2022届北京市师范大附属中学中考试题猜想数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b>0;③b2﹣4ac>0;④a﹣b+c>0,其中正确的个数是( )
A.1 B.2 C.3 D.4
2.如图,抛物线y=ax2+bx+c与x轴交于点A(-1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②-1≤a≤-;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n-1有两个不相等的实数根.其中结论正确的个数为( )
A.1个 B.2个 C.3个 D.4个
3.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是( )
A.主视图 B.俯视图 C.左视图 D.一样大
4.下列各数:π,sin30°,﹣ ,其中无理数的个数是( )
A.1个 B.2个 C.3个 D.4个
5.在平面直角坐标系中,正方形A1B1C1D1、D1 E1E2B2、A2B2 C2D2、D2E3E4B3…按如图所示的方式放置,其中点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3…在x轴上,已知正方形A1B1C1D1的边长为l,∠B1C1O=60°,B1C1∥B2C2∥B3C3…,则正方形A2017B2017C2017 D2017的边长是( )
A.()2016 B.()2017 C.()2016 D.()2017
6.如图,在四边形ABCD中,对角线 AC⊥BD,垂足为O,点E、F、G、H分别为边AD、AB、BC、CD的中点.若AC=10,BD=6,则四边形EFGH的面积为( )
A.20 B.15 C.30 D.60
7.一个正比例函数的图象过点(2,﹣3),它的表达式为( )
A. B. C. D.
8.某校对初中学生开展的四项课外活动进行了一次抽样调查(每人只参加其中的一项活动),调查结果如图所示,根据图形所提供的样本数据,可得学生参加科技活动的频率是( )
A.0.15 B.0.2 C.0.25 D.0.3
9.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为( )
A.90° B.120° C.270° D.360°
10.已知空气的单位体积质量是0.001239g/cm3,则用科学记数法表示该数为( )
A.1.239×10﹣3g/cm3 B.1.239×10﹣2g/cm3
C.0.1239×10﹣2g/cm3 D.12.39×10﹣4g/cm3
11.在一次数学答题比赛中,五位同学答对题目的个数分别为7,5,3,5,10,则关于这组数据的说法不正确的是( )
A.众数是5 B.中位数是5 C.平均数是6 D.方差是3.6
12.方程x2﹣3x+2=0的解是( )
A.x1=1,x2=2 B.x1=﹣1,x2=﹣2
C.x1=1,x2=﹣2 D.x1=﹣1,x2=2
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为______元.
14.分解因式:x2–4x+4=__________.
15.分解因式:x2-9=_ ▲ .
16.如图,将三角形AOC绕点O顺时针旋转120°得三角形BOD,已知OA=4,OC=1,那么图中阴影部分的面积为_____.(结果保留π)
17.如图,已知的半径为2,内接于,,则__________.
18.如图,A,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接CA,CB,分别延长到点M,N,使AM=AC,BN=BC,测得MN=200m,则A,B间的距离为_____m.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)规定:不相交的两个函数图象在竖直方向上的最短距离为这两个函数的“亲近距离”
(1)求抛物线y=x2﹣2x+3与x轴的“亲近距离”;
(2)在探究问题:求抛物线y=x2﹣2x+3与直线y=x﹣1的“亲近距离”的过程中,有人提出:过抛物线的顶点向x轴作垂线与直线相交,则该问题的“亲近距离”一定是抛物线顶点与交点之间的距离,你同意他的看法吗?请说明理由.
(3)若抛物线y=x2﹣2x+3与抛物线y=+c的“亲近距离”为,求c的值.
20.(6分)如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.
21.(6分)(2016湖南省株洲市)某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A等.
(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?
(2)某同学测试成绩为70分,他的综合评价得分有可能达到A等吗?为什么?
(3)如果一个同学综合评价要达到A等,他的测试成绩至少要多少分?
22.(8分)如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,连接AP,交CD于点M,若∠ACD=110°,求∠CMA的度数______.
23.(8分)解方程:-=1
24.(10分)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.
请补全条形统计图;若该校共有志愿者600人,则该校九年级大约有多少志愿者?
25.(10分)观察下列等式:
第1个等式:a1=-1,
第2个等式:a2=,
第3个等式:a3==2-,
第4个等式:a4=-2,
…
按上述规律,回答以下问题:请写出第n个等式:an=__________.a1+a2+a3+…+an=_________.
26.(12分)已知在梯形ABCD中,AD∥BC,AB=BC,DC⊥BC,且AD=1,DC=3,点P为边AB上一动点,以P为圆心,BP为半径的圆交边BC于点Q.
