2021-2022学年浙江省宁波市江北区中考数学考前最后一卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.关于x的方程x2﹣3x+k=0的一个根是2,则常数k的值为( )
A.1 B.2 C.﹣1 D.﹣2
2.如图,在中, ,以边的中点为圆心,作半圆与相切,点分别是边和半圆上的动点,连接,则长的最大值与最小值的和是( )
A. B. C. D.
3.不等式组的解集在数轴上可表示为( )
A. B. C. D.
4.已知一个正n边形的每个内角为120°,则这个多边形的对角线有( )
A.5条 B.6条 C.8条 D.9条
5.为了解某小区小孩暑期的学习情况,王老师随机调查了该小区8个小孩某天的学习时间,结果如下(单位:小时):1.5,1.5,3,4,2,5,2.5,4.5,关于这组数据,下列结论错误的是( )
A.极差是3.5 B.众数是1.5 C.中位数是3 D.平均数是3
6.如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为( )
A.105° B.110° C.115° D.120°
7.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是
A.6.75×103吨 B.67.5×103吨 C.6.75×104吨 D.6.75×105吨
8.若正六边形的边长为6,则其外接圆半径为( )
A.3 B.3 C.3 D.6
9.估计﹣1的值在( )
A.1和2之间 B.2和3之间 C.3和4之间 D.4和5之间
10.若分式有意义,则x的取值范围是( )
A.x>3 B.x<3 C.x≠3 D.x=3
11.某班组织了针对全班同学关于“你最喜欢的一项体育活动”的问卷调查后,绘制出频数分布直方图,由图可知,下列结论正确的是( )
A.最喜欢篮球的人数最多 B.最喜欢羽毛球的人数是最喜欢乒乓球人数的两倍
C.全班共有50名学生 D.最喜欢田径的人数占总人数的10 %
12.如图所示的四个图案是四国冬季奥林匹克运动会会徽图案上的一部分图形,其中为轴对称图形的是( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:
则,y2=_____,第n次的运算结果yn=_____.(用含字母x和n的代数式表示).
14.已知关于x的方程x2﹣2x﹣m=0没有实数根,那么m的取值范围是_____.
15.下面是用棋子摆成的“上”字:
如果按照以上规律继续摆下去,那么通过观察,可以发现:第n个“上”字需用_____枚棋子.
16. “五一”期间,一批九年级同学包租一辆面包车前去竹海游览,面包车的租金为300元,出发时,又增加了4名同学,且租金不变,这样每个同学比原来少分摊了20元车费.若设参加游览的同学一共有x人,为求x,可列方程_____.
17.如图,在△ABC中,∠ABC=90°,AB=CB,F为AB延长线上一点,点E在BC上,且AE=CF,若∠CAE=32°,则∠ACF的度数为__________°.
18.在平面直角坐标系中,抛物线y=x2+x+2上有一动点P,直线y=﹣x﹣2上有一动线段AB,当P点坐标为_____时,△PAB的面积最小.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有甲、乙两种型号的设备可供选购,经调查:购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元.求甲、乙两种型号设备的价格;该公司经预算决定购买节省能源的新设备的资金不超过110万元,你认为该公司有几种购买方案;在(2)的条件下,已知甲型设备的产量为240吨/月,乙型设备的产量为180吨/月,若每月要求总产量不低于2040吨,为了节约资金,请你为该公司设计一种最省钱的购买方案.
20.(6分)某文具店购进A,B两种钢笔,若购进A种钢笔2支,B种钢笔3支,共需90元;购进A种钢笔3支,B种钢笔5支,共需145元.
(1)求A、B两种钢笔每支各多少元?
(2)若该文具店要购进A,B两种钢笔共90支,总费用不超过1588元,并且A种钢笔的数量少于B种钢笔的数量,那么该文具店有哪几种购买方案?
(3)文具店以每支30元的价格销售B种钢笔,很快销售一空,于是,文具店决定在进价不变的基础上再购进一批B种钢笔,涨价卖出,经统计,B种钢笔售价为30元时,每月可卖68支;每涨价1元,每月将少卖4支,设文具店将新购进的B种钢笔每支涨价a元(a为正整数),销售这批钢笔每月获利W元,试求W与a之间的函数关系式,并且求出B种铅笔销售单价定为多少元时,每月获利最大?最大利润是多少元?
21.(6分)如图,在△ABC中,∠ABC=90°.
(1)作∠ACB的平分线交AB边于点O,再以点O为圆心,OB的长为半径作⊙O;(要求:不写做法,保留作图痕迹)
(2)判断(1)中AC与⊙O的位置关系,直接写出结果.
