年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年山东省济宁市高新区毕业升学考试模拟卷数学卷含解析

    2021-2022学年山东省济宁市高新区毕业升学考试模拟卷数学卷含解析第1页
    2021-2022学年山东省济宁市高新区毕业升学考试模拟卷数学卷含解析第2页
    2021-2022学年山东省济宁市高新区毕业升学考试模拟卷数学卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年山东省济宁市高新区毕业升学考试模拟卷数学卷含解析

    展开

    这是一份2021-2022学年山东省济宁市高新区毕业升学考试模拟卷数学卷含解析,共22页。试卷主要包含了下列各数中是无理数的是,下列图形是轴对称图形的有等内容,欢迎下载使用。
    1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
    2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
    3.考试结束后,将本试卷和答题卡一并交回。
    一、选择题(共10小题,每小题3分,共30分)
    1.已知:如图是y=ax2+2x﹣1的图象,那么ax2+2x﹣1=0的根可能是下列哪幅图中抛物线与直线的交点横坐标( )
    A.B.
    C.D.
    2. “五一”期间,某市共接待海内外游客约567000人次,将567000用科学记数法表示为( )
    A.567×103 B.56.7×104 C.5.67×105 D.0.567×106
    3.商场将某种商品按原价的8折出售,仍可获利20元.已知这种商品的进价为140元,那么这种商品的原价是( )
    A.160元 B.180元 C.200元 D.220元
    4.下列各数中是无理数的是( )
    A.cs60°B.C.半径为1cm的圆周长D.
    5.二次函数y=x2﹣6x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为( )
    A.(﹣1,0)B.(4,0)C.(5,0)D.(﹣6,0)
    6.下列图形是轴对称图形的有( )
    A.2个B.3个C.4个D.5个
    7.小红上学要经过两个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望上学时经过每个路口都是绿灯,但实际这样的机会是( )
    A.B.C.D.
    8.如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是
    A.射线OE是∠AOB的平分线
    B.△COD是等腰三角形
    C.C、D两点关于OE所在直线对称
    D.O、E两点关于CD所在直线对称
    9.函数y=和y=在第一象限内的图象如图,点P是y=的图象上一动点,PC⊥x轴于点C,交y=的图象于点B.给出如下结论:①△ODB与△OCA的面积相等;②PA与PB始终相等;③四边形PAOB的面积大小不会发生变化;④CA=AP.其中所有正确结论的序号是( )
    A.①②③B.②③④C.①③④D.①②④
    10.如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为弧BD,则图中阴影部分的面积是( )
    A.B.C.-D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.抛物线(为非零实数)的顶点坐标为_____________.
    12.若不等式组的解集是﹣1<x≤1,则a=_____,b=_____.
    13.分式方程的解是 .
    14.如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下面四个结论:①OA=OD;②AD⊥EF;③当∠BAC=90°时,四边形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正确的是_________.(填序号)
    15.函数y=的自变量x的取值范围为____________.
    16.当x为_____时,分式的值为1.
    三、解答题(共8题,共72分)
    17.(8分)在平面直角坐标系xOy中,对于P,Q两点给出如下定义:若点P到两坐标轴的距离之和等于点Q到两坐标轴的距离之和,则称P,Q两点为同族点.下图中的P,Q两点即为同族点.
    (1)已知点A的坐标为(﹣3,1),①在点R(0,4),S(2,2),T(2,﹣3)中,为点A的同族点的是 ;②若点B在x轴上,且A,B两点为同族点,则点B的坐标为 ;
    (2)直线l:y=x﹣3,与x轴交于点C,与y轴交于点D,
    ①M为线段CD上一点,若在直线x=n上存在点N,使得M,N两点为同族点,求n的取值范围;
    ②M为直线l上的一个动点,若以(m,0)为圆心,为半径的圆上存在点N,使得M,N两点为同族点,直接写出m的取值范围.
    18.(8分)已知AB是⊙O的直径,PB是⊙O的切线,C是⊙O上的点,AC∥OP,M是直径AB上的动点,A与直线CM上的点连线距离的最小值为d,B与直线CM上的点连线距离的最小值为f.
    (1)求证:PC是⊙O的切线;
    (2)设OP=AC,求∠CPO的正弦值;
    (3)设AC=9,AB=15,求d+f的取值范围.
    19.(8分)如图,△ABC中,D是BC上的一点,若AB=10,BD=6,AD=8,AC=17,求△ABC的面积.
    20.(8分)黄岩某校搬迁后,需要增加教师和学生的寝室数量,寝室有三类,分别为单人间(供一个人住宿),双人间(供两个人住宿),四人间(供四个人住宿).因实际需要,单人间的数量在20至30之间(包括20和30),且四人间的数量是双人间的5倍.
    (1)若2018年学校寝室数为64个,以后逐年增加,预计2020年寝室数达到121个,求2018至2020年寝室数量的年平均增长率;
    (2)若三类不同的寝室的总数为121个,则最多可供多少师生住宿?
    21.(8分)如图,点A、B在⊙O上,点O是⊙O的圆心,请你只用无刻度的直尺,分别画出图①和图②中∠A的余角.
    (1)图①中,点C在⊙O上;
    (2)图②中,点C在⊙O内;
    22.(10分)(1)计算:2﹣2﹣+(1﹣)0+2sin60°.
    (2)先化简,再求值:()÷,其中x=﹣1.
    23.(12分)如图,是5×5正方形网格,每个小正方形的边长为1,请按要求画出下列图形,所画图形的各个顶点均在所给小正方形的顶点上.
    (1)在图(1)中画出一个等腰△ABE,使其面积为3.5;
    (2)在图(2)中画出一个直角△CDF,使其面积为5,并直接写出DF的长.
    24.P是⊙O内一点,过点P作⊙O的任意一条弦AB,我们把PA•PB的值称为点P关于⊙O的“幂值”
    (1)⊙O的半径为6,OP=1.
    ①如图1,若点P恰为弦AB的中点,则点P关于⊙O的“幂值”为_____;
    ②判断当弦AB的位置改变时,点P关于⊙O的“幂值”是否为定值,若是定值,证明你的结论;若不是定值,求点P关于⊙0的“幂值”的取值范围;
    (2)若⊙O的半径为r,OP=d,请参考(1)的思路,用含r、d的式子表示点P关于⊙O的“幂值”或“幂值”的取值范围_____;
    (3)在平面直角坐标系xOy中,C(1,0),⊙C的半径为3,若在直线y=x+b上存在点P,使得点P关于⊙C的“幂值”为6,请直接写出b的取值范围_____.
    参考答案
