2021-2022学年浙江省台州仙居中考数学考前最后一卷含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.某市2017年实现生产总值达280亿的目标,用科学记数法表示“280亿”为( )
A.28×109 B.2.8×108 C.2.8×109 D.2.8×1010
2.对于点A(x1,y1),B(x2,y2),定义一种运算:.例如,A(-5,4),B(2,﹣3),.若互不重合的四点C,D,E,F,满足,则C,D,E,F四点【 】
A.在同一条直线上 B.在同一条抛物线上
C.在同一反比例函数图象上 D.是同一个正方形的四个顶点
3.有三张正面分别标有数字-2 ,3, 4 的不透明卡片,它们除数字不同外,其余全部相同,现将它们背面朝上洗匀后, 从中任取一张(不放回),再从剩余的卡片中任取一张, 则两次抽取的卡片上的数字之积为正偶数的概率是( )
A. B. C. D.
4.气象台预报“本市明天下雨的概率是85%”,对此信息,下列说法正确的是( )
A.本市明天将有的地区下雨 B.本市明天将有的时间下雨
C.本市明天下雨的可能性比较大 D.本市明天肯定下雨
5.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是( )
A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BC
C.AB=CD,AD=BC D.∠DAB+∠BCD=180°
6.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是( )
A.k>0,且b>0 B.k<0,且b>0 C.k>0,且b<0 D.k<0,且b<0
7.如果一组数据6、7、x、9、5的平均数是2x,那么这组数据的方差为( )
A.4 B.3 C.2 D.1
8.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是( )
A. B. C. D.
9.如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是( )
A. B. C. D.
10.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.2017年端午小长假的第一天,永州市共接待旅客约275 000人次,请将275 000用科学记数法表示为___________________.
12.某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.
13.如图,中,AC=3,BC=4,,P为AB上一点,且AP=2BP,若点A绕点C顺时针旋转60°,则点P随之运动的路径长是_________
14. 一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinα•cosβ+cosα•sinβ;sin(α﹣β)=sinα•cosβ﹣cosα•sinβ.例如sin90°=sin(60°+30°)=sin60°•cos30°+cos60°•sin30°==1.类似地,可以求得sin15°的值是_______.
15.计算的结果为 .
16.定义:直线l1与l2相交于点O,对于平面内任意一点M,点M到直线l1,l2的距离分别为p、q,则称有序实数对(p,q)是点M的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数共有______个.
17.将6本相同厚度的书叠起来,它们的高度是9厘米.如果将这样相同厚度的书叠起来的高度是42厘米,那么这些书有_____本.
三、解答题(共7小题,满分69分)
18.(10分)如图,矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB、CD的延长线分别交于E、F.
(1)证明:△BOE≌△DOF;
(2)当EF⊥AC时,求证四边形AECF是菱形.
19.(5分)某学校八、九两个年级各有学生180人,为了解这两个年级学生的体质健康情况,进行了抽样调查,具体过程如下:
收集数据
从八、九两个年级各随机抽取20名学生进行体质健康测试,测试成绩(百分制)如下:
八年级
78
86
74
81
75
76
87
70
75
90
75
79
81
70
74
80
86
69
83
77
九年级
93
73
88
81
72
81
94
83
77
83
80
81
70
81
73
78
82
80
70
40
整理、描述数据
将成绩按如下分段整理、描述这两组样本数据:
成绩(x)
40≤x≤49
50≤x≤59
60≤x≤69
70≤x≤79
80≤x≤89
90≤x≤100
八年级人数
0
0
1
11
7
1
九年级人数
1
0
0
7
10
2
(说明:成绩80分及以上为体质健康优秀,70~79分为体质健康良好,60~69分为体质健康合格,60分以下为体质健康不合格)
分析数据
两组样本数据的平均数、中位数、众数、方差如表所示:
年级
平均数
中位数
众数
方差
八年级
78.3
77.5
75
33.6
九年级
78
80.5
a
52.1
(1)表格中a的值为______;请你估计该校九年级体质健康优秀的学生人数为多少?根据以上信息,你认为哪个年级学生的体质健康情况更好一些?请说明理由.(请从两个不同的角度说明推断的合理性)
20.(8分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)的顶点、的坐标分别为,.