22.(8分)如图,抛物线经过点A(﹣2,0),点B(0,4).
(1)求这条抛物线的表达式;
(2)P是抛物线对称轴上的点,联结AB、PB,如果∠PBO=∠BAO,求点P的坐标;
(3)将抛物线沿y轴向下平移m个单位,所得新抛物线与y轴交于点D,过点D作DE∥x轴交新抛物线于点E,射线EO交新抛物线于点F,如果EO=2OF,求m的值.
23.(8分)观察下列等式:
第1个等式:;
第2个等式:;
第3个等式:;
第4个等式:;
…
请解答下列问题:按以上规律列出第5个等式:a5= = ;用含有n的代数式表示第n个等式:an= = (n为正整数);求a1+a2+a3+a4+…+a100的值.
24.(10分)如图,在等边三角形ABC中,点D,E分别在BC, AB上,且∠ADE=60°.求证:△ADC~△DEB.
25.(10分)如图,△ABC三个定点坐标分别为A(﹣1,3),B(﹣1,1),C(﹣3,2).
请画出△ABC关于y轴对称的△A1B1C1;以原点O为位似中心,将△A1B1C1放大为原来的2倍,得到△A2B2C2,请在第三象限内画出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.
26.(12分)某书店老板去图书批发市场购买某种图书,第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.
(1)第一次购书的进价是多少元?
(2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少;若赚钱,赚多少?
27.(12分)如图,在△ABC中,AD、AE分别为△ABC的中线和角平分线.过点C作CH⊥AE于点H,并延长交AB于点F,连接DH,求证:DH=BF.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
根据一元二次方程的解的定义,把x=2代入得4-6+k=0,然后解关于k的方程即可.
【详解】
把x=2代入得,4-6+k=0,
解得k=2.
故答案为:B.
【点睛】
本题主要考查了一元二次方程的解,掌握一元二次方程的定义,把已知代入方程,列出关于k的新方程,通过解新方程来求k的值是解题的关键.
2、C
【解析】
如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,求出OP1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,由此不难解决问题.
【详解】
解:如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,
此时垂线段OP1最短,P1Q1最小值为OP1-OQ1,
∵AB=10,AC=8,BC=6,
∴AB2=AC2+BC2,
∴∠C=10°,
∵∠OP1B=10°,
∴OP1∥AC
∵AO=OB,\
∴P1C=P1B,
∴OP1=AC=4,
∴P1Q1最小值为OP1-OQ1=1,
如图,当Q2在AB边上时,P2与B重合时,P2Q2经过圆心,经过圆心的弦最长,
P2Q2最大值=5+3=8,
∴PQ长的最大值与最小值的和是1.
故选:C.
【点睛】
本题考查切线的性质、三角形中位线定理等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型.
3、A
【解析】
先求出每个不等式的解集,再求出不等式组的解集即可.
【详解】
解:
∵不等式①得:x>1,
解不等式②得:x≤2,
∴不等式组的解集为1<x≤2,
在数轴上表示为:,
故选A.
【点睛】
本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.
4、D
【解析】
多边形的每一个内角都等于120°,则每个外角是60°,而任何多边形的外角是360°,则求得多边形的边数;再根据多边形一个顶点出发的对角线=n﹣3,即可求得对角线的条数.
【详解】
解:∵多边形的每一个内角都等于120°,
∴每个外角是60度,
则多边形的边数为360°÷60°=6,
则该多边形有6个顶点,
则此多边形从一个顶点出发的对角线共有6﹣3=3条.
∴这个多边形的对角线有(6×3)=9条,
故选:D.
【点睛】
本题主要考查多边形内角和与外角和及多边形对角线,掌握求多边形边数的方法是解本题的关键.
5、C
【解析】
由极差、众数、中位数、平均数的定义对四个选项一一判断即可.
【详解】
A.极差为5﹣1.5=3.5,此选项正确;
B.1.5个数最多,为2个,众数是1.5,此选项正确;
C.将式子由小到大排列为:1.5,1.5,2,2.5,3,4,4.5,5,中位数为×(2.5+3)=2.75,此选项错误;
D.平均数为:×(1.5+1.5+2+2.5+3+4+4.5+5)=3,此选项正确.
故选C.
【点睛】
本题主要考查平均数、众数、中位数、极差的概念,其中在求中位数的时候一定要将给出的数据按从大到小或者从小到大的顺序排列起来再进行求解.
6、C
【解析】
如图,首先证明∠AMO=∠2,然后运用对顶角的性质求出∠ANM=55°;借助三角形外角的性质求出∠AMO即可解决问题.
