2021-2022学年北京市通州区中考试题猜想数学试卷含解析
展开
这是一份2021-2022学年北京市通州区中考试题猜想数学试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,计算 的结果为,已知二次函数等内容,欢迎下载使用。
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如图,四边形ABCD是菱形,对角线AC,BD交于点O,,,于点H,且DH与AC交于G,则OG长度为
A.B.C.D.
2.下列运算正确的是( )
A.﹣3a+a=﹣4aB.3x2•2x=6x2
C.4a2﹣5a2=a2D.(2x3)2÷2x2=2x4
3.如图,BC∥DE,若∠A=35°,∠E=60°,则∠C等于( )
A.60°B.35°C.25°D.20°
4.如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,柱柱同学操控机器人以每秒1个单位长度的速度在图1中给出线段路径上运行,柱柱同学将机器人运行时间设为t秒,机器人到点A的距离设为y,得到函数图象如图2,通过观察函数图象,可以得到下列推断:①该正六边形的边长为1;②当t=3时,机器人一定位于点O;③机器人一定经过点D;④机器人一定经过点E;其中正确的有( )
A.①④B.①③C.①②③D.②③④
5.如图,要使□ABCD成为矩形,需添加的条件是()
A.AB=BCB.∠ABC=90°C.AC⊥BDD.∠1=∠2
6.在△ABC中,AD和BE是高,∠ABE=45°,点F是AB的中点,AD与FE,BE分别交于点G、H.∠CBE=∠BAD,有下列结论:①FD=FE;②AH=2CD;③BC•AD=AE2;④S△BEC=S△ADF.其中正确的有( )
A.1个B.2个C.3个D.4个
7.如图,在平面直角坐标系中,△ABC与△A1B1C1是以点P为位似中心的位似图形,且顶点都在格点上,则点P的坐标为( )
A.(﹣4,﹣3)B.(﹣3,﹣4)C.(﹣3,﹣3)D.(﹣4,﹣4)
8.计算 的结果为( )
A.1B.xC.D.
9.已知二次函数(为常数),当自变量的值满足时,与其对应的函数值的最小值为4,则的值为( )
A.1或5B.或3C.或1D.或5
10.已知点M、N在以AB为直径的圆O上,∠MON=x°,∠MAN= y°, 则点(x,y)一定在( )
A.抛物线上B.过原点的直线上C.双曲线上D.以上说法都不对
二、填空题(本大题共6个小题,每小题3分,共18分)
11.函数y=的自变量x的取值范围是_____.
12.9的算术平方根是 .
13.如图,线段 AB 的长为 4,C 为 AB 上一个动点,分别以 AC、BC 为斜边在 AB 的同侧作两个等腰直角三角形 ACD 和 BCE, 连结 DE, 则 DE 长的最小值是_____.
14.某商品原售价为100元,经连续两次涨价后售价为121元,设平均每次涨价的百分率为x,则依题意所列的方程是_____________.
15.如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是________.
16.如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到△AME.当AB=1时,△AME的面积记为S1;当AB=2时,△AME的面积记为S2;当AB=3时,△AME的面积记为S3;…;当AB=n时,△AME的面积记为Sn.当n≥2时,Sn﹣Sn﹣1= ▲ .
三、解答题(共8题,共72分)
17.(8分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4)
(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;
(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;
(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.
18.(8分)如图,甲、乙用4张扑克牌玩游戏,他俩将扑克牌洗匀后背面朝上,放置在桌面上,每人抽一张,甲先抽,乙后抽,抽出的牌不放回.甲、乙约定:只有甲抽到的牌面数字比乙大时甲胜;否则乙胜.请你用树状图或列表法说明甲、乙获胜的机会是否相同 .
19.(8分)计算:2﹣1+|﹣|++2cs30°
20.(8分)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1; 以点O为位似中心,将△ABC缩小为原来的,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.
21.(8分)已知:如图,在平面直角坐标系xOy中,抛物线的图像与x轴交于点A(3,0),与y轴交于点B,顶点C在直线上,将抛物线沿射线 AC的方向平移,
当顶点C恰好落在y轴上的点D处时,点B落在点E处.
(1)求这个抛物线的解析式;
(2)求平移过程中线段BC所扫过的面积;
(3)已知点F在x轴上,点G在坐标平面内,且以点 C、E、F、G 为顶点的四边形是矩形,求点F的坐标.
22.(10分)在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣4,0),B (1,0)两点,与y轴交于点C.