请在如图所示的网格平面内作出平面直角坐标系;请作出关于轴对称的;点的坐标为 .的面积为 .
21.(10分)声音在空气中传播的速度y(m/s)是气温x(℃)的一次函数,下表列出了一组不同气温的音速:
气温x(℃)
0
5
10
15
20
音速y(m/s)
331
334
337
340
343
(1)求y与x之间的函数关系式:
(2)气温x=23℃时,某人看到烟花燃放5s后才听到声响,那么此人与烟花燃放地约相距多远?
22.(10分)已知:如图,在△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E为的中点.
求证:∠ACD=∠DEC;(2)延长DE、CB交于点P,若PB=BO,DE=2,求PE的长
23.(12分)正方形ABCD的边长是10,点E是AB的中点,动点F在边BC上,且不与点B、C重合,将△EBF沿EF折叠,得到△EB′F.
(1)如图1,连接AB′.
①若△AEB′为等边三角形,则∠BEF等于多少度.
②在运动过程中,线段AB′与EF有何位置关系?请证明你的结论.
(2)如图2,连接CB′,求△CB′F周长的最小值.
(3)如图3,连接并延长BB′,交AC于点P,当BB′=6时,求PB′的长度.
24.(14分)如图,甲、乙两座建筑物的水平距离为,从甲的顶部处测得乙的顶部处的俯角为,测得底部处的俯角为,求甲、乙建筑物的高度和(结果取整数).参考数据:,.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
根据科学计数法的定义来表示数字,选出正确答案.
【详解】
解:把一个数表示成a(1≤a<10,n为整数)与10的幂相乘的形式,这种记数法叫做科学记数法,280亿用科学计数法表示为2.8×1010,所以答案选D.
【点睛】
本题考查学生对科学计数法的概念的掌握和将数字用科学计数法表示的能力.
2、A。
【解析】∵对于点A(x1,y1),B(x2,y2),,
∴如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),
那么,
。
又∵,
∴。
∴。
令,
则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线上,
∴互不重合的四点C,D,E,F在同一条直线上。故选A。
3、C
【解析】
画树状图得:
∵共有6种等可能的结果,两次抽取的卡片上的数字之积为正偶数的有2种情况,
∴两次抽取的卡片上的数字之积为正偶数的概率是:.
故选C.
【点睛】运用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.
4、C
【解析】
试题解析:根据概率表示某事情发生的可能性的大小,分析可得:
A、明天降水的可能性为85%,并不是有85%的地区降水,错误;
B、本市明天将有85%的时间降水,错误;
C、明天降水的可能性为90%,说明明天降水的可能性比较大,正确;
D、明天肯定下雨,错误.
故选C.
考点:概率的意义.
5、D
【解析】
首先可判断重叠部分为平行四边形,且两条纸条宽度相同;再由平行四边形的等积转换可得邻边相等,则四边形为菱形.所以根据菱形的性质进行判断.
【详解】
解:
四边形是用两张等宽的纸条交叉重叠地放在一起而组成的图形,
,,
四边形是平行四边形(对边相互平行的四边形是平行四边形);
过点分别作,边上的高为,.则
(两纸条相同,纸条宽度相同);
平行四边形中,,即,
,即.故正确;
平行四边形为菱形(邻边相等的平行四边形是菱形).
,(菱形的对角相等),故正确;
,(平行四边形的对边相等),故正确;
如果四边形是矩形时,该等式成立.故不一定正确.
故选:.
【点睛】
本题考查了菱形的判定与性质.注意:“邻边相等的平行四边形是菱形”,而非“邻边相等的四边形是菱形”.