    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    由原抛物线与x轴的交点位于y轴的两端,可排除A、D选项;
    B、方程ax2+2x﹣1=0有两个不等实根,且负根的绝对值大于正根的绝对值,B不符合题意;
    C、抛物线y=ax2与直线y=﹣2x+1的交点,即交点的横坐标为方程ax2+2x﹣1=0的根,C符合题意.此题得解.
    【详解】
    ∵抛物线y=ax2+2x﹣1与x轴的交点位于y轴的两端,
    ∴A、D选项不符合题意;
    B、∵方程ax2+2x﹣1=0有两个不等实根,且负根的绝对值大于正根的绝对值,
    ∴B选项不符合题意;
    C、图中交点的横坐标为方程ax2+2x﹣1=0的根(抛物线y=ax2与直线y=﹣2x+1的交点),
    ∴C选项符合题意.
    故选:C.
    【点睛】
    本题考查了抛物线与x轴的交点以及二次函数的图象与位置变化,逐一分析四个选项中的图形是解题的关键.
    2、C
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.
    【详解】
    567000=5.67×105,
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    3、C
    【解析】
    利用打折是在标价的基础之上,利润是在进价的基础上,进而得出等式求出即可.
    【详解】
    解:设原价为x元,根据题意可得:
    80%x=140+20,
    解得:x=1.
    所以该商品的原价为1元;
    故选:C.
    【点睛】
    此题主要考查了一元一次方程的应用,根据题意列出方程是解决问题的关键.
    4、C
    【解析】
    分析:根据“无理数”的定义进行判断即可.
    详解:
    A选项中,因为,所以A选项中的数是有理数,不能选A;
    B选项中,因为是无限循环小数,属于有理数,所以不能选B;
    C选项中,因为半径为1cm的圆的周长是cm,是个无理数,所以可以选C;
    D选项中,因为,2是有理数,所以不能选D.
    故选.C.
    点睛:正确理解无理数的定义:“无限不循环小数叫做无理数”是解答本题的关键.
    5、C
    【解析】
    根据二次函数解析式求得对称轴是x=3,由抛物线的对称性得到答案.
    【详解】
    解:由二次函数得到对称轴是直线,则抛物线与轴的两个交点坐标关于直线对称,
    ∵其中一个交点的坐标为,则另一个交点的坐标为,
    故选C.
    【点睛】
    考查抛物线与x轴的交点坐标,解题关键是掌握抛物线的对称性质.
    6、C
    【解析】
    试题分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.
    解:图(1)有一条对称轴,是轴对称图形,符合题意;
    图(2)不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;
    图(3)有二条对称轴,是轴对称图形,符合题意;
    图(3)有五条对称轴,是轴对称图形,符合题意;
    图(3)有一条对称轴,是轴对称图形,符合题意.
    故轴对称图形有4个.
    故选C.
    考点:轴对称图形.
    7、C
    【解析】
    列举出所有情况,看每个路口都是绿灯的情况数占总情况数的多少即可得.
    【详解】
    画树状图如下,共4种情况,有1种情况每个路口都是绿灯,所以概率为.
    故选C.
    8、D
    【解析】
    试题分析:A、连接CE、DE,根据作图得到OC=OD,CE=DE.
    ∵在△EOC与△EOD中,OC=OD,CE=DE,OE=OE,
    ∴△EOC≌△EOD(SSS).
    ∴∠AOE=∠BOE,即射线OE是∠AOB的平分线,正确,不符合题意.
    B、根据作图得到OC=OD,
    ∴△COD是等腰三角形,正确,不符合题意.
    C、根据作图得到OC=OD,
    又∵射线OE平分∠AOB,∴OE是CD的垂直平分线.
    ∴C、D两点关于OE所在直线对称,正确,不符合题意.
    D、根据作图不能得出CD平分OE,∴CD不是OE的平分线,
    ∴O、E两点关于CD所在直线不对称,错误,符合题意.
    故选D.
    9、C
    【解析】
    解:∵A、B是反比函数上的点,∴S△OBD=S△OAC=,故①正确;
    当P的横纵坐标相等时PA=PB,故②错误;
    ∵P是的图象上一动点,∴S矩形PDOC=4,∴S四边形PAOB=S矩形PDOC﹣S△ODB﹣﹣S△OAC=4﹣﹣=3,故③正确;
    连接OP,=4,∴AC=PC,PA=PC,∴=3,∴AC=AP;故④正确;
    综上所述,正确的结论有①③④.故选C.
    点睛:本题考查的是反比例函数综合题,熟知反比例函数中系数k的几何意义是解答此题的关键.
    10、A
    【解析】
    先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD-S△ABC=S扇形ABD.
    【详解】
    ∵∠ACB=90°,AC=BC=1,
    ∴AB=,
    ∴S扇形ABD=,
    又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,
    ∴Rt△ADE≌Rt△ACB,
    ∴S阴影部分=S△ADE+S扇形ABD−S△ABC=S扇形ABD=,
    故选A.
    【点睛】
    本题考查扇形面积计算,熟记扇形面积公式,采用作差法计算面积是解题的关键.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    【分析】将抛物线的解析式由一般式化为顶点式,即可得到顶点坐标.
    【详解】y=mx2+2mx+1
    =m(x2+2x)+1
    =m(x2+2x+1-1)+1
    =m(x+1)2 +1-m,
    所以抛物线的顶点坐标为(-1,1-m),
    故答案为(-1,1-m).
    【点睛】本题考查了抛物线的顶点坐标,把抛物线的解析式转化为顶点式是解题的关键.
    12、-2 -3
    【解析】
    先求出每个不等式的解集, 再求出不等式组的解集, 即可得出关于a、b的方程, 求出即可.
    【详解】
    解:由题意得:
    解不等式 ① 得: x>1+a ,
    解不等式②得:x≤
    不等式组的解集为: 1+a<x≤
    不等式组的解集是﹣1<x≤1,
    ..1+a=-1, =1,
    解得:a=-2,b=-3
    故答案为: -2, -3.
    【点睛】
    本题主要考查解含参数的不等式组.
    13、x=﹣1.
    【解析】
    试题分析:分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
    试题解析:去分母得:x=2x﹣1+2,
    解得:x=﹣1,
    经检验x=﹣1是分式方程的解.
    考点:解分式方程.
    14、②③④
    【解析】
    试题解析:根据已知条件不能推出OA=OD,∴①错误;
    ∵AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,
    ∴DE=DF,∠AED=∠AFD=90°,
    在Rt△AED和Rt△AFD中,

