年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2022届安徽省六安市霍邱县重点中学中考考前最后一卷数学试卷含解析

    立即下载
    加入资料篮
    2022届安徽省六安市霍邱县重点中学中考考前最后一卷数学试卷含解析第1页
    2022届安徽省六安市霍邱县重点中学中考考前最后一卷数学试卷含解析第2页
    2022届安徽省六安市霍邱县重点中学中考考前最后一卷数学试卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届安徽省六安市霍邱县重点中学中考考前最后一卷数学试卷含解析

    展开

    这是一份2022届安徽省六安市霍邱县重点中学中考考前最后一卷数学试卷含解析,共21页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
    2.答题时请按要求用笔。
    3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
    4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
    5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为( )
    A.8或10 B.8 C.10 D.6或12
    2.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A,B在围成的正方体中的距离是(  )

    A.0 B.1 C. D.
    3.如右图,⊿ABC内接于⊙O,若∠OAB=28°则∠C的大小为( )

    A.62° B.56° C.60° D.28°
    4.如图是由四个小正方体叠成的一个几何体,它的左视图是( )

    A. B. C. D.
    5.下列四个几何体中,左视图为圆的是(  )
    A. B. C. D.
    6.将5570000用科学记数法表示正确的是( )
    A.5.57×105 B.5.57×106 C.5.57×107 D.5.57×108
    7.一个半径为24的扇形的弧长等于20π,则这个扇形的圆心角是(  )
    A.120° B.135° C.150° D.165°
    8.下列图形中,既是中心对称图形又是轴对称图形的是 ( )
    A. B. C. D.
    9.《九章算术》是中国古代数学的重要著作,方程术是它的最高成就,其中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两。问:牛、羊各直金几何?译文:“假设有 5 头牛、2 只羊,值金 10 两;2 头牛、5 只羊,值金 8 两。问:每头牛、每只羊各值金多少两?” 设每头牛值金 x 两,每只羊值金 y 两,则列方程组错误的是( )
    A. B. C. D.
    10.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上,若PM=2.5cm,PN=3cm,MN=4cm,则线段QR的长为( )

    A.4.5cm B.5.5cm C.6.5cm D.7cm
    11.已知⊙O的半径为5,弦AB=6,P是AB上任意一点,点C是劣弧的中点,若△POC为直角三角形,则PB的长度(  )
    A.1 B.5 C.1或5 D.2或4
    12.如图,这是由5个大小相同的整体搭成的几何体,该几何体的左视图是 ( )

    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.若式子在实数范围内有意义,则x的取值范围是   .
    14.如图,四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=35°,则∠PFE的度数是_____.

    15.我们知道:四边形具有不稳定性.如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,,,边AD长为5. 现固定边AB,“推”矩形使点D落在y轴的正半轴上(落点记为),相应地,点C的对应点的坐标为_______.

    16.如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿x轴翻折,再向左平移1个单位”为一次变换,如果这样连续经过2018次变换后,等边△ABC的顶点C的坐标为_____.

    17.已知一个多边形的每一个外角都等于,则这个多边形的边数是 .
    18.如果一个矩形的面积是40,两条对角线夹角的正切值是,那么它的一条对角线长是__________.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)已知关于x的一元二次方程x2﹣(m+3)x+m+2=1.
    (1)求证:无论实数m取何值,方程总有两个实数根;
    (2)若方程有一个根的平方等于4,求m的值.
    20.(6分)如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD.小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)

    21.(6分)目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如表:

    进价元只
    售价元只
    甲种节能灯
    30
    40
    乙种节能灯
    35
    50
    求甲、乙两种节能灯各进多少只?
    全部售完100只节能灯后,该商场获利多少元?
    22.(8分)如图,矩形的两边、的长分别为3、8,是的中点,反比例函数的图象经过点,与交于点.
    若点坐标为,求的值及图象经过、两点的一次函数的表达式;若,求反比例函数的表达式.
    23.(8分)如图,已知□ABCD的面积为S,点P、Q时是▱ABCD对角线BD的三等分点,延长AQ、AP,分别交BC,CD于点E,F,连结EF。甲,乙两位同学对条件进行分析后,甲得到结论①:“E是BC中点” .乙得到结论②:“四边形QEFP的面积为S”。请判断甲乙两位同学的结论是否正确,并说明理由.

