2021-2022学年山东省青岛市崂山区部分中学中考猜题数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.下列运算正确的是 ( )
A.2+a=3 B. =
C. D.=
2.若代数式有意义,则实数x的取值范围是( )
A.x>0 B.x≥0 C.x≠0 D.任意实数
3.如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD是平行四边形,AB=3,则的弧长为( )
A. B.π C. D.3
4.如图所示的几何体是一个圆锥,下面有关它的三视图的结论中,正确的是( )
A.主视图是中心对称图形
B.左视图是中心对称图形
C.主视图既是中心对称图形又是轴对称图形
D.俯视图既是中心对称图形又是轴对称图形
5.如图,以O为圆心的圆与直线交于A、B两点,若△OAB恰为等边三角形,则弧AB的长度为( )
A. B.π C.π D.π
6.如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为( )
A.8 B.8 C.4 D.6
7.如图,已知BD与CE相交于点A,ED∥BC,AB=8,AC=12,AD=6,那么AE的长等于( )
A.4 B.9 C.12 D.16
8.下列4个数:,,π,()0,其中无理数是( )
A. B. C.π D.()0
9.在Rt△ABC中,∠C=90°,那么sin∠B等于( )
A. B. C. D.
10.我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度.祖冲之继承并发展了“割圆术”,将π的值精确到小数点后第七位,这一结果领先世界一千多年,“割圆术”的第一步是计算半径为1的圆内接正六边形的面积S6,则S6的值为( )
A. B.2 C. D.
11.下列计算正确的是( )
A. B.0.00002=2×105
C. D.
12.如图,左、右并排的两棵树AB和CD,小树的高AB=6m,大树的高CD=9m,小明估计自己眼睛距地面EF=1.5m,当他站在F点时恰好看到大树顶端C点.已知此时他与小树的距离BF=2m,则两棵树之间的距离BD是( )
A.1m B.m C.3m D.m
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.图中圆心角∠AOB=30°,弦CA∥OB,延长CO与圆交于点D,则∠BOD= .
14.可燃冰是一种新型能源,它的密度很小,可燃冰的质量仅为.数字0.00092用科学记数法表示是__________.
15.学校乒乓球社团有4名男队员和3名女队员,要从这7名队员中随机抽取一男一女组成一队混合双打组合,可组成不同的组合共有_____对.
16.某校为了了解学生双休日参加社会实践活动的情况,随机抽取了100名学生进行调查,并绘成如图所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校双休日参加社会实践活动时间在2~2.5小时之间的学生数大约是全体学生数的________(填百分数).
17.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快50千米,提速后从北京到上海运行时间缩短了30分钟.已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x千米/时,依题意,可列方程为__.
18.如图,AB为圆O的直径,弦CD⊥AB,垂足为点E,连接OC,若OC=5,CD=8,则AE=______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)
(1)转动转盘一次,求转出的数字是-2的概率;
(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.
20.(6分)如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.
(1)求证:BC是⊙O的切线;
(2)已知AD=3,CD=2,求BC的长.
21.(6分)观察下列各式:
①
②
③
由此归纳出一般规律__________.
22.(8分)先化简,再求值:,其中x=-5
23.(8分)如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(1,a),B(3,b)两点.求反比例函数的表达式在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标求△PAB的面积.
24.(10分)先化简,再求值:(﹣1)÷,其中x=1.
25.(10分)在连接A、B两市的公路之间有一个机场C,机场大巴由A市驶向机场C,货车由B市驶向A市,两车同时出发匀速行驶,图中线段、折线分别表示机场大巴、货车到机场C的路程y(km)与出发时间x(h)之间的函数关系图象.直接写出连接A、B两市公路的路程以及货车由B市到达A市所需时间.求机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式.求机场大巴与货车相遇地到机场C的路程.
