC中,∠C=120°,AB=4cm,两等圆⊙A与⊙B外切,则图中两个扇形的面积之和(即阴影部分)为 cm2(结果保留π).

    16.如图,正方形ABCD中,AB=3,以B为圆心,AB长为半径画圆B,点P在圆B上移动,连接AP,并将AP绕点A逆时针旋转90°至Q,连接BQ,在点P移动过程中,BQ长度的最小值为_____.

    三、解答题(共8题,共72分)
    17.(8分)如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)

    18.(8分)为响应“学雷锋、树新风、做文明中学生”号召,某校开展了志愿者服务活动,活动项目有“戒毒宣传”、“文明交通岗”、“关爱老人”、“义务植树”、“社区服务”等五项,活动期间,随机抽取了部分学生对志愿者服务情况进行调查,结果发现,被调查的每名学生都参与了活动,最少的参与了1项,最多的参与了5项,根据调查结果绘制了如图所示不完整的折线统计图和扇形统计图.
    被随机抽取的学生共有多少名?在扇形统计图中,求活动数为3项的学生所对应的扇形圆心角的度数,并补全折线统计图;该校共有学生2000人,估计其中参与了4项或5项活动的学生共有多少人?
    19.(8分)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)

    20.(8分)瑞安市曹村镇“八百年灯会”成为温州“申遗”的宝贵项目.某公司生产了一种纪念花灯,每件纪念花灯制造成本为18元.设销售单价x(元),每日销售量y(件)每日的利润w(元).在试销过程中,每日销售量y(件)、每日的利润w(元)与销售单价x(元)之间存在一定的关系,其几组对应量如下表所示:
    (元)
    19
    20
    21
    30
    (件)
    62
    60
    58
    40
    (1)根据表中数据的规律,分别写出毎日销售量y(件),每日的利润w(元)关于销售单价x(元)之间的函数表达式.(利润=(销售单价﹣成本单价)×销售件数).当销售单价为多少元时,公司每日能够获得最大利润?最大利润是多少?根据物价局规定,这种纪念品的销售单价不得高于32元,如果公司要获得每日不低于350元的利润,那么制造这种纪念花灯每日的最低制造成本需要多少元?
    21.(8分)某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下:
    17
    18
    16
    13
    24
    15
    28
    26
    18
    19
    22
    17
    16
    19
    32
    30
    16
    14
    15
    26
    15
    32
    23
    17
    15
    15
    28
    28
    16
    19
    对这30个数据按组距3进行分组,并整理、描述和分析如下.
    频数分布表
    组别







    销售额







    频数
    7
    9
    3

    2

    2
    数据分析表
    平均数
    众数
    中位数
    20.3

    18
    请根据以上信息解答下列问题:填空:a=  ,b=  ,c=  ;若将月销售额不低于25万元确定为销售目标,则有  位营业员获得奖励;若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.
    22.(10分)如图,点是线段的中点,,.求证:.

    23.(12分)如图,安徽江淮集团某部门研制了绘图智能机器人,该机器人由机座、手臂和末端操作器三部分组成,底座直线且,手臂,末端操作器,直线.当机器人运作时,,求末端操作器节点到地面直线的距离.(结果保留根号)

    24.如图,大楼AB的高为16m,远处有一塔CD,小李在楼底A处测得塔顶D处的仰角为 60°,在楼顶B处测得塔顶D处的仰角为45°,其中A、C两点分别位于B、D两点正下方,且A、C两点在同一水平线上,求塔CD的高.(=1.73,结果保留一位小数.)