(1)求这个二次函数的解析式;
(2)连接AC、BC,判断△ABC的形状,并证明;
(3)若点P为二次函数对称轴上点,求出使△PBC周长最小时,点P的坐标.
23.(12分)(感知)如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.
(拓展)如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.
(应用)如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,菱形CEFG的面积是_______.(只填结果)
24.如图,抛物线y=ax2+bx+c与x轴的交点分别为A(﹣6,0)和点B(4,0),与y轴的交点为C(0,3).
(1)求抛物线的解析式;
(2)点P是线段OA上一动点(不与点A重合),过P作平行于y轴的直线与AC交于点Q,点D、M在线段AB上,点N在线段AC上.
①是否同时存在点D和点P,使得△APQ和△CDO全等,若存在,求点D的坐标,若不存在,请说明理由;
②若∠DCB=∠CDB,CD是MN的垂直平分线,求点M的坐标.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
试题解析:在菱形中,,,所以,,在中,,
因为,所以,则,在中,由勾股定理得,,由可得,,即,所以.故选B.
2、D
【解析】
根据合并同类项、单项式的乘法、积的乘方和单项式的乘法逐项计算,结合排除法即可得出答案.
【详解】
A. ﹣3a+a=﹣2a,故不正确;
B. 3x2•2x=6x3,故不正确;
C. 4a2﹣5a2=-a2 ,故不正确;
D. (2x3)2÷2x2=4x6÷2x2=2x4,故正确;
故选D.
【点睛】
本题考查了合并同类项、单项式的乘法、积的乘方和单项式的乘法,熟练掌握它们的运算法则是解答本题的关键.
3、C
【解析】
先根据平行线的性质得出∠CBE=∠E=60°,再根据三角形的外角性质求出∠C的度数即可.
【详解】
∵BC∥DE,
∴∠CBE=∠E=60°,
∵∠A=35°,∠C+∠A=∠CBE,
∴∠C=∠CBE﹣∠C=60°﹣35°=25°,
故选C.
【点睛】
本题考查了平行线的性质、三角形外角的性质,熟练掌握三角形外角的性质是解题的关键.
4、C
【解析】
根据图象起始位置猜想点B或F为起点,则可以判断①正确,④错误.结合图象判断3≤t≤4图象的对称性可以判断②正确.结合图象易得③正确.
【详解】
解:由图象可知,机器人距离点A1个单位长度,可能在F或B点,则正六边形边长为1.故①正确;
观察图象t在3-4之间时,图象具有对称性则可知,机器人在OB或OF上,
则当t=3时,机器人距离点A距离为1个单位长度,机器人一定位于点O,故②正确;
所有点中,只有点D到A距离为2个单位,故③正确;
因为机器人可能在F点或B点出发,当从B出发时,不经过点E,故④错误.
故选:C.
【点睛】
本题为动点问题的函数图象探究题,解答时要注意动点到达临界前后时图象的变化趋势.
5、B
【解析】
根据一个角是90度的平行四边形是矩形进行选择即可.
【详解】
解:A、是邻边相等,可判定平行四边形ABCD是菱形;
B、是一内角等于90°,可判断平行四边形ABCD成为矩形;
C、是对角线互相垂直,可判定平行四边形ABCD是菱形;
D、是对角线平分对角,可判断平行四边形ABCD成为菱形;
故选:B.
【点睛】
本题主要应用的知识点为:矩形的判定. ①对角线相等且相互平分的四边形为矩形.②一个角是90度的平行四边形是矩形.
6、C
【解析】
根据题意和图形,可以判断各小题中的结论是否成立,从而可以解答本题.
【详解】
∵在△ABC中,AD和BE是高,
∴∠ADB=∠AEB=∠CEB=90°,
∵点F是AB的中点,
∴FD=AB,FE=AB,
∴FD=FE,①正确;
∵∠CBE=∠BAD,∠CBE+∠C=90°,∠BAD+∠ABC=90°,
∴∠ABC=∠C,
∴AB=AC,
∵AD⊥BC,
∴BC=2CD,∠BAD=∠CAD=∠CBE,
在△AEH和△BEC中, ,
∴△AEH≌△BEC(ASA),
∴AH=BC=2CD,②正确;
∵∠BAD=∠CBE,∠ADB=∠CEB,
∴△ABD∽△BCE,
∴,即BC•AD=AB•BE,
∵∠AEB=90°,AE=BE,
∴AB=BE
BC•AD=BE•BE,
∴BC•AD=AE2;③正确;
设AE=a,则AB=a,
∴CE=a﹣a,
∴=,
即 ,
∵AF=AB,
∴ ,
∴S△BEC≠S△ADF,故④错误,
故选:C.