26.(12分)A粮仓和B粮仓分别库存粮食12吨和6吨,现决定支援给C市10吨和D市8吨.已知从A粮仓调运一吨粮食到C市和D市的运费分别为400元和800元;从B粮仓调运一吨粮食到C市和D市的运费分别为300元和500元.设B粮仓运往C市粮食x吨,求总运费W(元)关于x的函数关系式.(写出自变量的取值范围)若要求总运费不超过9000元,问共有几种调运方案?求出总运费最低的调运方案,最低运费是多少?
27.(12分)在中,,BD为AC边上的中线,过点C作于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取,连接BG,DF.
求证:;
求证:四边形BDFG为菱形;
若,,求四边形BDFG的周长.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
根据整式的混合运算计算得到结果,即可作出判断.
【详解】
A、2与a 不是同类项,不能合并,不符合题意;
B、 =,不符合题意;
C、原式=,不符合题意;
D、=,符合题意,
故选D.
【点睛】
此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
2、C
【解析】
根据分式和二次根式有意义的条件进行解答.
【详解】
解:依题意得:x2≥1且x≠1.
解得x≠1.
故选C.
【点睛】
考查了分式有意义的条件和二次根式有意义的条件.解题时,注意分母不等于零且被开方数是非负数.
3、B
【解析】
∵四边形AECD是平行四边形,
∴AE=CD,
∵AB=BE=CD=3,
∴AB=BE=AE,
∴△ABE是等边三角形,
∴∠B=60°,
∴的弧长=.
故选B.
4、D
【解析】
先得到圆锥的三视图,再根据中心对称图形和轴对称图形的定义求解即可.
【详解】
解:A、主视图不是中心对称图形,故A错误;
B、左视图不是中心对称图形,故B错误;
C、主视图不是中心对称图形,是轴对称图形,故C错误;
D、俯视图既是中心对称图形又是轴对称图形,故D正确.
故选:D.
【点睛】
本题考查简单几何体的三视图,中心对称图形和轴对称图形,熟练掌握各自的定义是解题关键.
5、C
【解析】
过点作,
∵,
∴,,
∴为等腰直角三角形,,
,
∵为等边三角形,
∴,
∴.
∴.故选C.
6、D
【解析】
分析: 连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.
详解: 如图,连接OB,
∵BE=BF,OE=OF,
∴BO⊥EF,
∴在Rt△BEO中,∠BEF+∠ABO=90°,
由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,
∴∠BAC=∠ABO,
又∵∠BEF=2∠BAC,
即2∠BAC+∠BAC=90°,
解得∠BAC=30°,
∴∠FCA=30°,
∴∠FBC=30°,
∵FC=2,
∴BC=2,
∴AC=2BC=4,
∴AB===6,
故选D.
点睛: 本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键.
7、B
【解析】
由于ED∥BC,可证得△ABC∽△ADE,根据相似三角形所得比例线段,即可求得AE的长.
【详解】
∵ED∥BC,
∴△ABC∽△ADE,
∴ =,
∴ ==,
即AE=9;
∴AE=9.
故答案选B.
【点睛】
本题考查的知识点是相似三角形的判定与性质,解题的关键是熟练的掌握相似三角形的判定与性质.
8、C
【解析】
=3,是无限循环小数,π是无限不循环小数,,所以π是无理数,故选C.
9、A
【解析】
根据锐角三角函数的定义得出sinB等于∠B的对边除以斜边,即可得出答案.
【详解】
根据在△ABC中,∠C=90°,
那么sinB= =,
故答案选A.
【点睛】
本题考查的知识点是锐角三角函数的定义,解题的关键是熟练的掌握锐角三角函数的定义.
10、C
【解析】
根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.
【详解】
如图所示,
单位圆的半径为1,则其内接正六边形ABCDEF中,
△AOB是边长为1的正三角形,
所以正六边形ABCDEF的面积为
S6=6××1×1×sin60°=.
故选C.
【点睛】
本题考查了已知圆的半径求其内接正六边形面积的应用问题,关键是根据正三角形的面积,正n边形的性质解答.