    ∴Rt△AED≌Rt△AFD(HL),
    ∴AE=AF,
    ∵AD平分∠BAC,
    ∴AD⊥EF,∴②正确;
    ∵∠BAC=90°,∠AED=∠AFD=90°,
    ∴四边形AEDF是矩形,
    ∵AE=AF,
    ∴四边形AEDF是正方形,∴③正确;
    ∵AE=AF,DE=DF,
    ∴AE2+DF2=AF2+DE2,∴④正确;
    ∴②③④正确,
    15、x≥-1
    【解析】
    试题分析:由题意得,x+1≥0,解得x≥﹣1.故答案为x≥﹣1.
    考点:函数自变量的取值范围.
    16、2
    【解析】
    分式的值是1的条件是,分子为1,分母不为1.
    【详解】
    ∵3x-6=1,
    ∴x=2,
    当x=2时,2x+1≠1.
    ∴当x=2时,分式的值是1.
    故答案为2.
    【点睛】
    本题考查的知识点是分式为1的条件,解题关键是注意的是分母不能是1.
    三、解答题(共8题,共72分)
    17、(1)①R,S;②(,0)或(4,0);(2)①;②m≤或m≥1.
    【解析】
    (1)∵点A的坐标为(−2,1),
    ∴2+1=4,
    点R(0,4),S(2,2),T(2,−2)中,
    0+4=4,2+2=4,2+2=5,
    ∴点A的同族点的是R,S;
    故答案为R,S;
    ②∵点B在x轴上,
    ∴点B的纵坐标为0,
    设B(x,0),
    则|x|=4,
    ∴x=±4,
    ∴B(−4,0)或(4,0);
    故答案为(−4,0)或(4,0);
    (2)①由题意,直线与x轴交于C(2,0),与y轴交于D(0,).