【点睛】
本题考查相似三角形的判定与性质、全等三角形的判定与性质、直角三角形斜边上的中线,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
7、A
【解析】
延长A1A、B1B和C1C,从而得到P点位置,从而可得到P点坐标.
【详解】
如图,点P的坐标为(-4,-3).
故选A.
【点睛】
本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.
8、A
【解析】
根据同分母分式的加减运算法则计算可得.
【详解】
原式===1,
故选:A.
【点睛】
本题主要考查分式的加减法,解题的关键是掌握同分母分式的加减运算法则.
9、D
【解析】
由解析式可知该函数在时取得最小值0,抛物线开口向上,当时,y随x的增大而增大;当时,y随x的增大而减小;根据时,函数的最小值为4可分如下三种情况:①若,时,y取得最小值4;②若-1<h<3时,当x=h时,y取得最小值为0,不是4;③若,当x=3时,y取得最小值4,分别列出关于h的方程求解即可.
【详解】
解:∵当x>h时,y随x的增大而增大,当时,y随x的增大而减小,并且抛物线开口向上,
∴①若,当时,y取得最小值4,
可得:4,
解得或(舍去);
②若-1<h<3时,当x=h时,y取得最小值为0,不是4,
∴此种情况不符合题意,舍去;
③若-1≤x≤3<h,当x=3时,y取得最小值4,
可得:,
解得:h=5或h=1(舍).
综上所述,h的值为-3或5,
故选:D.
【点睛】
本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键.
10、B
【解析】
由圆周角定理得出∠MON与∠MAN的关系,从而得出x与y的关系式,进而可得出答案.
【详解】
∵∠MON与∠MAN分别是弧MN所对的圆心角与圆周角,
∴∠MAN=∠MON,
∴ ,
∴点(x,y)一定在过原点的直线上.
故选B.
【点睛】
本题考查了圆周角定理及正比例函数图像的性质,熟练掌握圆周角定理是解答本题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、x≥﹣且x≠1
【解析】
分析:根据被开方数大于等于0,分母不等于0列式求解即可.
详解:根据题意得2x+1≥0,x-1≠0,
解得x≥-且x≠1.
故答案为x≥-且x≠1.
点睛:本题主要考查了函数自变量的取值范围的确定,根据分母不等于0,被开方数大于等于0列式计算即可,是基础题,比较简单.
12、1.
【解析】
根据一个正数的算术平方根就是其正的平方根即可得出.
【详解】
∵,
∴9算术平方根为1.
故答案为1.
【点睛】
本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.
13、2
【解析】
试题分析:由题意得,;C为AB上一个动点,分别以AC、BC为斜边在AB的同侧作两个等腰直角三角形△ACD和△BCE,AD=CD;CE=BE;由勾股定理得,解得;而AC+BC=AB=4,,∵=16;,∴,,得出
考点:不等式的性质
点评:本题考查不等式的性质,会用勾股定理,完全平方公式,不等关系等知识,它们是解决本题的关键
14、100(1+x)2=121
【解析】
根据题意给出的等量关系即可求出答案.
【详解】
由题意可知:100(1+x)2=121
故答案为:100(1+x)2=121
【点睛】
本题考查一元二次方程的应用,解题的关键是正确找出等量关系,本题属于基础题型.
15、.
【解析】
试题解析:如图,连接OM交AB于点C,连接OA、OB,
由题意知,OM⊥AB,且OC=MC=1,
在RT△AOC中,∵OA=2,OC=1,
∴cs∠AOC=,AC=
∴∠AOC=60°,AB=2AC=2,
∴∠AOB=2∠AOC=120°,
则S弓形ABM=S扇形OAB-S△AOB
=
=,
S阴影=S半圆-2S弓形ABM
=π×22-2()
=2.
故答案为2.
16、
【解析】
连接BE,
∵在线段AC同侧作正方形ABMN及正方形BCEF,
∴BE∥AM.∴△AME与△AMB同底等高.
∴△AME的面积=△AMB的面积.
∴当AB=n时,△AME的面积为,当AB=n-1时,△AME的面积为.
∴当n≥2时,
三、解答题(共8题,共72分)
17、(1)详见解析;(2)详见解析;(3)图见解析,点P坐标为(2,0).
【解析】
(1)根据网格结构找出点A、B、C平移后的对应点的位置,然后顺次连接即可;
(2))找出点A、B、C关于原点O的对称点的位置,然后顺次连接即可;
(3)找出A的对称点A′,连接BA′,与x轴交点即为P.