【详解】
如图,对图形进行点标注.
∵直线a∥b,
∴∠AMO=∠2;
∵∠ANM=∠1,而∠1=55°,
∴∠ANM=55°,
∴∠2=∠AMO=∠A+∠ANM=60°+55°=115°,
故选C.
【点睛】
本题考查了平行线的性质,三角形外角的性质,熟练掌握和灵活运用相关知识是解题的关键.
7、C
【解析】
试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).67500一共5位,从而67 500=6.75×2.故选C.
8、D
【解析】
连接正六边形的中心和各顶点,得到六个全等的正三角形,于是可知正六边形的边长等于正三角形的边长,为正六边形的外接圆半径.
【详解】
如图为正六边形的外接圆,ABCDEF是正六边形,
∴∠AOF=10°, ∵OA=OF, ∴△AOF是等边三角形,∴OA=AF=1.
所以正六边形的外接圆半径等于边长,即其外接圆半径为1.
故选D.
【点睛】
本题考查了正六边形的外接圆的知识,解题的关键是画出图形,找出线段之间的关系.
9、B
【解析】
根据,可得答案.
【详解】
解:∵,
∴,
∴
∴﹣1的值在2和3之间.
故选B.
【点睛】
本题考查了估算无理数的大小,先确定的大小,在确定答案的范围.
10、C
【解析】
试题分析:∵分式有意义,∴x﹣3≠0,∴x≠3;故选C.
考点:分式有意义的条件.
11、C
【解析】
【分析】观察直方图,根据直方图中提供的数据逐项进行分析即可得.
【详解】观察直方图,由图可知:
A. 最喜欢足球的人数最多,故A选项错误;
B. 最喜欢羽毛球的人数是最喜欢田径人数的两倍,故B选项错误;
C. 全班共有12+20+8+4+6=50名学生,故C选项正确;
D. 最喜欢田径的人数占总人数的=8 %,故D选项错误,
故选C.
【点睛】本题考查了频数分布直方图,从直方图中得到必要的信息进行解题是关键.
12、D
【解析】
根据轴对称图形的概念求解.
【详解】
解:根据轴对称图形的概念,A、B、C都不是轴对称图形,D是轴对称图形.
故选D.
【点睛】
本题主要考查轴对称图形,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
根据题目中的程序可以分别计算出y2和yn,从而可以解答本题.
【详解】
∵y1=,∴y2===,y3=,……
yn=.
故答案为:.
【点睛】
本题考查了分式的混合运算,解答本题的关键是明确题意,用代数式表示出相应的y2和yn.
14、m<﹣1.
【解析】
根据根的判别式得出b2﹣4ac<0,代入求出不等式的解集即可得到答案.
【详解】
∵关于x的方程x2﹣2x﹣m=0没有实数根,
∴b2﹣4ac=(﹣2)2﹣4×1×(﹣m)<0,
解得:m<﹣1,
故答案为:m<﹣1.
【点睛】
本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac与根的关系,熟练掌握根的判别式与根的关系式解答本题的关键.当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根.
15、4n+2
【解析】
∵第1个有:6=4×1+2;
第2个有:10=4×2+2;
第3个有:14=4×3+2;
……
∴第1个有: 4n+2;
故答案为4n+2
16、 ﹣=1.
【解析】
原有的同学每人分担的车费应该为,而实际每人分担的车费为,方程应该表示为:﹣=1.
故答案是:﹣=1.
17、58
【解析】
根据HL证明Rt△CBF≌Rt△ABE,推出∠FCB=∠EAB,求出∠CAB=∠ACB=45°,
求出∠BCF=∠BAE=13°,即可求出答案.
【详解】
解:∵∠ABC=90°,
∴∠ABE=∠CBF=90°,
在Rt△CBF和Rt△ABE中
∴Rt△CBF≌Rt△ABE(HL),
∴∠FCB=∠EAB,
∵AB=BC,∠ABC=90°,
∴∠CAB=∠ACB=45°.
∵∠BAE=∠CAB﹣∠CAE=45°﹣32°=13°,
∴∠BCF=∠BAE=13°,
∴∠ACF=∠BCF+∠ACB=45°+13°=58°
故答案为58
【点睛】
本题考查了全等三角形的性质和判定,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的性质是全等三角形的对应边相等,对应角相等.
18、(-1,2)
【解析】
因为线段AB是定值,故抛物线上的点到直线的距离最短,则面积最小,平移直线与抛物线的切点即为P点,然后求得平移后的直线,联立方程,解方程即可.