    24.(10分)已知:如图1,抛物线的顶点为M,平行于x轴的直线与该抛物线交于点A,B(点A在点B左侧),根据对称性△AMB恒为等腰三角形,我们规定:当△AMB为直角三角形时,就称△AMB为该抛物线的“完美三角形”.

    (1)①如图2,求出抛物线的“完美三角形”斜边AB的长;
    ②抛物线与的“完美三角形”的斜边长的数量关系是 ;
    (2)若抛物线的“完美三角形”的斜边长为4,求a的值;
    (3)若抛物线的“完美三角形”斜边长为n,且的最大值为-1,求m,n的值.
    25.(10分)如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.
    (1)请判断直线BC与⊙O的位置关系,并说明理由;
    (2)已知AD=5,CD=4,求BC的长.

    26.(12分)如图,小明今年国庆节到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A到达点B时,它经过了200m,缆车行驶的路线与水平夹角∠α=16°,当缆车继续由点B到达点D时,它又走过了200m,缆车由点B到点D的行驶路线与水平面夹角∠β=42°,求缆车从点A到点D垂直上升的距离.(结果保留整数)(参考数据:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)

    27.(12分)瑞安市曹村镇“八百年灯会”成为温州“申遗”的宝贵项目.某公司生产了一种纪念花灯,每件纪念花灯制造成本为18元.设销售单价x(元),每日销售量y(件)每日的利润w(元).在试销过程中,每日销售量y(件)、每日的利润w(元)与销售单价x(元)之间存在一定的关系,其几组对应量如下表所示:
    (元)
    19
    20
    21
    30
    (件)
    62
    60
    58
    40
    (1)根据表中数据的规律,分别写出毎日销售量y(件),每日的利润w(元)关于销售单价x(元)之间的函数表达式.(利润=(销售单价﹣成本单价)×销售件数).当销售单价为多少元时,公司每日能够获得最大利润?最大利润是多少?根据物价局规定,这种纪念品的销售单价不得高于32元,如果公司要获得每日不低于350元的利润,那么制造这种纪念花灯每日的最低制造成本需要多少元?



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、C
    【解析】
    试题分析:①4是腰长时,三角形的三边分别为4、4、4,∵4+4=4,∴不能组成三角形,
    ②4是底边时,三角形的三边分别为4、4、4,能组成三角形,周长=4+4+4=4,
    综上所述,它的周长是4.故选C.
    考点:4.等腰三角形的性质;4.三角形三边关系;4.分类讨论.
    2、C
    【解析】
    试题分析: 本题考查了勾股定理、展开图折叠成几何体、正方形的性质;熟练掌握正方形的性质和勾股定理,并能进行推理计算是解决问题的关键.由正方形的性质和勾股定理求出AB的长,即可得出结果.
    解:连接AB,如图所示:
    根据题意得:∠ACB=90°,
    由勾股定理得:AB==;
    故选C.

