年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    山东省潍坊市临朐2022年毕业升学考试模拟卷数学卷含解析

    山东省潍坊市临朐2022年毕业升学考试模拟卷数学卷含解析第1页
    山东省潍坊市临朐2022年毕业升学考试模拟卷数学卷含解析第2页
    山东省潍坊市临朐2022年毕业升学考试模拟卷数学卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省潍坊市临朐2022年毕业升学考试模拟卷数学卷含解析

    展开

    这是一份山东省潍坊市临朐2022年毕业升学考试模拟卷数学卷含解析,共22页。试卷主要包含了考生要认真填写考场号和座位序号,分式方程=1的解为,计算÷9的值是,计算x﹣2y﹣等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.在平面直角坐标系中,位于第二象限的点是(  )
    A.(﹣1,0) B.(﹣2,﹣3) C.(2,﹣1) D.(﹣3,1)
    2.如图①是半径为2的半圆,点C是弧AB的中点,现将半圆如图②方式翻折,使得点C与圆心O重合,则图中阴影部分的面积是( )

    A. B.﹣ C.2+ D.2﹣
    3.已知⊙O的半径为5,若OP=6,则点P与⊙O的位置关系是(  )
    A.点P在⊙O内 B.点P在⊙O外 C.点P在⊙O上 D.无法判断
    4.下列四个几何体中,主视图是三角形的是(  )
    A. B. C. D.
    5.如图,已知反比函数的图象过Rt△ABO斜边OB的中点D,与直角边AB相交于C,连结AD、OC,若△ABO的周长为,AD=2,则△ACO的面积为( )

    A. B.1 C.2 D.4
    6.若一组数据1、、2、3、4的平均数与中位数相同,则不可能是下列选项中的( )
    A.0 B.2.5 C.3 D.5
    7.分式方程=1的解为(  )
    A.x=1 B.x=0 C.x=﹣ D.x=﹣1
    8.如图,点A、B、C是⊙O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF等于(  )

    A.12.5° B.15° C.20° D.22.5°
    9.计算(-18)÷9的值是( )
    A.-9 B.-27 C.-2 D.2
    10.计算x﹣2y﹣(2x+y)的结果为(  )
    A.3x﹣y B.3x﹣3y C.﹣x﹣3y D.﹣x﹣y
    11.已知直线与直线的交点在第一象限,则的取值范围是( )
    A. B. C. D.
    12.下列运算中,正确的是(  )
    A.(a3)2=a5 B.(﹣x)2÷x=﹣x
    C.a3(﹣a)2=﹣a5 D.(﹣2x2)3=﹣8x6
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.已知点A(x1,y1),B(x2,y2)在直线y=kx+b上,且直线经过第一、三、四象限,当x1<x2时,y1与y2的大小关系为______________.
    14.小球在如图所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球最终停留在黑色区域的概率是_____________________.

    15.分解因式:ax2﹣2ax+a=___________.
    16.已知直线m∥n,将一块含有30°角的直角三角板ABC按如图方式放置,其中A、B两点分别落在直线m、n上,若∠1=20°,则∠2=_____度.

    17.已知二次函数的图象如图所示,若方程有两个不相等的实数根,则的取值范围是_____________.

    18.如图所示,△ABC的顶点是正方形网格的格点,则sinA的值为____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)2019年1月,温州轨道交通线正式运营,线有以下4种购票方式:
    A.二维码过闸 B.现金购票 C.市名卡过闸 D.银联闪付
    某兴趣小组为了解最受欢迎的购票方式,随机调查了某区的若干居民,得到如图所示的统计图,已知选择方式D的有200人,求选择方式A的人数.小博和小雅对A,B,C三种购票方式的喜爱程度相同,随机选取一种方式购票,求他们选择同一种购票方式的概率.(要求列表或画树状图).
    20.(6分)“十九大”报告提出了我国将加大治理环境污染的力度,还我青山绿水,其中雾霾天气让环保和健康问题成为焦点,为了调查学生对雾霾天气知识的了解程度,某校在全校学生中抽取400名同学做了一次调查,根据调查统计结果,绘制了不完整的一种统计图表.