(1)求AB的长;
(2)当BQ的长为时,请通过计算说明圆P与直线DC的位置关系.
27.(12分)问题探究
(1)如图①,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,则线段BE、EF、FD之间的数量关系为 ;
(2)如图②,在△ADC中,AD=2,CD=4,∠ADC是一个不固定的角,以AC为边向△ADC的另一侧作等边△ABC,连接BD,则BD的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由;
问题解决
(3)如图③,在四边形ABCD中,AB=AD,∠BAD=60°,BC=4,若BD⊥CD,垂足为点D,则对角线AC的长是否存在最大值?若存在,请求出其最大值;若不存在,请说明理由.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
由抛物线的对称轴的位置判断ab的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
【详解】
①∵抛物线对称轴是y轴的右侧,
∴ab<0,
∵与y轴交于负半轴,
∴c<0,
∴abc>0,
故①正确;
②∵a>0,x=﹣<1,
∴﹣b<2a,
∴2a+b>0,
故②正确;
③∵抛物线与x轴有两个交点,
∴b2﹣4ac>0,
故③正确;
④当x=﹣1时,y>0,
∴a﹣b+c>0,
故④正确.
故选D.
【点睛】
本题主要考查了图象与二次函数系数之间的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴和抛物线与y轴的交点、抛物线与x轴交点的个数确定.
2、D
【解析】
利用抛物线开口方向得到a<0,再由抛物线的对称轴方程得到b=-2a,则3a+b=a,于是可对①进行判断;利用2≤c≤3和c=-3a可对②进行判断;利用二次函数的性质可对③进行判断;根据抛物线y=ax2+bx+c与直线y=n-1有两个交点可对④进行判断.
【详解】
∵抛物线开口向下,
∴a<0,
而抛物线的对称轴为直线x=-=1,即b=-2a,
∴3a+b=3a-2a=a<0,所以①正确;
∵2≤c≤3,
而c=-3a,
∴2≤-3a≤3,
∴-1≤a≤-,所以②正确;
∵抛物线的顶点坐标(1,n),
∴x=1时,二次函数值有最大值n,
∴a+b+c≥am2+bm+c,
即a+b≥am2+bm,所以③正确;
∵抛物线的顶点坐标(1,n),
∴抛物线y=ax2+bx+c与直线y=n-1有两个交点,
∴关于x的方程ax2+bx+c=n-1有两个不相等的实数根,所以④正确.
故选D.
【点睛】
本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左; 当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.
3、C
【解析】
如图,该几何体主视图是由5个小正方形组成,
左视图是由3个小正方形组成,
俯视图是由5个小正方形组成,
故三种视图面积最小的是左视图,
故选C.
4、B
【解析】
根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数即可.
【详解】
sin30°=,=3,故无理数有π,-,
故选:B.
【点睛】
本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.
5、C
【解析】
利用正方形的性质结合锐角三角函数关系得出正方形的边长,进而得出变化规律即可得出答案.
解:如图所示:∵正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3…
∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,
∴D1E1=C1D1sin30°=,则B2C2===()1,
同理可得:B3C3==()2,
故正方形AnBnCnDn的边长是:()n﹣1.
则正方形A2017B2017C2017D2017的边长是:()2.
故选C.
“点睛”此题主要考查了正方形的性质以及锐角三角函数关系,得出正方形的边长变化规律是解题关键.
6、B
【解析】
有一个角是直角的平行四边形是矩形.利用中位线定理可得出四边形EFGH是矩形,根据矩形的面积公式解答即可.
【详解】
∵点E、F分别为四边形ABCD的边AD、AB的中点,
∴EF∥BD,且EF=BD=1.
同理求得EH∥AC∥GF,且EH=GF=AC=5,
又∵AC⊥BD,
∴EF∥GH,FG∥HE且EF⊥FG.
四边形EFGH是矩形.
∴四边形EFGH的面积=EF•EH=1×5=2,即四边形EFGH的面积是2.
故选B.
【点睛】
本题考查的是中点四边形.解题时,利用了矩形的判定以及矩形的定理,矩形的判定定理有:
(1)有一个角是直角的平行四边形是矩形;
(2)有三个角是直角的四边形是矩形;
(1)对角线互相平分且相等的四边形是矩形.
7、A
【解析】
利用待定系数法即可求解.
【详解】
设函数的解析式是y=kx,
根据题意得:2k=﹣3,解得:k=.
∴ 函数的解析式是:.
故选A.
8、B
【解析】
读图可知:参加课外活动的人数共有(15+30+20+35)=100人,
其中参加科技活动的有20人,所以参加科技活动的频率是=0.2,
故选B.