    点M在线段CD上,设其坐标为(x,y),则有:
    ,,且.
    点M到x轴的距离为,点M到y轴的距离为,
    则.
    ∴点M的同族点N满足横纵坐标的绝对值之和为2.
    即点N在右图中所示的正方形CDEF上.
    ∵点E的坐标为(,0),点N在直线上,
    ∴.
    ②如图,设P(m,0)为圆心, 为半径的圆与直线y=x−2相切,
    ∴PC=2,
    ∴OP=1,
    观察图形可知,当m≥1时,若以(m,0)为圆心,为半径的圆上存在点N,使得M,N两点为同族点,再根据对称性可知,m≤也满足条件,
    ∴满足条件的m的范围:m≤或m≥1
    18、(1)详见解析;(2);(3)
    【解析】
    (1)连接OC,根据等腰三角形的性质得到∠A=∠OCA,由平行线的性质得到∠A=∠BOP,∠ACO=∠COP,等量代换得到∠COP=∠BOP,由切线的性质得到∠OBP=90°,根据全等三角形的性质即可得到结论;
    (2)过O作OD⊥AC于D,根据相似三角形的性质得到CD•OP=OC2,根据已知条件得到,由三角函数的定义即可得到结论;
    (3)连接BC,根据勾股定理得到BC==12,当M与A重合时,得到d+f=12,当M与B重合时,得到d+f=9,于是得到结论.
    【详解】
    (1)连接OC,
    ∵OA=OC,
    ∴∠A=∠OCA,
    ∵AC∥OP,
    ∴∠A=∠BOP,∠ACO=∠COP,
    ∴∠COP=∠BOP,
    ∵PB是⊙O的切线,AB是⊙O的直径,
    ∴∠OBP=90°,
    在△POC与△POB中,