    考点:1.勾股定理;2.展开图折叠成几何体.
    3、A
    【解析】
    连接OB.
    在△OAB中,OA=OB(⊙O的半径),
    ∴∠OAB=∠OBA(等边对等角);
    又∵∠OAB=28°,
    ∴∠OBA=28°;
    ∴∠AOB=180°-2×28°=124°;
    而∠C=∠AOB(同弧所对的圆周角是所对的圆心角的一半),
    ∴∠C=62°;
    故选A
    4、A
    【解析】
    试题分析:如图是由四个小正方体叠成的一个几何体,它的左视图是.故选A.
    考点:简单组合体的三视图.
    5、A
    【解析】
    根据三视图的法则可得出答案.
    【详解】
    解:左视图为从左往右看得到的视图,
    A.球的左视图是圆,
    B.圆柱的左视图是长方形,
    C.圆锥的左视图是等腰三角形,
    D.圆台的左视图是等腰梯形,
    故符合题意的选项是A.
    【点睛】
    错因分析 较容易题.失分原因是不会判断常见几何体的三视图.
    6、B
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于5570000有7位,所以可以确定n=7﹣1=1.
    【详解】
    5570000=5.57×101所以B正确
    7、C
    【解析】
    这个扇形的圆心角的度数为n°,根据弧长公式得到20π=,然后解方程即可.
    【详解】
    解:设这个扇形的圆心角的度数为n°,
    根据题意得20π=,
    解得n=150,
    即这个扇形的圆心角为150°.
    故选C.
    【点睛】
    本题考查了弧长公式:L=(n为扇形的圆心角的度数,R为扇形所在圆的半径).
    8、C
    【解析】
    试题解析:A. 是轴对称图形,不是中心对称图形,故本选项错误;
    B. 是轴对称图形,不是中心对称图形,故本选项错误;
    C. 既是中心对称图又是轴对称图形,故本选项正确;
    D. 是轴对称图形,不是中心对称图形,故本选项错误.
    故选C.
    9、D
    【解析】
    由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,据此可得答案.
    【详解】
    解:设每头牛值金x两,每只羊值金y两,
    由5头牛、2只羊,值金10两可得:5x+2y=10,
    由2头牛、5只羊,值金8两可得2x+5y=8,
    则7头牛、7只羊,值金18两,据此可知7x+7y=18,
    所以方程组错误,
    故选:D.
    【点睛】
    本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意找到相等关系及等式的基本性质.
    10、A
    【解析】
    试题分析:利用轴对称图形的性质得出PM=MQ,PN=NR,进而利用PM=2.5cm,PN=3cm,MN=3cm,得出NQ=MN-MQ=3-2.5=2.5(cm),即可得出QR的长RN+NQ=3+2.5=3.5(cm).
    故选A.
    考点:轴对称图形的性质
    11、C
    【解析】
    由点C是劣弧AB的中点,得到OC垂直平分AB,求得DA=DB=3,根据勾股定理得到OD==1,若△POC为直角三角形,只能是∠OPC=90°,则根据相似三角形的性质得到PD=2,于是得到结论.
    【详解】
    ∵点C是劣弧AB的中点,
    ∴OC垂直平分AB,
    ∴DA=DB=3,
    ∴OD=,
    若△POC为直角三角形,只能是∠OPC=90°,
    则△POD∽△CPD,
    ∴,
    ∴PD2=4×1=4,
    ∴PD=2,
    ∴PB=3﹣2=1,
    根据对称性得,
    当P在OC的左侧时,PB=3+2=5,
    ∴PB的长度为1或5.

    故选C.
    【点睛】
    考查了圆周角,弧,弦的关系,勾股定理,垂径定理,正确左侧图形是解题的关键.
    12、A
    【解析】
    观察所给的几何体,根据三视图的定义即可解答.
    【详解】
    左视图有2列,每列小正方形数目分别为2,1.
    故选A.
    【点睛】
    本题考查了三视图的知识,左视图是从物体的左面看得到的视图.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、.
    【解析】
    根据二次根式被开方数必须是非负数的条件,
    要使在实数范围内有意义,必须.
    故答案为
    14、35°
    【解析】
    ∵四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,
    ∴PE是△ABD的中位线,PF是△BDC的中位线,
    ∴PE=AD,PF=BC,
    又∵AD=BC,
    ∴PE=PF,
    ∴∠PFE=∠PEF=35°.
    故答案为35°.
    15、
    【解析】
    分析:根据勾股定理,可得 ,根据平行四边形的性质,可得答案.
    详解:由勾股定理得:= ,即(0,4).
    矩形ABCD的边AB在x轴上,∴四边形是平行四边形,
    A=B, =AB=4-(-3)=7, 与的纵坐标相等,∴(7,4),故答案为(7,4).
    点睛:本题考查了多边形,利用平行四边形的性质得出A=B,=AB=4-(-3)=7是解题的关键.
    16、(﹣2016, +1)
    【解析】
    据轴对称判断出点C变换后在x轴上方,然后求出点C纵坐标,再根据平移的距离求出点A变换后的横坐标,最后写出即可.
    【详解】
    解:∵△ABC是等边三角形AB=3﹣1=2,
    ∴点C到x轴的距离为1+2×=+1,
    横坐标为2,
    ∴C(2, +1),
    第2018次变换后的三角形在x轴上方,
    点C的纵坐标为+1,
    横坐标为2﹣2018×1=﹣2016,
    所以,点C的对应点C′的坐标是(﹣2016,+1)
    故答案为:(﹣2016,+1)
    【点睛】
    本题考查坐标与图形变化,平移和轴对称变换,等边三角形的性质,读懂题目信息,确定出连续2018次这样的变换得到三角形在x轴上方是解题的关键.
    17、5
    【解析】
    ∵多边形的每个外角都等于72°,
    ∵多边形的外角和为360°,
    ∴360°÷72°=5,
    ∴这个多边形的边数为5.
    故答案为5.
    18、1.
    【解析】
    如图,作BH⊥AC于H.由四边形ABCD是矩形,推出OA=OC=OD=OB,设OA=OC=OD=OB=5a,由tan∠BOH,可得BH=4a,OH=3a,由题意:21a×4a=40,求出a即可解决问题.
    【详解】
    如图,作BH⊥AC于H.