    对雾霾了解程度的统计表
    对雾霾的了解程度
    百分比
    A.非常了解
    5%
    B.比较了解
    m
    C.基本了解
    45%
    D.不了解
    n
    请结合统计图表,回答下列问题:统计表中:m=   ,n=   ;请在图1中补全条形统计图;请问在图2所示的扇形统计图中,D部分扇形所对应的圆心角是多少度?
    21.(6分)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.
    (1)证明:∠BAC=∠DAC.
    (2)若∠BEC=∠ABE,试证明四边形ABCD是菱形.

    22.(8分)为了解某校落实新课改精神的情况,现以该校九年级二班的同学参加课外活动的情况为样本,对其参加“球类”、“绘画类”、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图. 
    (1)参加音乐类活动的学生人数为   人,参加球类活动的人数的百分比为 
    (2)请把图2(条形统计图)补充完整; 
    (3)该校学生共600人,则参加棋类活动的人数约为 . 
     (4)该班参加舞蹈类活动的4位同学中,有1位男生(用E表示)和3位女生(分别用F,G,H表示),先准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率. 

    23.(8分)现种植A、B、C三种树苗一共480棵,安排80名工人一天正好完成,已知每名工人只植一种树苗,且每名工人每天可植A种树苗8棵;或植B种树苗6棵,或植C种树苗5棵.经过统计,在整个过程中,每棵树苗的种植成本如图所示.设种植A种树苗的工人为x名,种植B种树苗的工人为y名.求y与x之间的函数关系式;设种植的总成本为w元,
    ①求w与x之间的函数关系式;
    ②若种植的总成本为5600元,从植树工人中随机采访一名工人,求采访到种植C种树苗工人的概率.

    24.(10分)已知,求代数式的值.
    25.(10分) 如图,已知正方形ABCD,E是AB延长线上一点,F是DC延长线上一点,且满足BF=EF,将线段EF绕点F顺时针旋转90°得FG,过点B作FG的平行线,交DA的延长线于点N,连接NG.求证:BE=2CF;试猜想四边形BFGN是什么特殊的四边形,并对你的猜想加以证明.

    26.(12分)如图,矩形ABCD绕点C顺时针旋转90°后得到矩形CEFG,连接DG交EF于H,连接AF交DG于M;
    (1)求证:AM=FM;
    (2)若∠AMD=a.求证:=cosα.

    27.(12分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道上确定点D,使CD与垂直,测得CD的长等于21米,在上点D的同侧取点A、B,使∠CAD=30,∠CBD=60.
    (1)求AB的长(精确到0.1米,参考数据:);
    (2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    点在第二象限的条件是:横坐标是负数,纵坐标是正数,直接得出答案即可.
    【详解】
    根据第二象限的点的坐标的特征:横坐标符号为负,纵坐标符号为正,各选项中只有C(﹣3,1)符合,故选:D.
    【点睛】
    本题考查点的坐标的性质,解题的关键是掌握点的坐标的性质.
    2、D
    【解析】
    连接OC交MN于点P,连接OM、ON,根据折叠的性质得到OP=OM,得到∠POM=60°,根据勾股定理求出MN,结合图形计算即可.
    【详解】
    解:连接OC交MN于点P,连接OM、ON,

    由题意知,OC⊥MN,且OP=PC=1,
    在Rt△MOP中,∵OM=2,OP=1,
    ∴cos∠POM==,AC==,
    ∴∠POM=60°,MN=2MP=2,
    ∴∠AOB=2∠AOC=120°,
    则图中阴影部分的面积=S半圆-2S弓形MCN
    =×π×22-2×(-×2×1)
    =2- π,
    故选D.
    【点睛】
    本题考查了轴对称的性质的运用、勾股定理的运用、三角函数值的运用、扇形的面积公式的运用、三角形的面积公式的运用,解答时运用轴对称的性质求解是关键.
    3、B
    【解析】
    比较OP与半径的大小即可判断.
    【详解】
    ,,