    ∴△COP≌△BOP,
    ∴∠OCP=∠OBP=90°,
    ∴PC是⊙O的切线;
    (2)过O作OD⊥AC于D,
    ∴∠ODC=∠OCP=90°,CD=AC,
    ∵∠DCO=∠COP,
    ∴△ODC∽△PCO,
    ∴,
    ∴CD•OP=OC2,
    ∵OP=AC,
    ∴AC=OP,
    ∴CD=OP,
    ∴OP•OP=OC2
    ∴,
    ∴sin∠CPO=;
    (3)连接BC,
    ∵AB是⊙O的直径,
    ∴AC⊥BC,
    ∵AC=9,AB=1,
    ∴BC==12,
    当CM⊥AB时,
    d=AM,f=BM,
    ∴d+f=AM+BM=1,
    当M与B重合时,
    d=9,f=0,
    ∴d+f=9,
    ∴d+f的取值范围是:9≤d+f≤1.
    【点睛】
    本题考查了切线的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,平行线的性质,圆周角定理,正确的作出辅助线是解题的关键.
    19、3
    【解析】
    试题分析:根据AB=30,BD=6,AD=8,利用勾股定理的逆定理求证△ABD是直角三角形,再利用勾股定理求出CD的长,然后利用三角形面积公式即可得出答案.
    试题解析:∵BD3+AD3=63+83=303=AB3,
    ∴△ABD是直角三角形,
    ∴AD⊥BC,
    在Rt△ACD中,CD=,
    ∴S△ABC=BC•AD=(BD+CD)•AD=×33×8=3,
    因此△ABC的面积为3.
    答:△ABC的面积是3.
    考点:3.勾股定理的逆定理;3.勾股定理.
    20、(1)2018至2020年寝室数量的年平均增长率为37.5%;(2)该校的寝室建成后最多可供1名师生住宿.
    【解析】
    (1)设2018至2020年寝室数量的年平均增长率为x,根据2018及2020年寝室数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论;
    (2)设双人间有y间,则四人间有5y间,单人间有(121-6y)间,可容纳人数为w人,由单人间的数量在20至30之间(包括20和30),即可得出关于y的一元一次不等式组,解之即可得出y的取值范围,再根据可住师生数=寝室数×每间寝室可住人数,可找出w关于y的函数关系式,利用一次函数的性质即可解决最值问题.
    【详解】
    (1)解:设2018至2020年寝室数量的年平均增长率为x,
    根据题意得:64(1+x)2=121,
    解得:x1=0.375=37.5%,x2=﹣2.375(不合题意,舍去).
    答:2018至2020年寝室数量的年平均增长率为37.5%.
    (2)解:设双人间有y间,可容纳人数为w人,则四人间有5y间,单人间有(121﹣6y)间,
    ∵单人间的数量在20至30之间(包括20和30),
    ∴ ,
    解得:15 ≤y≤16 .
    根据题意得:w=2y+20y+121﹣6y=16y+121,
    ∴当y=16时,16y+121取得最大值为1.
    答:该校的寝室建成后最多可供1名师生住宿.
    【点睛】
    本题考查了一元二次方程的应用、一元一次不等式组的应用以及一次函数的性质,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量之间的关系,找出w关于y的函数关系式.
    21、图形见解析
    【解析】试题分析:(1)根据同弧所对的圆周角相等和直径所对的圆周角为直角画图即可;(2)延长AC交⊙O于点E ,利用(1)的方法画图即可.
    试题解析:
    如图①∠DBC就是所求的角;
    如图②∠FBE就是所求的角
    22、(1) (2)
    【解析】
    (1)根据负整数指数幂、二次根式、零指数幂和特殊角的三角函数值可以解答本题;
    (2)根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.
    【详解】
    解:(1)原式=﹣+1+2=﹣+1+=﹣;
    (2)原式=
    =
    =
    =,
    当x=﹣1时,原式==.
    【点睛】
    本题考查分式的化简求值、绝对值、零指数幂、负整数指数幂和特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.
    23、 (1)见解析;(2)DF=
    【解析】
    (1)直接利用等腰三角形的定义结合勾股定理得出答案;
    (2)利用直角三角的定义结合勾股定理得出符合题意的答案.
    【详解】
    (1)如图(1)所示:△ABE,即为所求;
    (2)如图(2)所示:△CDF即为所求,DF=.
    【点睛】
    此题主要考查了等腰三角形的定义以及三角形面积求法,正确应用网格分析是解题关键.
    24、(1)①20;②当弦AB的位置改变时,点P关于⊙O的“幂值”为定值,证明见解析;(2)点P关于⊙O的“幂值”为r2﹣d2;(3)﹣3≤b≤.
    【解析】
    【详解】(1)①如图1所示:连接OA、OB、OP.由等腰三角形的三线合一的性质得到△PBO为直角三角形,然后依据勾股定理可求得PB的长,然后依据幂值的定义求解即可;
    ②过点P作⊙O的弦A′B′⊥OP,连接AA′、BB′.先证明△APA′∽△B′PB,依据相似三角形的性质得到PA•PB=PA′•PB′从而得出结论;
    (2)连接OP、过点P作AB⊥OP,交圆O与A、B两点.由等腰三角形三线合一的性质可知AP=PB,然后在Rt△APO中,依据勾股定理可知AP2=OA2-OP2,然后将d、r代入可得到问题的答案;
    (3)过点C作CP⊥AB,先求得OP的解析式,然后由直线AB和OP的解析式,得到点P的坐标,然后由题意圆的幂值为6,半径为1可求得d的值,再结合两点间的距离公式可得到关于b的方程,从而可求得b的极值,据此即可确定出b的取值范围.
    【详解】(1)①如图1所示:连接OA、OB、OP,
    ∵OA=OB,P为AB的中点,
    ∴OP⊥AB,
    ∵在△PBO中,由勾股定理得:PB==2,
    ∴PA=PB=2,
    ∴⊙O的“幂值”=2×2=20,
    故答案为:20;
    ②当弦AB的位置改变时,点P关于⊙O的“幂值”为定值,证明如下:
    如图,AB为⊙O中过点P的任意一条弦,且不与OP垂直,过点P作⊙O的弦A′B′⊥OP,连接AA′、BB′,
    ∵在⊙O中,∠AA′P=∠B′BP,∠APA′=∠BPB′,
    ∴△APA′∽△B′PB,
    ∴,
    ∴PA•PB=PA′•PB′=20,
    ∴当弦AB的位置改变时,点P关于⊙O的“幂值”为定值;
    (2)如图3所示;连接OP、过点P作AB⊥OP,交圆O与A、B两点,
    ∵AO=OB,PO⊥AB,
    ∴AP=PB,
    ∴点P关于⊙O的“幂值”=AP•PB=PA2,
    在Rt△APO中,AP2=OA2﹣OP2=r2﹣d2,
    ∴关于⊙O的“幂值”=r2﹣d2,
    故答案为:点P关于⊙O的“幂值”为r2﹣d2;
    (3)如图1所示:过点C作CP⊥AB,