9、B
【解析】
先根据图中是三个等边三角形可知三角形各内角等于60°,用∠1,∠2,∠3表示出△ABC各角的度数,再根据三角形内角和定理即可得出结论.
【详解】
∵图中是三个等边三角形,∠3=60°,
∴∠ABC=180°-60°-60°=60°,∠ACB=180°-60°-∠2=120°-∠2,
∠BAC=180°-60°-∠1=120°-∠1,
∵∠ABC+∠ACB+∠BAC=180°,
∴60°+(120°-∠2)+(120°-∠1)=180°,
∴∠1+∠2=120°.
故选B.
【点睛】
考查的是等边三角形的性质,熟知等边三角形各内角均等于60°是解答此题的关键.
10、A
【解析】
试题分析:0.001219=1.219×10﹣1.故选A.
考点:科学记数法—表示较小的数.
11、D
【解析】
根据平均数、中位数、众数以及方差的定义判断各选项正误即可.
【详解】
A、数据中5出现2次,所以众数为5,此选项正确;
B、数据重新排列为3、5、5、7、10,则中位数为5,此选项正确;
C、平均数为(7+5+3+5+10)÷5=6,此选项正确;
D、方差为×[(7﹣6)2+(5﹣6)2×2+(3﹣6)2+(10﹣6)2]=5.6,此选项错误;
故选:D.
【点睛】
本题主要考查了方差、平均数、中位数以及众数的知识,解答本题的关键是熟练掌握各个知识点的定义以及计算公式,此题难度不大.
12、A
【解析】
将方程左边的多项式利用十字相乘法分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.
【详解】
解:原方程可化为:(x﹣1)(x﹣1)=0,
∴x1=1,x1=1.
故选:A.
【点睛】
此题考查了解一元二次方程-因式分解法,利用此方法解方程时首先将方程右边化为0,左边的多项式分解因式化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、3
【解析】
试题分析:设最大利润为w元,则w=(x﹣30)(30﹣x)=﹣(x﹣3)3+3,∵30≤x≤30,∴当x=3时,二次函数有最大值3,故答案为3.
考点:3.二次函数的应用;3.销售问题.
14、(x–1)1
【解析】
试题分析:直接用完全平方公式分解即可,即x1﹣4x+4=(x﹣1)1.
考点:分解因式.
15、 (x+3)(x-3)
【解析】
x2-9=(x+3)(x-3),
故答案为(x+3)(x-3).
16、5π
【解析】
根据旋转的性质可以得到阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积,利用扇形的面积公式计算即可求解.
【详解】
∵△AOC≌△BOD,∴阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积5π.
故答案为:5π.
【点睛】
本题考查了旋转的性质以及扇形的面积公式,正确理解:阴影部分的面积=扇形OAB的面积﹣扇形OCD的面积是解题的关键.
17、
【解析】
分析:根据圆内接四边形对边互补和同弧所对的圆心角是圆周角的二倍,可以求得∠AOB的度数,然后根据勾股定理即可求得AB的长.
详解:连接AD、AE、OA、OB,
∵⊙O的半径为2,△ABC内接于⊙O,∠ACB=135°,
∴∠ADB=45°,
∴∠AOB=90°,
∵OA=OB=2,
∴AB=2,
故答案为:2.
点睛:本题考查三角形的外接圆和外心,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
18、1
【解析】
∵AM=AC,BN=BC,∴AB是△ABC的中位线,
∴AB=MN=1m,
故答案为1.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)2;(2)不同意他的看法,理由详见解析;(3)c=1.
【解析】
(1)把y=x2﹣2x+3配成顶点式得到抛物线上的点到x轴的最短距离,然后根据题意解决问题;
(2)如图,P点为抛物线y=x2﹣2x+3任意一点,作PQ∥y轴交直线y=x﹣1于Q,设P(t,t2﹣2t+3),则Q(t,t﹣1),则PQ=t2﹣2t+3﹣(t﹣1),然后利用二次函数的性质得到抛物线y=x2﹣2x+3与直线y=x﹣1的“亲近距离”,然后对他的看法进行判断;
(3)M点为抛物线y=x2﹣2x+3任意一点,作MN∥y轴交抛物线于N,设M(t,t2﹣2t+3),则N(t,t2+c),与(2)方法一样得到MN的最小值为﹣c,从而得到抛物线y=x2﹣2x+3与抛物线的“亲近距离”,所以,然后解方程即可.