【详解】
因为线段AB是定值,故抛物线上的点到直线的距离最短,则面积最小,
若直线向上平移与抛物线相切,切点即为P点,
设平移后的直线为y=-x-2+b,
∵直线y=-x-2+b与抛物线y=x2+x+2相切,
∴x2+x+2=-x-2+b,即x2+2x+4-b=0,
则△=4-4(4-b)=0,
∴b=3,
∴平移后的直线为y=-x+1,
解得x=-1,y=2,
∴P点坐标为(-1,2),
故答案为(-1,2).
【点睛】
本题主要考查了二次函数图象上点的坐标特征,三角形的面积以及解方程等,理解直线向上平移与抛物线相切,切点即为P点是解题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)甲,乙两种型号设备每台的价格分别为12万元和10万元.(2)有6种购买方案.(3)最省钱的购买方案为,选购甲型设备4台,乙型设备6台.
【解析】
(1)设甲、乙两种型号设备每台的价格分别为万元和万元,根据购买了3台甲型设备比购买2台乙型设备多花了16万元,购买2台甲型设备比购买3台乙型设备少花6万元可列出方程组,解之即可;
(2)设购买甲型设备台,乙型设备台,根据购买节省能源的新设备的资金不超过110万元列不等式,解之确定m的值,即可确定方案;
(3)因为公司要求每月的产量不低于2040吨,据此可得关于m的不等式,解之即可由m的值确定方案,然后进行比较,做出选择即可.
【详解】
(1)设甲、乙两种型号设备每台的价格分别为万元和万元,
由题意得:,
解得:,
则甲,乙两种型号设备每台的价格分别为12万元和10万元;
(2)设购买甲型设备台,乙型设备台,
则,
∴,
∵取非负整数,
∴,
∴有6种购买方案;
(3)由题意:,
∴,
∴为4或5,
当时,购买资金为:(万元),
当时,购买资金为:(万元),
则最省钱的购买方案是选购甲型设备4台,乙型设备6台.
【点睛】
本题考查了二元一次方程组的应用,一元一次不等式的应用,弄清题意,找准等量关系、不等关系列出方程组与不等式是解题的关键.
20、(1) A种钢笔每只15元 B种钢笔每只20元;
(2) 方案有两种,一方案为:购进A种钢笔43支,购进B种钢笔为47支方案二:购进A种钢笔44支,购进B种钢笔46支;
(3) 定价为33元或34元,最大利润是728元.
【解析】
(1)设A种钢笔每只x元,B种钢笔每支y元,
由题意得 ,
解得: ,
答:A种钢笔每只15元,B种钢笔每支20元;
(2)设购进A种钢笔z支,
由题意得:,
∴42.4≤z<45,
∵z是整数
z=43,44,
∴90-z=47,或46;
∴共有两种方案:方案一:购进A种钢笔43支,购进B种钢笔47支,
方案二:购进A种钢笔44只,购进B种钢笔46只;
(3)W=(30-20+a)(68-4a)=-4a²+28a+680=-4(a-)²+729,
∵-4<0,∴W有最大值,∵a为正整数,
∴当a=3,或a=4时,W最大,
∴W最大==-4×(3-)²+729=728,30+a=33,或34;
答:B种铅笔销售单价定为33元或34元时,每月获利最大,最大利润是728元.
21、(1)见解析(2)相切
【解析】
(1)首先利用角平分线的作法得出CO,进而以点O为圆心,OB为半径作⊙O即
可;
(2)利用角平分线的性质以及直线与圆的位置关系进而求出即可.
【详解】
(1)如图所示:
;
(2)相切;过O点作OD⊥AC于D点,
∵CO平分∠ACB,
∴OB=OD,即d=r,
∴⊙O与直线AC相切,
【点睛】
此题主要考查了复杂作图以及角平分线的性质与作法和直线与圆的位置关系,
正确利用角平分线的性质求出d=r是解题关键.
22、(1);(2)P(1,); (3)3或5.
【解析】
(1)将点A、B代入抛物线,用待定系数法求出解析式.
(2)对称轴为直线x=1,过点P作PG⊥y轴,垂足为G, 由∠PBO=∠BAO,得tan∠PBO=tan∠BAO,即,可求出P的坐标.
(3)新抛物线的表达式为,由题意可得DE=2,过点F作FH⊥y轴,垂足为H,∵DE∥FH,EO=2OF,∴,∴FH=1.然后分情况讨论点D在y轴的正半轴上和在y轴的负半轴上,可求得m的值为3或5.