    ∵CP⊥AB,AB的解析式为y=x+b,
    ∴直线CP的解析式为y=﹣x+.
    联立AB与CP,得,
    ∴点P的坐标为(﹣﹣b,+b),
    ∵点P关于⊙C的“幂值”为6,
    ∴r2﹣d2=6,
    ∴d2=3,即(﹣﹣b)2+(+b)2=3,
    整理得:b2+2b﹣9=0,
    解得b=﹣3或b=,
    ∴b的取值范围是﹣3≤b≤,
    故答案为:﹣3≤b≤.
    【点睛】本题综合性质较强,考查了新定义题,解答过程中涉及到了幂值的定义、勾股定理、等腰三角形的性质、相似三角形的性质和判定、一次函数的交点问题、两点间的距离公式等,依据两点间的距离公式列出关于b的方程,从而求得b的极值是解题的关键.

    相关试卷

    山东省重点中学2021-2022学年毕业升学考试模拟卷数学卷含解析:

    这是一份山东省重点中学2021-2022学年毕业升学考试模拟卷数学卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。

    山东省济宁市市中区达标名校2021-2022学年毕业升学考试模拟卷数学卷含解析:

    这是一份山东省济宁市市中区达标名校2021-2022学年毕业升学考试模拟卷数学卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,民族图案是数学文化中的一块瑰宝等内容,欢迎下载使用。

    江苏省苏州市高新区重点中学2021-2022学年毕业升学考试模拟卷数学卷含解析:

    这是一份江苏省苏州市高新区重点中学2021-2022学年毕业升学考试模拟卷数学卷含解析,共20页。试卷主要包含了如图,已知直线l1等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map