6、B
【解析】
试题分析:∵一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,
∴k<0,b>0,
故选B.
考点:一次函数的性质和图象
7、A
【解析】
分析:先根据平均数的定义确定出x的值,再根据方差公式进行计算即可求出答案.
详解:根据题意,得:=2x
解得:x=3,
则这组数据为6、7、3、9、5,其平均数是6,
所以这组数据的方差为 [(6﹣6)2+(7﹣6)2+(3﹣6)2+(9﹣6)2+(5﹣6)2]=4,
故选A.
点睛:此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.
8、B
【解析】
【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.
【详解】小刚从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,
故选B.
【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.
9、C
【解析】
由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,据此可得.
【详解】
由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,
所以其主视图为:
故选C.
【点睛】
考查了三视图的知识,主视图是从物体的正面看得到的视图.
10、D
【解析】
过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.
【详解】
过C点作CD⊥AB,垂足为D.
根据旋转性质可知,∠B′=∠B.
在Rt△BCD中,tanB=,
∴tanB′=tanB=.
故选D.
【点睛】
本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.
二、填空题(共7小题,每小题3分,满分21分)
11、1.75×2
【解析】
试题解析:175 000=1.75×2.
考点:科学计数法----表示较大的数
12、10%
【解析】
本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)1=1+44%,解这个方程即可求出答案.
【详解】
解:设这两年平均每年的绿地增长率为x,根据题意得,
(1+x)1=1+44%,
解得x1=-1.1(舍去),x1=0.1.
答:这两年平均每年绿地面积的增长率为10%.
故答案为10%
【点睛】
此题考查增长率的问题,一般公式为:原来的量×(1±x)1=现在的量,增长用+,减少用-.但要注意解的取舍,及每一次增长的基础.
13、
【解析】
作PD⊥BC,则点P运动的路径长是以点D为圆心,以PD为半径,圆心角为60°的一段圆弧,根据相似三角形的判定与性质求出PD的长,然后根据弧长公式求解即可.
【详解】
作PD⊥BC,则PD∥AC,
∴△PBD~△ABC,
∴ .
∵AC=3,BC=4,
∴AB=,
∵AP=2BP,
∴BP=,
∴,
∴点P运动的路径长=.
故答案为:.
【点睛】
本题考查了相似三角形的判定与性质,弧长的计算,根据相似三角形的判定与性质求出PD的长是解答本题的关键.
14、.
【解析】
试题分析:sin15°=sin(60°﹣45°)=sin60°•cos45°﹣cos60°•sin45°==.故答案为.
考点:特殊角的三角函数值;新定义.
15、
【解析】
直接把分子相加减即可.
【详解】
=,故答案为:.
【点睛】
本题考查了分式的加减法,关键是要注意通分及约分的灵活应用.
16、4
【解析】
根据“距离坐标”和平面直角坐标系的定义分别写出各点即可.
【详解】
距离坐标是(1,2)的点有(1,2),(-1,2),(-1,-2),(1,-2)共四个,所以答案填写4.
【点睛】
本题考查了点的坐标,理解题意中距离坐标是解题的关键.
17、1.
【解析】
因为一本书的厚度是一定的,根据本数与书的高度成正比列比例式即可得到结论.
【详解】
设这些书有x本,
由题意得,,
解得:x=1,
答:这些书有1本.
故答案为:1.
【点睛】
本题考查了比例的性质,正确的列出比例式是解题的关键.
三、解答题(共7小题,满分69分)
18、(1)(2)证明见解析
【解析】
(1)根据矩形的性质,通过“角角边”证明三角形全等即可;
(2)根据题意和(1)可得AC与EF互相垂直平分,所以四边形AECF是菱形.
【详解】
(1)证明:∵四边形ABCD是矩形,
∴OB=OD,AE∥CF,
∴∠E=∠F(两直线平行,内错角相等),
在△BOE与△DOF中,
,
∴△BOE≌△DOF(AAS).