11、D
【解析】
在完成此类化简题时,应先将分子、分母中能够分解因式的部分进行分解因式.有些需要先提取公因式,而有些则需要运用公式法进行分解因式.通过分解因式,把分子分母中能够分解因式的部分,分解成乘积的形式,然后找到其中的公因式约去.
【详解】
解:A、原式= ;故本选项错误;
B、原式=2×10-5;故本选项错误;
C、原式= ;故本选项错误;
D、原式=;故本选项正确;
故选:D.
【点睛】
分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算.同样要注意的地方有:一是要确定好结果的符号;二是运算顺序不能颠倒.
12、B
【解析】
由∠AGE=∠CHE=90°,∠AEG=∠CEH可证明△AEG∽△CEH,根据相似三角形对应边成比例求出GH的长即BD的长即可.
【详解】
由题意得:FB=EG=2m,AG=AB﹣BG=6﹣1.5=4.5m,CH=CD﹣DH=9﹣1.5=7.5m,
∵AG⊥EH,CH⊥EH,
∴∠AGE=∠CHE=90°,
∵∠AEG=∠CEH,
∴△AEG∽△CEH,
∴ == ,即 =,
解得:GH=,
则BD=GH=m,
故选:B.
【点睛】
本题考查了相似三角形的应用,解题的关键是从实际问题中抽象出相似三角形.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、30°
【解析】
试题分析:∵CA∥OB,∠AOB=30°,∴∠CAO=∠AOB=30°.
∵OA=OC,∴∠C=∠OAC=30°.
∵∠C和∠AOD是同弧所对的圆周角和圆心角,∴∠AOD=2∠C=60°.
∴∠BOD=60°-30°=30°.
14、9.2×10﹣1.
【解析】
根据科学记数法的正确表示为,由题意可得0.00092用科学记数法表示是9.2×10﹣1.
【详解】
根据科学记数法的正确表示形式可得:
0.00092用科学记数法表示是9.2×10﹣1.
故答案为: 9.2×10﹣1.
【点睛】
本题主要考查科学记数法的正确表现形式,解决本题的关键是要熟练掌握科学记数法的正确表现形式.
15、1
【解析】
利用树状图展示所有1种等可能的结果数.
【详解】
解:画树状图为:
共有1种等可能的结果数.
故答案为1.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
16、.
【解析】
用被抽查的100名学生中参加社会实践活动时间在2~2.5小时之间的学生除以抽查的学生总人数,即可得解.
【详解】
由频数分布直方图知,2~2.5小时的人数为100﹣(8+24+30+10)=28,则该校双休日参加社会实践活动时间在2~2.5小时之间的学生数大约是全体学生数的百分比为100%=28%.
故答案为:28%.
【点睛】
本题考查了频数分布直方图以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.
17、
【解析】
设“复兴号”的速度为x千米/时,则原来列车的速度为(x-50)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.
【详解】
设“复兴号”的速度为x千米/时,则原来列车的速度为(x-50)千米/时,
根据题意得.
故答案为.
【点睛】
本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系.
18、2
【解析】
试题解析:∵AB为圆O的直径,弦CD⊥AB,垂足为点E.
在直角△OCE中,
则AE=OA−OE=5−3=2.
故答案为2.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1);(2).
【解析】
【分析】(1)根据题意可求得2个“-2”所占的扇形圆心角的度数,再利用概率公式进行计算即可得;
(2)由题意可得转出“1”、“3”、“-2”的概率相同,然后列表得到所有可能的情况,再找出符合条件的可能性,根据概率公式进行计算即可得.
【详解】(1)由题意可知:“1”和“3”所占的扇形圆心角为120°,
所以2个“-2”所占的扇形圆心角为360°-2×120°=120°,
∴转动转盘一次,求转出的数字是-2的概率为=;
(2)由(1)可知,该转盘转出“1”、“3”、“-2”的概率相同,均为,所有可能性如下表所示:
第一次 第二次
1
-2
3
1
(1,1)
(1,-2)
(1,3)
-2
(-2,1)
(-2,-2)
(-2,3)
3
(3,1)
(3,-2)
(3,3)
由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为.