【详解】
(1)∵y=x2﹣2x+3=(x﹣1)2+2,
∴抛物线上的点到x轴的最短距离为2,
∴抛物线y=x2﹣2x+3与x轴的“亲近距离”为:2;
(2)不同意他的看法.理由如下:
如图,P点为抛物线y=x2﹣2x+3任意一点,作PQ∥y轴交直线y=x﹣1于Q,
设P(t,t2﹣2t+3),则Q(t,t﹣1),
∴PQ=t2﹣2t+3﹣(t﹣1)=t2﹣3t+4=(t﹣)2+,
当t=时,PQ有最小值,最小值为,
∴抛物线y=x2﹣2x+3与直线y=x﹣1的“亲近距离”为,
而过抛物线的顶点向x轴作垂线与直线相交,抛物线顶点与交点之间的距离为2,
∴不同意他的看法;
(3)M点为抛物线y=x2﹣2x+3任意一点,作MN∥y轴交抛物线于N,
设M(t,t2﹣2t+3),则N(t,t2+c),
∴MN=t2﹣2t+3﹣(t2+c)=t2﹣2t+3﹣c=(t﹣)2+﹣c,
当t=时,MN有最小值,最小值为﹣c,
∴抛物线y=x2﹣2x+3与抛物线的“亲近距离”为﹣c,
∴,
∴c=1.
【点睛】
本题是二次函数的综合题,考查了二次函数图象上点的坐标特征和二次函数的性质,正确理解新定义是解题的关键.
20、证明见试题解析.
【解析】
试题分析:首先根据∠ACD=∠BCE得出∠ACB=∠DCE,结合已知条件利用SAS判定△ABC和△DEC全等,从而得出答案.
试题解析:∵∠ACD=∠BCE ∴∠ACB=∠DCE 又∵AC=DC BC=EC ∴△ABC≌△DEC ∴∠A=∠D
考点:三角形全等的证明
21、(1)孔明同学测试成绩位90分,平时成绩为95分;(2)不可能;(3)他的测试成绩应该至少为1分.
【解析】
试题分析:(1)分别利用孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,分别得出等式求出答案;
(2)利用测试成绩占80%,平时成绩占20%,进而得出答案;
(3)首先假设平时成绩为满分,进而得出不等式,求出测试成绩的最小值.
试题解析:(1)设孔明同学测试成绩为x分,平时成绩为y分,依题意得:,解之得:.
答:孔明同学测试成绩位90分,平时成绩为95分;
(2)由题意可得:80﹣70×80%=24,24÷20%=120>100,故不可能.
(3)设平时成绩为满分,即100分,综合成绩为100×20%=20,设测试成绩为a分,根据题意可得:20+80%a≥80,解得:a≥1.
答:他的测试成绩应该至少为1分.
考点:一元一次不等式的应用;二元一次方程组的应用.
22、∠CMA =35°.
【解析】
根据两直线平行,同旁内角互补得出,再根据是的平分线,即可得出的度数,再由两直线平行,内错角相等即可得出结论.
【详解】
∵AB∥CD,∴∠ACD+∠CAB=180°.
又∵∠ACD=110°,∴∠CAB=70°,由作法知,是的平分线,∴.
又∵AB∥CD,∴∠CMA=∠BAM=35°.
【点睛】
本题考查了角平分线的作法和意义,平行线的性质等知识解决问题.解题时注意:两直线平行,内错角相等.
23、
【解析】
【分析】先去分母,把分式方程化为一元一次方程,解一元一次方程,再验根.
【详解】解:去分母得:
解得:
检验:把代入
所以:方程的解为
【点睛】本题考核知识点:解方式方程. 解题关键点:去分母,得到一元一次方程,.验根是要点.
24、(1)作图见解析;(2)1.
【解析】
试题分析:(1)根据百分比=计算即可解决问题,求出八年级、九年级、被抽到的志愿者人数画出条形图即可;
(2)用样本估计总体的思想,即可解决问题;
试题解析:解:(1)由题意总人数=20÷40%=50人,八年级被抽到的志愿者:50×30%=15人
九年级被抽到的志愿者:50×20%=10人,条形图如图所示:
(2)该校共有志愿者600人,则该校九年级大约有600×20%=1人.
答:该校九年级大约有1名志愿者.
25、(1)=; (2).
【解析】
(1)根据题意可知,,,,
,…由此得出第n个等式:an=;
(2)将每一个等式化简即可求得答案.
【详解】
解:(1)∵第1个等式:,
第2个等式:,
第3个等式:,
第4个等式:,
∴第n个等式:an=;
(2)a1+a2+a3+…+an
=(
=.
故答案为;.
【点睛】
此题考查数字的变化规律以及分母有理化,要求学生首先分析题意,找到规律,并进行推导得出答案.