(2)
证明:∵四边形ABCD是矩形,
∴OA=OC,
又∵由(1)△BOE≌△DOF得,OE=OF,
∴四边形AECF是平行四边形,
又∵EF⊥AC,
∴四边形AECF是菱形.
19、 (1)81;(2) 108人;(3)见解析.
【解析】
(1)根据众数的概念解答;
(2)求出九年级学生体质健康的优秀率,计算即可;
(3)分别从不同的角度进行评价.
【详解】
解:(1)由测试成绩可知,81分出现的次数最多,
∴a=81,
故答案为:81;
(2)九年级学生体质健康的优秀率为:,
九年级体质健康优秀的学生人数为:180×60%=108(人),
答:估计该校九年级体质健康优秀的学生人数为108人;
(3)①因为八年级学生的平均成绩高于九年级的平均成绩,且八年级学生成绩的方差小于九年级的方差,所以八年级学生的体质健康情况更好一些.
②因为九年级学生的优秀率(60%)高于八年级的优秀率(40%),且九年级学生成绩的众数或中位数高于八年级的众数或中位数,所以九年级学生的体质健康情况更好一些.
【点睛】
本题考查的是用样本估计总体、方差、平均数、众数和中位数的概念和性质,正确求出样本的众数、理解方差和平均数、众数、中位线的性质是解题的关键.
20、(1)见解析;(2)见解析;(3);(4)4.
【解析】
(1)根据C点坐标确定原点位置,然后作出坐标系即可;
(2)首先确定A、B、C三点关于y轴对称的点的位置,再连接即可;
(3)根据点在坐标系中的位置写出其坐标即可
(4)利用长方形的面积剪去周围多余三角形的面积即可.
【详解】
解:(1)如图所示:
(2)如图所示:
(3)结合图形可得:;
(4) .
【点睛】
此题主要考查了作图−−轴对称变换,关键是确定组成图形的关键点的对称点位置.
21、 (1) y=x+331;(2)1724m.
【解析】
(1)先设函数一般解析式,然后根据表格中的数据选择其中两个带入解析式中即可求得函数关系式(2)将x=23带入函数解析式中求解即可.
【详解】
解:(1)设y=kx+b,∴
∴k=,
∴y=x+331.
(2)当x=23时,y= x23+331=344.8
∴5344.8=1724.
∴此人与烟花燃放地相距约1724m.
【点睛】
此题重点考察学生对一次函数的实际应用,熟练掌握一次函数解析式的求法是解题的关键.
22、(1)见解析;(2)PE=4.
【解析】
(1)根据同角的余角相等得到∠ACD=∠B,然后由圆周角定理可得结论;
(2)连结OE,根据圆周角定理和等腰三角形的性质证明OE∥CD,然后由△POE∽△PCD列出比例式,求解即可.
【详解】
解:(1)证明:∵BC是⊙O的直径,
∴∠BDC=90°,∴∠BCD+∠B=90°,
∵∠ACB=90°,
∴∠BCD+∠ACD=90°,
∴∠ACD=∠B,
∵∠DEC=∠B,
∴∠ACD=∠DEC
(2)证明:连结OE
∵E为BD弧的中点.
∴∠DCE=∠BCE
∵OC=OE
∴∠BCE=∠OEC
∴∠DCE=∠OEC
∴OE∥CD
∴△POE∽△PCD,
∴
∵PB=BO,DE=2
∴PB=BO=OC
∴
∴
∴PE=4
【点睛】
本题是圆的综合题,主要考查了圆周角定理、等腰三角形的判定和性质、相似三角形的判定与性质,熟练掌握圆的相关知识和相似三角形的性质是解题的关键.
23、(1)①∠BEF=60°;②A B'∥EF,证明见解析;(2)△CB′F周长的最小值5+5;(3)PB′=.