【点睛】本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.
20、 (1)证明见解析
(2)BC=
【解析】
(1)AB是⊙O的直径,得∠ADB=90°,从而得出∠BAD=∠DBC,即∠ABC=90°,即可证明BC是⊙O的切线;
(2)可证明△ABC∽△BDC,则,即可得出BC=.
【详解】
(1)∵AB是⊙O的切直径,
∴∠ADB=90°,
又∵∠BAD=∠BED,∠BED=∠DBC,
∴∠BAD=∠DBC,
∴∠BAD+∠ABD=∠DBC+∠ABD=90°,
∴∠ABC=90°,
∴BC是⊙O的切线;
(2)解:∵∠BAD=∠DBC,∠C=∠C,
∴△ABC∽△BDC,
∴,即BC2=AC•CD=(AD+CD)•CD=10,
∴BC=.
考点:1.切线的判定;2.相似三角形的判定和性质.
21、xn+1-1
【解析】
试题分析:观察其右边的结果:第一个是﹣1;第二个是﹣1;…依此类推,则第n个的结果即可求得.
试题解析:(x﹣1)(++…x+1)=.
故答案为.
考点:平方差公式.
22、,-
【解析】
分析:首先把括号里的式子进行通分,然后把除法运算转化成乘法运算,进行约分化简,最后代值计算.
详解:
.
当时,原式.
点睛:本题主要考查分式的混合运算,注意运算顺序,并熟练掌握同分、因式分解、约分等知识点.
23、(1)反比例函数的表达式y=,(2)点P坐标(,0), (3)S△PAB= 1.1.
【解析】
(1)把点A(1,a)代入一次函数中可得到A点坐标,再把A点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D关于x轴的对称点D,连接AD交x轴于点P,此时PA+PB的值最小.由B可知D点坐标,再由待定系数法求出直线AD的解析式,即可得到点P的坐标;(3)由S△PAB=S△ABD﹣S△PBD即可求出△PAB的面积.
解:(1)把点A(1,a)代入一次函数y=﹣x+4,
得a=﹣1+4,
解得a=3,
∴A(1,3),
点A(1,3)代入反比例函数y=,
得k=3,
∴反比例函数的表达式y=,
(2)把B(3,b)代入y=得,b=1
∴点B坐标(3,1);
作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,
∴D(3,﹣1),
设直线AD的解析式为y=mx+n,
把A,D两点代入得,, 解得m=﹣2,n=1,
∴直线AD的解析式为y=﹣2x+1,
令y=0,得x=,
∴点P坐标(,0),
(3)S△PAB=S△ABD﹣S△PBD=×2×2﹣×2×=2﹣=1.1.
点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.
24、-1.
【解析】
先化简题目中的式子,再将x的值代入化简后的式子即可解答本题.
【详解】
解:原式=,
=,
=,
=﹣,
当x=1时,
原式=﹣=﹣1.
【点睛】
本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则
25、(1)连接A、B两市公路的路程为80km,货车由B市到达A市所需时间为h;(2)y=﹣80x+60(0≤x≤);(3)机场大巴与货车相遇地到机场C的路程为km.
【解析】
(1)根据可求出连接A、B两市公路的路程,再根据货车h行驶20km可求出货车行驶60km所需时间;
(2)根据函数图象上点的坐标,利用待定系数法即可求出机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式;
(3)利用待定系数法求出线段ED对应的函数表达式,联立两函数表达式成方程组,通过解方程组可求出机场大巴与货车相遇地到机场C的路程.
【详解】
解:(1)60+20=80(km),
(h)
∴连接A. B两市公路的路程为80km,货车由B市到达A市所需时间为h.
(2)设所求函数表达式为y=kx+b(k≠0),
将点(0,60)、代入y=kx+b,
得: 解得:
∴机场大巴到机场C的路程y(km)与出发时间x(h)之间的函数关系式为
(3)设线段ED对应的函数表达式为y=mx+n(m≠0)
将点代入y=mx+n,
得: 解得:
∴线段ED对应的函数表达式为
解方程组得
∴机场大巴与货车相遇地到机场C的路程为km.