【详解】
(1)如图1所示,△A1B1C1,即为所求:
(2)如图2所示,△A2B2C2,即为所求:
(3)找出A的对称点A′(1,﹣1),
连接BA′,与x轴交点即为P;
如图3所示,点P即为所求,点P坐标为(2,0).
【点睛】
本题考查作图-旋转变换,平移变换,轴对称最短问题等知识,得出对应点位置是解题关键.
18、甲、乙获胜的机会不相同.
【解析】试题分析:先画出树状图列举出所有情况,再分别算出甲、乙获胜的概率,比较即可判断.
∴
∴甲、乙获胜的机会不相同.
考点:可能性大小的判断
点评:本题属于基础应用题,只需学生熟练掌握概率的求法,即可完成.
19、+4.
【解析】
原式利用负整数指数幂法则,二次根式性质,以及特殊角的三角函数值计算即可求出值.
【详解】
原式=++2+2×=+4.
【点睛】
本题考查了实数的运算,涉及了负整数指数幂、特殊角的三角函数值、二次根式的化简等,熟练掌握各运算的运算法则是解本题的关键.
20、(1)见解析(2)
【解析】
试题分析:(1)直接利用平移的性质得出对应点位置进而得出答案;
(2)利用位似图形的性质得出对应点位置,再利用锐角三角三角函数关系得出答案.
试题解析:(1)如图所示:△A1B1C1,即为所求;
(2)如图所示:△A2B2C2,即为所求,由图形可知,∠A2C2B2=∠ACB,过点A作AD⊥BC交BC的延长线于点D,由A(2,2),C(4,﹣4),B(4,0),易得D(4,2),故AD=2,CD=6,AC==,∴sin∠ACB===,即sin∠A2C2B2=.
考点:作图﹣位似变换;作图﹣平移变换;解直角三角形.
21、(1)抛物线的解析式为;(2)12; (1)满足条件的点有F1(,0),F2(,0),F1(,0),F4(,0).
【解析】
分析:(1)根据对称轴方程求得b=﹣4a,将点A的坐标代入函数解析式求得9a+1b+1=0,联立方程组,求得系数的值即可;
(2)抛物线在平移的过程中,线段BC所扫过的面积为平行四边形BCDE的面积,根据二次函数图象上点的坐标特征和三角形的面积得到:∴.
(1)联结CE.分类讨论:(i)当CE为矩形的一边时,过点C作CF1⊥CE,交x轴于点F1,设点F1(a,0).在Rt△OCF1中,利用勾股定理求得a的值;
(ii)当CE为矩形的对角线时,以点O为圆心,OC长为半径画弧分别交x轴于点F1、F4,利用圆的性质解答.
详解:(1)∵顶点C在直线x=2上,∴,∴b=﹣4a.
将A(1,0)代入y=ax2+bx+1,得:9a+1b+1=0,解得:a=1,b=﹣4,
∴抛物线的解析式为y=x2﹣4x+1.
(2)过点C作CM⊥x轴,CN⊥y轴,垂足分别为M、N.
∵y=x2﹣4x+1═(x﹣2)2﹣1,∴C(2,﹣1).
∵CM=MA=1,∴∠MAC=45°,∴∠ODA=45°,∴OD=OA=1.
∵抛物线y=x2﹣4x+1与y轴交于点B,∴B(0,1),∴BD=2.
∵抛物线在平移的过程中,线段BC所扫过的面积为平行四边形BCDE的面积,∴.
(1)联结CE.
∵四边形BCDE是平行四边形,∴点O是对角线CE与BD的交点,即 .
(i)当CE为矩形的一边时,过点C作CF1⊥CE,交x轴于点F1,设点F1(a,0).在Rt△OCF1中,,即 a2=(a﹣2)2+5,解得: ,∴点.
同理,得点;
(ii)当CE为矩形的对角线时,以点O为圆心,OC长为半径画弧分别交x轴于点F1、F4,可得: ,得点、.
综上所述:满足条件的点有),.
点睛:本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,平行四边形的面积公式,正确的理解题意是解题的关键.
22、(1)抛物线解析式为y=﹣x2﹣x+2;(2)△ABC为直角三角形,理由见解析;(3)当P点坐标为(﹣,)时,△PBC周长最小
【解析】
(1)设交点式y=a(x+4)(x-1),展开得到-4a=2,然后求出a即可得到抛物线解析式;
(2)先利用两点间的距离公式计算出AC2=42+22,BC2=12+22,AB2=25,然后利用勾股定理的逆定理可判断△ABC为直角三角形;
(3)抛物线的对称轴为直线x=-,连接AC交直线x=-于P点,如图,利用两点之间线段最短得到PB+PC的值最小,则△PBC周长最小,接着利用待定系数法求出直线AC的解析式为y=x+2,然后进行自变量为-所对应的函数值即可得到P点坐标.