【解析】
(1)①当△AEB′为等边三角形时,∠AE B′=60°,由折叠可得,∠BEF= ∠BE B′= ×120°=60°;②依据AE=B′E,可得∠EA B′=∠E B′A,再根据∠BEF=∠B′EF,即可得到∠BEF=∠BA B′,进而得出EF∥A B′;
(2)由折叠可得,CF+ B′F=CF+BF=BC=10,依据B′E+ B′C≥CE,可得B′C≥CE﹣B′E=5﹣5,进而得到B′C最小值为5﹣5,故△CB′F周长的最小值=10+5﹣5=5+5;
(3)将△ABB′和△APB′分别沿AB、AC翻折到△ABM和△APN处,延长MB、NP相交于点Q,由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四边形AMQN为正方形,设PB′=PN=x,则BP=6+x,BQ=8﹣6=2,QP=8﹣x.依据∠BQP=90°,可得方程22+(8﹣x)2=(6+x)2,即可得出PB′的长度.
【详解】
(1)①当△AE B′为等边三角形时,∠AE B′=60°,
由折叠可得,∠BEF=∠BE B′=×120°=60°,
故答案为60;
②A B′∥EF,
证明:∵点E是AB的中点,
∴AE=BE,
由折叠可得BE=B′E,
∴AE=B′E,
∴∠EA B′=∠E B′A,
又∵∠BEF=∠B′EF,
∴∠BEF=∠BA B′,
∴EF∥A B′;
(2)如图,点B′的轨迹为半圆,由折叠可得,BF=B′F,
∴CF+ B′F=CF+BF=BC=10,
∵B′E+ B′C≥CE,
∴B′C≥CE﹣B′E=5﹣5,
∴B′C最小值为5﹣5,
∴△CB′F周长的最小值=10+5﹣5=5+5;
(3)如图,连接A B′,易得∠A B′B=90°,
将△AB B′和△AP B′分别沿AB、AC翻折到△ABM和△APN处,延长MB、NP相交于点Q,
由∠MAN=2∠BAC=90°,∠M=∠N=90°,AM=AN,可得四边形AMQN为正方形,
由AB=10,B B′=6,可得A B′=8,
∴QM=QN=A B′=8,
设P B′=PN=x,则BP=6+x,BQ=8﹣6=2,QP=8﹣x.
∵∠BQP=90°,
∴22+(8﹣x)2=(6+x)2,
解得:x=,
∴P B′=x=.
【点睛】
本题属于四边形综合题,主要考查了折叠的性质,等边三角形的性质,正方形的判定与性质以及勾股定理的综合运用,解题的关键是设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
24、甲建筑物的高度约为,乙建筑物的高度约为.
【解析】
分析:首先分析图形:根据题意构造直角三角形;本题涉及两个直角三角形,应利用其公共边构造关系式,进而可求出答案.
详解:如图,过点作,垂足为.
则.
由题意可知,,,,,.
可得四边形为矩形.
∴,.
在中,,
∴.
在中,,
∴.
∴ .
∴.
答:甲建筑物的高度约为,乙建筑物的高度约为.
点睛:本题考查解直角三角形的应用--仰角俯角问题,首先构造直角三角形,再借助角边关系、三角函数的定义解题,难度一般.
2022年浙江省台州椒江区中考考前最后一卷数学试卷含解析: 这是一份2022年浙江省台州椒江区中考考前最后一卷数学试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列判断错误的是等内容,欢迎下载使用。
2022届浙江省仙居县市级名校中考数学考前最后一卷含解析: 这是一份2022届浙江省仙居县市级名校中考数学考前最后一卷含解析,共21页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2021-2022学年潜江市中考数学考前最后一卷含解析: 这是一份2021-2022学年潜江市中考数学考前最后一卷含解析,共21页。试卷主要包含了答题时请按要求用笔,若分式有意义,则x的取值范围是,下列运算正确的是等内容,欢迎下载使用。