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    如图所示,过O点作a的平行线d,根据平行线的性质得到∠2=∠3,进而求出将木条c绕点O旋转到与直线a平行时的最小旋转角.
    【详解】
    如图所示,过O点作a的平行线d,∵a∥d,由两直线平行同位角相等得到∠2=∠3=50°,木条c绕O点与直线d重合时,与直线a平行,旋转角∠1+∠2=90°.故选B

    【点睛】
    本题主要考查图形的旋转与平行线,解题的关键是熟练掌握平行线的性质.
    2、C
    【解析】
    分析:必然事件就是一定发生的事件,依据定义即可作出判断.
    详解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,是不可能事件,故本选项不符合题意;
    B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;
    C、三角形的内角和是180°,是必然事件,故本选项符合题意;
    D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;
    故选C.
    点睛:解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
    3、B
    【解析】
    由矩形的性质可得AB∥CD,AB=CD,AD=BC,AD∥BC,即可求点D坐标.
    【详解】
    解:∵四边形ABCD是矩形
    ∴AB∥CD,AB=CD,AD=BC,AD∥BC,
    ∵A(1,4)、B(1,1)、C(5,1),
    ∴AB∥CD∥y轴,AD∥BC∥x轴
    ∴点D坐标为(5,4)
    故选B.
    【点睛】
    本题考查了矩形的性质,坐标与图形性质,关键是熟练掌握这些性质.
    4、D
    【解析】
    分析: 连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.
    详解: 如图,连接OB,

    ∵BE=BF,OE=OF,
    ∴BO⊥EF,
    ∴在Rt△BEO中,∠BEF+∠ABO=90°,
    由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,
    ∴∠BAC=∠ABO,
    又∵∠BEF=2∠BAC,
    即2∠BAC+∠BAC=90°,
    解得∠BAC=30°,
    ∴∠FCA=30°,
    ∴∠FBC=30°,
    ∵FC=2,
    ∴BC=2,
    ∴AC=2BC=4,
    ∴AB===6,
    故选D.
    点睛: 本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键.
    5、C
    【解析】
    直接根据特殊角的锐角三角函数值求解即可.
    【详解】

    故选C.
    【点睛】
    考点:特殊角的锐角三角函数
    点评:本题属于基础应用题,只需学生熟练掌握特殊角的锐角三角函数值,即可完成.
    6、B
    【解析】
    由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.
    【详解】由主视图和左视图可确定所需正方体个数最少时俯视图(数字为该位置小正方体的个数)为:

    则搭成这个几何体的小正方体最少有5个,
    故选B.
    【点睛】本题考查了由三视图判断几何体,根据主视图和左视图画出所需正方体个数最少的俯视图是关键.
    【详解】
    请在此输入详解!
    【点睛】
    请在此输入点睛!
    7、D
    【解析】
    根据平行线分线段成比例定理及相似三角形的判定与性质进行分析可得出结论.
    【详解】
    由DE∥BC,可得△ADE∽△ABC,并可得:
    ,,,故A,B,C正确;D错误;
    故选D.
    【点睛】
    考点:1.平行线分线段成比例;2.相似三角形的判定与性质.
    8、D
    【解析】
    试题解析:设现在弟弟的年龄是x岁,哥哥的年龄是y岁,由题意得

    故选D.
    考点:由实际问题抽象出二元一次方程组
    9、D
    【解析】
    试题分析:数据28°,27°,30°,33°,30°,30°,32°的平均数是(28+27+30+33+30+30+32)÷7=30,
    30出现了3次,出现的次数最多,则众数是30;
    故选D.
    考点:众数;算术平均数.
    10、B
    【解析】
    分析:由等腰直角三角形的性质和平行线的性质求出∠ACD=60°,即可得出∠2的度数.
    详解:如图所示:

    ∵△ABC是等腰直角三角形,
    ∴∠BAC=90°,∠ACB=45°,
    ∴∠1+∠BAC=30°+90°=120°,
    ∵a∥b,
    ∴∠ACD=180°-120°=60°,
    ∴∠2=∠ACD-∠ACB=60°-45°=15°;
    故选B.
    点睛:本题考查了平行线的性质、等腰直角三角形的性质;熟练掌握等腰直角三角形的性质,由平行线的性质求出∠ACD的度数是解决问题的关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、3(a+2)(a﹣2)
    【解析】
    要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.因此,
    3a2﹣12=3(a2﹣4)=3(a+2)(a﹣2).
    12、
    【解析】
    将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.
    【详解】
    解:将三个小区分别记为A、B、C,
    列表如下:

    A
    B
    C
    A
    (A,A)
    (B,A)
    (C,A)
    B
    (A,B)
    (B,B)
    (C,B)
    C
    (A,C)
    (B,C)
    (C,C)
    由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,
    所以两个组恰好抽到同一个小区的概率为=.
    故答案为:.
    【点睛】
    此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.
    13、
    【解析】
    根据随机事件概率大小的求法,找准两点:
    ①符合条件的情况数目;
    ②全部情况的总数.
    二者的比值就是其发生的概率的大小.
    【详解】
    解:∵在一个不透明的袋子中装有除颜色外其他均相同的3个红球和2个白球,
    ∴从中任意摸出一个球,则摸出白球的概率是.
    故答案为:.
    【点睛】
    本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=
    14、10%
    【解析】
    本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)1=1+44%,解这个方程即可求出答案.
    【详解】
    解:设这两年平均每年的绿地增长率为x,根据题意得,
    (1+x)1=1+44%,
    解得x1=-1.1(舍去),x1=0.1.
    答:这两年平均每年绿地面积的增长率为10%.
    故答案为10%
    【点睛】
    此题考查增长率的问题,一般公式为:原来的量×(1±x)1=现在的量,增长用+,减少用-.但要注意解的取舍,及每一次增长的基础.
    15、.
    【解析】
    图中阴影部分的面积就是两个扇形的面积,圆A,B的半径为2cm,则根据扇形面积公式可得阴影面积.
    【详解】
    (cm2).
    故答案为.
    考点:1、扇形的面积公式;2、两圆相外切的性质.
    16、3﹣1
    【解析】
    通过画图发现,点Q的运动路线为以D为圆心,以1为半径的圆,可知:当Q在对角线BD上时,BQ最小,先证明△PAB≌△QAD,则QD=PB=1,再利用勾股定理求对角线BD的长,则得出BQ的长.
    【详解】
    如图,当Q在对角线BD上时,BQ最小.
    连接BP,由旋转得:AP=AQ,∠PAQ=90°,∴∠PAB+∠BAQ=90°.
    ∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠BAQ+∠DAQ=90°,∴∠PAB=∠DAQ,∴△PAB≌△QAD,∴QD=PB=1.在Rt△ABD中,∵AB=AD=3,由勾股定理得:BD=,∴BQ=BD﹣QD=3﹣1,即BQ长度的最小值为(3﹣1).

    故答案为3﹣1.
    【点睛】
    本题是圆的综合题.考查了正方形的性质、旋转的性质和最小值问题,寻找点Q的运动轨迹是本题的关键,通过证明两三角形全等求出BQ长度的最小值最小值.

    三、解答题(共8题,共72分)
    17、电视塔高为米,点的铅直高度为(米).
    【解析】
    过点P作PF⊥OC,垂足为F,在Rt△OAC中利用三角函数求出OC=100,根据山坡坡度=1:2表示出PB=x, AB=2x, 在Rt△PCF中利用三角函数即可求解.
    【详解】
    过点P作PF⊥OC,垂足为F.
    在Rt△OAC中,由∠OAC=60°,OA=100,得OC=OA•tan∠OAC=100(米),
    过点P作PB⊥OA,垂足为B.
    由i=1:2,设PB=x,则AB=2x.
    ∴PF=OB=100+2x,CF=100﹣x.
    在Rt△PCF中,由∠CPF=45°,
    ∴PF=CF,即100+2x=100﹣x,
    ∴x= ,即PB=米.