    ∵四边形ABCD是矩形,∴OA=OC=OD=OB,设OA=OC=OD=OB=5a.
    ∵tan∠BOH,∴BH=4a,OH=3a,由题意:21a×4a=40,∴a=1,∴AC=1.
    故答案为:1.
    【点睛】
    本题考查了矩形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)证明见解析;(2)m 的值为1或﹣2.
    【解析】
    (1)计算根的判别式的值可得(m+1)2≥1,由此即可证得结论;(2)根据题意得到 x=±2 是原方程的根,将其代入列出关于m新方程,通过解新方程求得m的值即可.
    【详解】
    (1)证明:∵△=[﹣(m+3)]2﹣2(m+2)=(m+1)2≥1,
    ∴无论实数 m 取何值,方程总有两个实数根;
    (2)解:∵方程有一个根的平方等于 2,
    ∴x=±2 是原方程的根,
    当 x=2 时,2﹣2(m+3)+m+2=1.
    解得m=1;
    当 x=﹣2 时,2+2(m+3)+m+2=1,
    解得m=﹣2.
    综上所述,m 的值为 1 或﹣2.
    【点睛】
    本题考查了根的判别式及一元二次方程的解的定义,在解答(2)时要分类讨论,这是此题的易错点.
    20、2.7米
    【解析】
    解:作BF⊥DE于点F,BG⊥AE于点G

    在Rt△ADE中
    ∵tan∠ADE=,
    ∴DE="AE" ·tan∠ADE=15
    ∵山坡AB的坡度i=1:,AB=10
    ∴BG=5,AG=,
    ∴EF=BG=5,BF=AG+AE=+15
    ∵∠CBF=45°
    ∴CF=BF=+15
    ∴CD=CF+EF—DE=20—10≈20—10×1.732=2.68≈2.7
    答:这块宣传牌CD的高度为2.7米.
    21、甲、乙两种节能灯分别购进40、60只;商场获利1300元.
    【解析】
    (1)利用节能灯数量和所用的价钱建立方程组即可;
    (2)每种灯的数量乘以每只灯的利润,最后求出之和即可.
    【详解】
    (1)设商场购进甲种节能灯x只,购进乙种节能灯y只,
    根据题意,得,
    解这个方程组,得 ,
    答:甲、乙两种节能灯分别购进40、60只.
    (2)商场获利元,
    答:商场获利1300元.
    【点睛】
    此题是二元一次方程组的应用,主要考查了列方程组解应用题的步骤和方法,利润问题,解本题的关键是求出两种节能灯的数量.
    22、(1),;(2).
    【解析】
    分析:(1)由已知求出A、E的坐标,即可得出m的值和一次函数函数的解析式;
    (2)由,得到,由,得到.设点坐标为,则点坐标为,代入反比例函数解析式即可得到结论.
    详解:(1)∵为的中点,
    ∴.
    ∵反比例函数图象过点,
    ∴.
    设图象经过、两点的一次函数表达式为:,
    ∴,
    解得,
    ∴.
    (2)∵,
    ∴.
    ∵,
    ∴,
    ∴.
    设点坐标为,则点坐标为.
    ∵两点在图象上,
    ∴,
    解得:,
    ∴,
    ∴,
    ∴.