【详解】
解:(1)∵抛物线经过点A(﹣2,0),点B(0,4)
∴,解得,
∴抛物线解析式为,
(2),
∴对称轴为直线x=1,过点P作PG⊥y轴,垂足为G,
∵∠PBO=∠BAO,∴tan∠PBO=tan∠BAO,
∴,
∴,
∴,
,
∴P(1,),
(3)设新抛物线的表达式为
则,,DE=2
过点F作FH⊥y轴,垂足为H,∵DE∥FH,EO=2OF
∴,
∴FH=1.
点D在y轴的正半轴上,则,
∴,
∴,
∴m=3,
点D在y轴的负半轴上,则,
∴,
∴,
∴m=5,
∴综上所述m的值为3或5.
【点睛】
本题是二次函数和相似三角形的综合题目,整体难度不大,但是非常巧妙,学会灵活运用是关键.
23、(1)(2)(3)
【解析】
(1)(2)观察知,找等号后面的式子规律是关键:分子不变,为1;分母是两个连续奇数的乘积,它们与式子序号之间的关系为:序号的2倍减1和序号的2倍加1.
(3)运用变化规律计算
【详解】
解:(1)a5=;
(2)an=;
(3)a1+a2+a3+a4+…+a100
.
24、见解析
【解析】
根据等边三角形性质得∠B=∠C,根据三角形外角性质得∠CAD=∠BDE,易证.
【详解】
证明:ABC是等边三角形,
∴∠B=∠C=60°,
∴∠ADB=∠CAD+∠C= ∠CAD+60°,
∵∠ADE=60°,
∴∠ADB=∠BDE+60°,
∴∠CAD=∠BDE,
∴
【点睛】
考核知识点:相似三角形的判定.根据等边三角形性质和三角形外角确定对应角相等是关键.
25、(1)见解析;(2)图见解析;.
【解析】
(1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可.
(2)连接A1O并延长至A2,使A2O=2A1O,连接B1O并延长至B2,使B2O=2B1O,连接C1O并延长至C2,使C2O=2C1O,然后顺次连接即可,再根据相似三角形面积的比等于相似比的平方解答.
【详解】
解:(1)△A1B1C1如图所示.
(2)△A2B2C2如图所示.
∵△A1B1C1放大为原来的2倍得到△A2B2C2,∴△A1B1C1∽△A2B2C2,且相似比为.
∴S△A1B1C1:S△A2B2C2=()2=.
26、赚了520元
【解析】
(1)设第一次购书的单价为x元,根据第一次用1200元购书若干本,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书的数量比第一次多10本,列出方程,求出x的值即可得出答案;
(2)根据(1)先求出第一次和第二次购书数目,再根据卖书数目×(实际售价﹣当次进价)求出二次赚的钱数,再分别相加即可得出答案.
【详解】
(1)设第一次购书的单价为x元,
根据题意得:+10=,
解得:x=5,
经检验,x=5是原方程的解,
答:第一次购书的进价是5元;
(2)第一次购书为1200÷5=240(本),
第二次购书为240+10=250(本),
第一次赚钱为240×(7﹣5)=480(元),
第二次赚钱为200×(7﹣5×1.2)+50×(7×0.4﹣5×1.2)=40(元),
所以两次共赚钱480+40=520(元),
答:该老板两次售书总体上是赚钱了,共赚了520元.
【点睛】
此题考查了分式方程的应用,掌握这次活动的流程,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
27、见解析.
【解析】
先证明△AFC为等腰三角形,根据等腰三角形三线合一证明H为FC的中点,又D为BC的中点,根据中位线的性质即可证明.
【详解】
∵AE为△ABC的角平分线,CH⊥AE,
∴△ACF是等腰三角形,
∴AF=AC,HF=CH,
∵AD为△ABC的中线,
∴DH是△BCF的中位线,
∴DH=BF.
【点睛】
本题考查三角形中位线定理,等腰三角形的判定与性质.解决本题的关键是证明H点为FC的中点,然后利用中位线的性质解决问题.本题中要证明DH=BF,一般三角形中出现这种2倍或关系时,常用中位线的性质解决.
浙江省宁波市北仑区重点达标名校2021-2022学年中考数学考前最后一卷含解析: 这是一份浙江省宁波市北仑区重点达标名校2021-2022学年中考数学考前最后一卷含解析,共19页。试卷主要包含了若a与5互为倒数,则a=等内容,欢迎下载使用。
宁波市鄞州区市级名校2021-2022学年中考数学考前最后一卷含解析: 这是一份宁波市鄞州区市级名校2021-2022学年中考数学考前最后一卷含解析,共20页。
2022年浙江宁波江北区中考数学考前最后一卷含解析: 这是一份2022年浙江宁波江北区中考数学考前最后一卷含解析,共20页。