    【点睛】
    本题考查了特殊的直角三角形,三角函数的实际应用,中等难度,作出辅助线构造直角三角形并熟练应用三角函数是解题关键.
    18、(1)被随机抽取的学生共有50人;(2)活动数为3项的学生所对应的扇形圆心角为72°,(3)参与了4项或5项活动的学生共有720人.
    【解析】
    分析:(1)利用活动数为2项的学生的数量以及百分比,即可得到被随机抽取的学生数;
    (2)利用活动数为3项的学生数,即可得到对应的扇形圆心角的度数,利用活动数为5项的学生数,即可补全折线统计图;
    (3)利用参与了4项或5项活动的学生所占的百分比,即可得到全校参与了4项或5项活动的学生总数.
    详解:(1)被随机抽取的学生共有14÷28%=50(人);
    (2)活动数为3项的学生所对应的扇形圆心角=×360°=72°,
    活动数为5项的学生为:50﹣8﹣14﹣10﹣12=6,
    如图所示:

    (3)参与了4项或5项活动的学生共有×2000=720(人).
    点睛:本题主要考查折线统计图与扇形统计图及概率公式,根据折线统计图和扇形统计图得出解题所需的数据是解题的关键.
    19、(1)证明见解析;(2)四边形EFGH是菱形,证明见解析;(3)四边形EFGH是正方形.
    【解析】
    (1)如图1中,连接BD,根据三角形中位线定理只要证明EH∥FG,EH=FG即可.
    (2)四边形EFGH是菱形.先证明△APC≌△BPD,得到AC=BD,再证明EF=FG即可.
    (3)四边形EFGH是正方形,只要证明∠EHG=90°,利用△APC≌△BPD,得∠ACP=∠BDP,即可证明∠COD=∠CPD=90°,再根据平行线的性质即可证明.
    【详解】
    (1)证明:如图1中,连接BD.
    ∵点E,H分别为边AB,DA的中点,
    ∴EH∥BD,EH=BD,
    ∵点F,G分别为边BC,CD的中点,
    ∴FG∥BD,FG=BD,
    ∴EH∥FG,EH=GF,
    ∴中点四边形EFGH是平行四边形.
    (2)四边形EFGH是菱形.
    证明:如图2中,连接AC,BD.
    ∵∠APB=∠CPD,
    ∴∠APB+∠APD=∠CPD+∠APD,
    即∠APC=∠BPD,
    在△APC和△BPD中,
    ∵AP=PB,∠APC=∠BPD,PC=PD,
    ∴△APC≌△BPD,
    ∴AC=BD.
    ∵点E,F,G分别为边AB,BC,CD的中点,
    ∴EF=AC,FG=BD,
    ∵四边形EFGH是平行四边形,
    ∴四边形EFGH是菱形.
    (3)四边形EFGH是正方形.
    证明:如图2中,设AC与BD交于点O.AC与PD交于点M,AC与EH交于点N.
    ∵△APC≌△BPD,
    ∴∠ACP=∠BDP,
    ∵∠DMO=∠CMP,
    ∴∠COD=∠CPD=90°,
    ∵EH∥BD,AC∥HG,
    ∴∠EHG=∠ENO=∠BOC=∠DOC=90°,
    ∵四边形EFGH是菱形,
    ∴四边形EFGH是正方形.