    点睛:本题考查了矩形的性质以及反比例函数一次函数的解析式.解题的关键是求出点A、E、F的坐标.
    23、①结论一正确,理由见解析;②结论二正确,S四QEFP= S
    【解析】
    试题分析:
    (1)由已知条件易得△BEQ∽△DAQ,结合点Q是BD的三等分点可得BE:AD=BQ:DQ=1:2,再结合AD=BC即可得到BE:BC=1:2,从而可得点E是BC的中点,由此即可说明甲同学的结论①成立;
    (2)同(1)易证点F是CD的中点,由此可得EF∥BD,EF=BD,从而可得△CEF∽△CBD,则可得得到S△CEF=S△CBD=S平行四边形ABCD=S,结合S四边形AECF=S可得S△AEF=S,由QP=BD,EF=BD可得QP:EF=2:3,结合△AQP∽△AEF可得S△AQP=S△AEF=,由此可得S四边形QEFP= S△AEF- S△AQP=S,从而说明乙的结论②正确;
    试题解析:
    甲和乙的结论都成立,理由如下:
    (1)∵在平行四边形ABCD中,AD∥BC,
    ∴△BEQ∽△DAQ,
    又∵点P、Q是线段BD的三等分点,
    ∴BE:AD=BQ:DQ=1:2,
    ∵AD=BC,
    ∴BE:BC=1:2,
    ∴点E是BC的中点,即结论①正确;
    (2)和(1)同理可得点F是CD的中点,
    ∴EF∥BD,EF=BD,
    ∴△CEF∽△CBD,
    ∴S△CEF=S△CBD=S平行四边形ABCD=S,
    ∵S四边形AECF=S△ACE+S△ACF=S平行四边形ABCD=S,
    ∴S△AEF=S四边形AECF-S△CEF=S,
    ∵EF∥BD,
    ∴△AQP∽△AEF,
    又∵EF=BD,PQ=BD,
    ∴QP:EF=2:3,
    ∴S△AQP=S△AEF=,
    ∴S四边形QEFP= S△AEF- S△AQP=S-=S,即结论②正确.
    综上所述,甲、乙两位同学的结论都正确.
    24、(1)AB=2;相等;(2)a=±;(3), .
    【解析】
    (1)①过点B作BN⊥x轴于N,由题意可知△AMB为等腰直角三角形,设出点B的坐标为(n,-n),根据二次函数得出n的值,然后得出AB的值,②因为抛物线y=x2+1与y=x2的形状相同,所以抛物线y=x2+1与y=x2的“完美三角形”的斜边长的数量关系是相等;
    (2)根据抛物线的性质相同得出抛物线的完美三角形全等,从而得出点B的坐标,得出a的值;根据最大值得出mn-4m-1=0,根据抛物线的完美三角形的斜边长为n得出点B的坐标,然后代入抛物线求出m和n的值.
    (3)根据的最大值为-1,得到化简得mn-4m-1=0,抛物线的“完美三角形”斜边长为n,所以抛物线2的“完美三角形”斜边长为n,得出B点坐标,代入可得mn关系式,即可求出m、n的值.
    【详解】
    (1)①过点B作BN⊥x轴于N,由题意可知△AMB为等腰直角三角形,AB∥x轴,
    易证MN=BN,设B点坐标为(n,-n),代入抛物线,得,
    ∴,(舍去),∴抛物线的“完美三角形”的斜边
    ②相等;

    (2)∵抛物线与抛物线的形状相同,
    ∴抛物线与抛物线的“完美三角形”全等,
    ∵抛物线的“完美三角形”斜边的长为4,∴抛物线的“完美三角形”斜边的长为4,
    ∴B点坐标为(2,2)或(2,-2),∴.
    (3)∵ 的最大值为-1,
    ∴ ,
    ∴ ,
    ∵抛物线的“完美三角形”斜边长为n,
    ∴抛物线的“完美三角形”斜边长为n,
    ∴B点坐标为,
    ∴代入抛物线,得,
    ∴ (不合题意舍去),
    ∴,