【详解】
(1)抛物线的解析式为y=a(x+4)(x﹣1),
即y=ax2+3ax﹣4a,
∴﹣4a=2,解得a=﹣,
∴抛物线解析式为y=﹣x2﹣x+2;
(2)△ABC为直角三角形.理由如下:
当x=0时,y=﹣x2﹣x+2=2,则C(0,2),
∵A(﹣4,0),B (1,0),
∴AC2=42+22,BC2=12+22,AB2=52=25,
∴AC2+BC2=AB2,
∴△ABC为直角三角形,∠ACB=90°;
(3)
抛物线的对称轴为直线x=﹣,
连接AC交直线x=﹣于P点,如图,
∵PA=PB,
∴PB+PC=PA+PC=AC,
∴此时PB+PC的值最小,△PBC周长最小,
设直线AC的解析式为y=kx+m,
把A(﹣4,0),C(0,2)代入得,解得,
∴直线AC的解析式为y=x+2,
当x=﹣时,y=x+2=,则P(﹣,)
∴当P点坐标为(﹣,)时,△PBC周长最小.
【点睛】
本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化解.关于x的一元二次方程即可求得交点横坐标.也考查了待定系数法求二次函数解析式和最短路径问题.
23、见解析
【解析】
试题分析:探究:由四边形ABCD、四边形CEFG均为菱形,利用SAS易证得△BCE≌△DCG,则可得BE=DG;
应用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面积,继而求得答案.
试题解析:
探究:∵四边形ABCD、四边形CEFG均为菱形,
∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.
∵∠A=∠F,
∴∠BCD=∠ECG.
∴∠BCD-∠ECD=∠ECG-∠ECD,
即∠BCE=∠DCG.
在△BCE和△DCG中,
∴△BCE≌△DCG(SAS),
∴BE=DG.
应用:∵四边形ABCD为菱形,
∴AD∥BC,
∵BE=DG,
∴S△ABE+S△CDE=S△BEC=S△CDG=8,
∵AE=3ED,
∴S△CDE= ,
∴S△ECG=S△CDE+S△CDG=10
∴S菱形CEFG=2S△ECG=20.
24、(1)y=﹣x2﹣x+3;(2)①点D坐标为(﹣,0);②点M(,0).
【解析】
(1)应用待定系数法问题可解;
(2)①通过分类讨论研究△APQ和△CDO全等
②由已知求点D坐标,证明DN∥BC,从而得到DN为中线,问题可解.
【详解】
(1)将点(-6,0),C(0,3),B(4,0)代入y=ax2+bx+c,得
,
解得: ,
∴抛物线解析式为:y=-x2-x+3;
(2)①存在点D,使得△APQ和△CDO全等,
当D在线段OA上,∠QAP=∠DCO,AP=OC=3时,△APQ和△CDO全等,
∴tan∠QAP=tan∠DCO,
,
∴,
∴OD=,
∴点D坐标为(-,0).
由对称性,当点D坐标为(,0)时,
由点B坐标为(4,0),
此时点D(,0)在线段OB上满足条件.
②∵OC=3,OB=4,
∴BC=5,
∵∠DCB=∠CDB,
∴BD=BC=5,
∴OD=BD-OB=1,
则点D坐标为(-1,0)且AD=BD=5,
连DN,CM,
则DN=DM,∠NDC=∠MDC,
∴∠NDC=∠DCB,
∴DN∥BC,
∴,
则点N为AC中点.
∴DN时△ABC的中位线,
∵DN=DM=BC=,
∴OM=DM-OD=
∴点M(,0)
【点睛】
本题是二次函数综合题,考查了二次函数待定系数法、三角形全等的判定、锐角三角形函数的相关知识.解答时,注意数形结合.
相关试卷
这是一份重庆市中学2021-2022学年中考试题猜想数学试卷含解析,共20页。
这是一份黄山市~2021-2022学年中考试题猜想数学试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,这个数是等内容,欢迎下载使用。
这是一份2022届北京市第一五九中学中考试题猜想数学试卷含解析,共16页。试卷主要包含了考生要认真填写考场号和座位序号,下列各数中负数是,若a与﹣3互为倒数,则a=等内容,欢迎下载使用。