    考点:平行四边形的判定与性质;中点四边形.
    20、(1)y=﹣2x+100,w=﹣2x2+136x﹣1800;(2)当销售单价为34元时,每日能获得最大利润,最大利润是1元;(3)制造这种纪念花灯每日的最低制造成本需要648元.
    【解析】
    (1)观察表中数据,发现y与x之间存在一次函数关系,设y=kx+b.列方程组得到y关于x的函数表达式y=﹣2x+100,根据题意得到w=﹣2x2+136x﹣1800;
    (2)把w=﹣2x2+136x﹣1800配方得到w=﹣2(x﹣34)2+1.根据二次函数的性质即可得到结论;
    (3)根据题意列方程即可得到即可.
    【详解】
    解:(1)观察表中数据,发现y与x之间存在一次函数关系,设y=kx+b.
    则,解得,
    ∴y=﹣2x+100,
    ∴y关于x的函数表达式y=﹣2x+100,
    ∴w=(x﹣18)•y=(x﹣18)(﹣2x+100)∴w=﹣2x2+136x﹣1800;
    (2)∵w=﹣2x2+136x﹣1800=﹣2(x﹣34)2+1.
    ∴当销售单价为34元时,
    ∴每日能获得最大利润1元;
    (3)当w=350时,350=﹣2x2+136x﹣1800,
    解得x=25或43,
    由题意可得25≤x≤32,
    则当x=32时,18(﹣2x+100)=648,
    ∴制造这种纪念花灯每日的最低制造成本需要648元.
    【点睛】
    此题主要考查了二次函数的应用,根据已知得出函数关系式.
    21、 (1) 众数为15;(2) 3,4,15;8;(3) 月销售额定为18万,有一半左右的营业员能达到销售目标.
    【解析】
    根据数据可得到落在第四组、第六组的个数分别为3个、4个,所以a=3,b=4,再根据数据可得15出现了5次,出现次数最多,所以众数c=15;
    从频数分布表中可以看出月销售额不低于25万元的营业员有8个,所以本小题答案为:8;
    本题是考查中位数的知识,根据中位数可以让一半左右的营业员达到销售目标.
    【详解】
    解:(1)在范围内的数据有3个,在范围内的数据有4个,
    15出现的次数最大,则众数为15;
    (2)月销售额不低于25万元为后面三组数据,即有8位营业员获得奖励;
    故答案为3,4,15;8;
    (3)想让一半左右的营业员都能达到销售目标,我认为月销售额定为18万合适.
    因为中位数为18,即大于18与小于18的人数一样多,
    所以月销售额定为18万,有一半左右的营业员能达到销售目标.
    【点睛】
    本题考査了对样本数据进行分析的相关知识,考查了频数分布表、平均数、众数和中位数的知识,解题关键是根据数据整理成频数分布表,会求数据的平均数、众数、中位数.并利用中位数的意义解决实际问题.
    22、详见解析
    【解析】
    利用 证明 即可解决问题.
    【详解】

    证明:∵是线段的中点



    在和中,

    ∴≌

    【点睛】
    本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形的全等的条件,属于中考常考题型.
    23、()cm.
    【解析】
    作BG⊥CD,垂足为G,BH⊥AF,垂足为H,解和,分别求出CG和BH的长,根据D到L的距离求解即可.
    【详解】
    如图,作BG⊥CD,垂足为G,BH⊥AF,垂足为H,

    在中,∠BCD=60°,BC=60cm,
    ∴,
    在中,∠BAF=45°,AB=60cm,
    ∴,
    ∴D到L的距离.
    【点睛】
    本题考查解直角三角形,解题的关键是构造出适当辅助线,从而利用锐角三角函数的定义求出相关线段.
    24、塔CD的高度为37.9米
    【解析】
    试题分析:首先分析图形,根据题意构造直角三角形.本题涉及两个直角三角形,即Rt△BED和Rt△DAC,利用已知角的正切分别计算,可得到一个关于AC的方程,从而求出DC.
    试题解析:作BE⊥CD于E.
    可得Rt△BED和矩形ACEB.
    则有CE=AB=16,AC=BE.
    在Rt△BED中,∠DBE=45°,DE=BE=AC.
    在Rt△DAC中,∠DAC=60°,DC=ACtan60°=AC.
    ∵16+DE=DC,
    ∴16+AC=AC,
    解得:AC=8+8=DE.
    所以塔CD的高度为(8+24)米≈37.9米,
    答:塔CD的高度为37.9米.


    相关试卷

    福建省长泰一中学、华安一中学、龙海二中学2022-2023学年中考数学模拟试题含解析:

    这是一份福建省长泰一中学、华安一中学、龙海二中学2022-2023学年中考数学模拟试题含解析,共16页。

    福建省长泰一中学、华安一中学、龙海二中学2022年中考押题数学预测卷含解析:

    这是一份福建省长泰一中学、华安一中学、龙海二中学2022年中考押题数学预测卷含解析,共17页。试卷主要包含了在中,,,,则的值是等内容,欢迎下载使用。

    福建省长泰一中学、华安一中学、龙海二中学2022年中考考前最后一卷数学试卷含解析:

    这是一份福建省长泰一中学、华安一中学、龙海二中学2022年中考考前最后一卷数学试卷含解析,共21页。试卷主要包含了答题时请按要求用笔,估计的值在等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map