    25、(1)BC与相切;理由见解析;
    (2)BC=6
    【解析】
    试题分析:(1)BC与相切;由已知可得∠BAD=∠BED又由∠DBC=∠BED可得∠BAD=∠DBC,由AB为直径可得∠ADB=90°,从而可得∠CBO=90°,继而可得BC与相切
    (2)由AB为直径可得∠ADB=90°,从而可得∠BDC=90°,由BC与相切,可得∠CBO=90°,从而可得∠BDC=∠CBO,可得,所以得,得,由可得AC=9,从而可得BC=6(BC="-6" 舍去)
    试题解析:(1)BC与相切;
    ∵,∴∠BAD=∠BED ,∵∠DBC=∠BED,∴∠BAD=∠DBC,∵AB为直径,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∴∠DBC+∠ABD=90°,∴∠CBO=90°,∴点B在上,∴BC与相切
    (2)∵AB为直径,∴∠ADB=90°,∴∠BDC=90°,∵BC与相切,∴∠CBO=90°,∴∠BDC=∠CBO,∴,∴,∴,∵,∴AC=9,∴,∴BC=6(BC="-6" 舍去)
    考点:1.切线的判定与性质;2.相似三角形的判定与性质;3.勾股定理.
    26、缆车垂直上升了186 m.
    【解析】
    在Rt中,米,在Rt中,即可求出缆车从点A到点D垂直上升的距离.
    【详解】
    解:

    在Rt中,斜边AB=200米,∠α=16°,
    (m),
    在Rt中,斜边BD=200米,∠β=42°,

    因此缆车垂直上升的距离应该是BC+DF=186(米).
    答:缆车垂直上升了186米.
    【点睛】
    本题考查了解直角三角形的应用-坡度坡角问题,锐角三角函数的定义,结合图形理解题意是解决问题的关键.
    27、(1)y=﹣2x+100,w=﹣2x2+136x﹣1800;(2)当销售单价为34元时,每日能获得最大利润,最大利润是1元;(3)制造这种纪念花灯每日的最低制造成本需要648元.
    【解析】
    (1)观察表中数据,发现y与x之间存在一次函数关系,设y=kx+b.列方程组得到y关于x的函数表达式y=﹣2x+100,根据题意得到w=﹣2x2+136x﹣1800;
    (2)把w=﹣2x2+136x﹣1800配方得到w=﹣2(x﹣34)2+1.根据二次函数的性质即可得到结论;
    (3)根据题意列方程即可得到即可.
    【详解】
    解:(1)观察表中数据,发现y与x之间存在一次函数关系,设y=kx+b.
    则,解得,
    ∴y=﹣2x+100,
    ∴y关于x的函数表达式y=﹣2x+100,
    ∴w=(x﹣18)•y=(x﹣18)(﹣2x+100)∴w=﹣2x2+136x﹣1800;
    (2)∵w=﹣2x2+136x﹣1800=﹣2(x﹣34)2+1.
    ∴当销售单价为34元时,
    ∴每日能获得最大利润1元;
    (3)当w=350时,350=﹣2x2+136x﹣1800,
    解得x=25或43,
    由题意可得25≤x≤32,
    则当x=32时,18(﹣2x+100)=648,
    ∴制造这种纪念花灯每日的最低制造成本需要648元.
    【点睛】
    此题主要考查了二次函数的应用,根据已知得出函数关系式.

    相关试卷

    安徽省滁州市琅琊区重点中学2022年中考考前最后一卷数学试卷含解析:

    这是一份安徽省滁州市琅琊区重点中学2022年中考考前最后一卷数学试卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁,已知,﹣3的相反数是等内容,欢迎下载使用。

    2022年商洛市重点中学中考考前最后一卷数学试卷含解析:

    这是一份2022年商洛市重点中学中考考前最后一卷数学试卷含解析,共17页。试卷主要包含了已知二次函数y=等内容,欢迎下载使用。

    2022年汕头市重点中学中考考前最后一卷数学试卷含解析:

    这是一份2022年汕头市重点中学中考考前最后一卷数学试卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map