26、(1)AB长为5;(2)圆P与直线DC相切,理由详见解析.
【解析】
(1)过A作AE⊥BC于E,根据矩形的性质得到CE=AD=1,AE=CD=3,根据勾股定理即可得到结论;
(2)过P作PF⊥BQ于F,根据相似三角形的性质得到PB=,得到PA=AB-PB=,过P作PG⊥CD于G交AE于M,根据相似三角形的性质得到PM=,根据切线的判定定理即可得到结论.
【详解】
(1)过A作AE⊥BC于E,
则四边形AECD是矩形,
∴CE=AD=1,AE=CD=3,
∵AB=BC,
∴BE=AB-1,
在Rt△ABE中,∵AB2=AE2+BE2,
∴AB2=32+(AB-1)2,
解得:AB=5;
(2)过P作PF⊥BQ于F,
∴BF=BQ=,
∴△PBF∽△ABE,
∴,
∴,
∴PB=,
∴PA=AB-PB=,
过P作PG⊥CD于G交AE于M,
∴GM=AD=1,
∵DC⊥BC
∴PG∥BC
∴△APM∽△ABE,
∴,
∴,
∴PM=,
∴PG=PM+MG==PB,
∴圆P与直线DC相切.
【点睛】
本题考查了直线与圆的位置关系,矩形的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.
27、 (1)BE+DF=EF;(2)存在,BD的最大值为6;(3)存在,AC的最大值为2+2.
【解析】
(1)作辅助线,首先证明△ABE≌△ADG,再证明△AEF≌△AEG,进而得到EF=FG问题即可解决;
(2)将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE,由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,可得DE=BD,根据DE<DC+CE,则当D、C、E三点共线时,DE存在最大值,问题即可解决;
(3)以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,由旋转的性质得△DBE是等边三角形,则DE=AC,根据在等边三角形BCE中,EF⊥BC,可求出BF,EF,以BC为直径作⊙F,则点D在⊙F上,连接DF,可求出DF,则AC=DE≤DF+EF,代入数值即可解决问题.
【详解】
(1)如图①,延长CD至G,使得DG=BE,
∵正方形ABCD中,AB=AD,∠B=∠AFG=90°,
∴△ABE≌△ADG,
∴AE=AG,∠BAE=∠DAG,
∵∠EAF=45°,∠BAD=90°,
∴∠BAE+∠DAF=45°,
∴∠DAG+∠DAF=45°,即∠GAF=∠EAF,
又∵AF=AF,
∴△AEF≌△AEG,
∴EF=GF=DG+DF=BE+DF,
故答案为:BE+DF=EF;
(2)存在.
在等边三角形ABC中,AB=BC,∠ABC=60°,
如图②,将△ABD绕着点B顺时针旋转60°,得到△BCE,连接DE.
由旋转可得,CE=AD=2,BD=BE,∠DBE=60°,
∴△DBE是等边三角形,
∴DE=BD,
∴在△DCE中,DE<DC+CE=4+2=6,
∴当D、C、E三点共线时,DE存在最大值,且最大值为6,
∴BD的最大值为6;
(3)存在.
如图③,以BC为边作等边三角形BCE,过点E作EF⊥BC于点F,连接DE,
∵AB=BD,∠ABC=∠DBE,BC=BE,
∴△ABC≌△DBE,
∴DE=AC,
∵在等边三角形BCE中,EF⊥BC,
∴BF=BC=2,
∴EF=BF=×2=2,
以BC为直径作⊙F,则点D在⊙F上,连接DF,
∴DF=BC=×4=2,
∴AC=DE≤DF+EF=2+2,即AC的最大值为2+2.
【点睛】
本题考查了全等三角形的判定与性质以及旋转的性质,解题的关键是熟练的掌握全等三角形的判定与性质以及旋转的性质.
广东省广州市华南师范大第二附属中学2021-2022学年中考试题猜想数学试卷含解析: 这是一份广东省广州市华南师范大第二附属中学2021-2022学年中考试题猜想数学试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,如图,在平面直角坐标系中,以A等内容,欢迎下载使用。
2022届北京市首都师范大附属中学中考联考数学试卷含解析: 这是一份2022届北京市首都师范大附属中学中考联考数学试卷含解析,共23页。试卷主要包含了6的相反数为,如图1是一座立交桥的示意图,下列命题正确的是等内容,欢迎下载使用。
2021-2022学年江苏省南京师范大附属中学中考试题猜想数学试卷含解析: 这是一份2021-2022学年江苏省南京师范大附属中学中考试题猜想数学试卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,下列命题是真命题的个数有等内容,欢迎下载使用。