【点睛】
本题考查一次函数的应用,掌握待定系数法求函数关系式是解题的关键,本题属于中档题,难度不大,但过程比较繁琐,因此再解决该题是一定要细心.
26、(1)w=200x+8600(0≤x≤6);(2)有3种调运方案,方案一:从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;方案二:从B市调运到C市1台,D市5台;从A市调运到C市9台,D市3台;方案三:从B市调运到C市2台,D市4台;从A市调运到C市8台,D市4台;(3)从A市调运到C市10台,D市2台;最低运费是8600元.
【解析】
(1)设出B粮仓运往C的数量为x吨,然后根据A,B两市的库存量,和C,D两市的需求量,分别表示出B运往C,D的数量,再根据总费用=A运往C的运费+A运往D的运费+B运往C的运费+B运往D的运费,列出函数关系式;
(2)由(1)中总费用不超过9000元,然后根据取值范围来得出符合条件的方案;
(3)根据(1)中的函数式以及自变量的取值范围即可得出费用最小的方案.
【详解】
解:(1)设B粮仓运往C市粮食x吨,则B粮仓运往D市粮食6﹣x吨,A粮仓运往C市粮食10﹣x吨,A粮仓运往D市粮食12﹣(10﹣x)=x+2吨,
总运费w=300x+500(6﹣x)+400(10﹣x)+800(x+2)
=200x+8600(0≤x≤6).
(2)200x+8600≤9000
解得x≤2
共有3种调运方案
方案一:从B市调运到C市0台,D市6台;从A市调运到C市10台,D市2台;
方案二:从B市调运到C市1台,D市5台;从A市调运到C市9台,D市3台;
方案三:从B市调运到C市2台,D市4台;从A市调运到C市8台,D市4台;
(3)w=200x+8600
k>0,
所以当x=0时,总运费最低.
也就是从B市调运到C市0台,D市6台;
从A市调运到C市10台,D市2台;最低运费是8600元.
【点睛】
本题重点考查函数模型的构建,考查利用一次函数的有关知识解答实际应用题,解答一次函数的应用问题中,要注意自变量的取值范围还必须使实际问题有意义.
27、(1)证明见解析(2)证明见解析(3)1
【解析】
利用平行线的性质得到,再利用直角三角形斜边上的中线等于斜边的一半即可得证,
利用平行四边形的判定定理判定四边形BDFG为平行四边形,再利用得结论即可得证,
设,则,利用菱形的性质和勾股定理得到CF、AF和AC之间的关系,解出x即可.
【详解】
证明:,,
,
又为AC的中点,
,
又,
,
证明:,,
四边形BDFG为平行四边形,
又,
四边形BDFG为菱形,
解:设,则,,
在中,,
解得:,舍去,
,
菱形BDFG的周长为1.
【点睛】
本题考查了菱形的判定与性质直角三角形斜边上的中线,勾股定理等知识,正确掌握这些定义性质及判定并结合图形作答是解决本题的关键.
山东省烟台市2021-2022学年中考猜题数学试卷含解析: 这是一份山东省烟台市2021-2022学年中考猜题数学试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,有下列四个命题等内容,欢迎下载使用。
2022年山东省青岛市崂山区部分中学中考考前最后一卷数学试卷含解析: 这是一份2022年山东省青岛市崂山区部分中学中考考前最后一卷数学试卷含解析,共20页。试卷主要包含了cs30°的值为,下列计算正确的是,不等式组的解集为,不等式组的解集在数轴上表示为等内容,欢迎下载使用。
2022年山东省青岛市市北区中考猜题数学试卷含解析: 这是一份2022年山东省青岛市市北区中考猜题数学试卷含解析,共21页。试卷主要包含了答题时请按要求用笔,不等式组的解集是等内容,欢迎下载使用。