    点P在外,
    故选B.
    【点睛】
    本题考查点与圆的位置关系,记住:点与圆的位置关系有3种设的半径为r,点P到圆心的距离,则有:点P在圆外;点P在圆上;点P在圆内.
    4、D
    【解析】
    主视图是从几何体的正面看,主视图是三角形的一定是一个锥体,是长方形的一定是柱体,由此分析可得答案.
    【详解】
    解:主视图是三角形的一定是一个锥体,只有D是锥体.
    故选D.
    【点睛】
    此题主要考查了几何体的三视图,主要考查同学们的空间想象能力.
    5、A
    【解析】
    在直角三角形AOB中,由斜边上的中线等于斜边的一半,求出OB的长,根据周长求出直角边之和,设其中一直角边AB=x,表示出OA,利用勾股定理求出AB与OA的长,过D作DE垂直于x轴,得到E为OA中点,求出OE的长,在直角三角形DOE中,利用勾股定理求出DE的长,利用反比例函数k的几何意义求出k的值,确定出三角形AOC面积即可.
    【详解】
    在Rt△AOB中,AD=2,AD为斜边OB的中线,

    ∴OB=2AD=4,
    由周长为4+2
    ,得到AB+AO=2,
    设AB=x,则AO=2-x,
    根据勾股定理得:AB2+OA2=OB2,即x2+(2-x)2=42,
    整理得:x2-2x+4=0,
    解得x1=+,x2=-,
    ∴AB=+,OA=-,
    过D作DE⊥x轴,交x轴于点E,可得E为AO中点,
    ∴OE=OA=(-)(假设OA=+,与OA=-,求出结果相同),
    在Rt△DEO中,利用勾股定理得:DE==(+)),
    ∴k=-DE•OE=-(+))×(-))=1.
    ∴S△AOC=DE•OE=,
    故选A.
    【点睛】
    本题属于反比例函数综合题,涉及的知识有:勾股定理,直角三角形斜边的中线性质,三角形面积求法,以及反比例函数k的几何意义,熟练掌握反比例的图象与性质是解本题关键.
    6、C
    【解析】
    解:这组数据1、a、2、1、4的平均数为:(1+a+2+1+4)÷5=(a+10)÷5=0.2a+2,
    (1)将这组数据从小到大的顺序排列后为a,1,2,1,4,中位数是2,平均数是0.2a+2,
    ∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,符合排列顺序.
    (2)将这组数据从小到大的顺序排列后为1,a,2,1,4,中位数是2,平均数是0.2a+2,
    ∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=2,解得a=0,不符合排列顺序.
    (1)将这组数据从小到大的顺序排列后1,2,a,1,4,中位数是a,平均数是0.2a+2,
    ∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=a,解得a=2.5,符合排列顺序.
    (4)将这组数据从小到大的顺序排列后为1,2,1,a,4,中位数是1,平均数是0.2a+2,
    ∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5,不符合排列顺序.
    (5)将这组数据从小到大的顺序排列为1,2,1,4,a,中位数是1,平均数是0.2a+2,
    ∵这组数据1、a、2、1、4的平均数与中位数相同,∴0.2a+2=1,解得a=5;符合排列顺序;
    综上,可得:a=0、2.5或5,∴a不可能是1.
    故选C.
    【点睛】
    本题考查中位数;算术平均数.
    7、C
    【解析】
    首先找出分式的最简公分母,进而去分母,再解分式方程即可.
    【详解】
    解:去分母得:
    x2-x-1=(x+1)2,
    整理得:-3x-2=0,
    解得:x=-,
    检验:当x=-时,(x+1)2≠0,
    故x=-是原方程的根.
    故选C.
    【点睛】
    此题主要考查了解分式方程的解法,正确掌握解题方法是解题关键.
    8、B
    【解析】
    解:连接OB,
    ∵四边形ABCO是平行四边形,
    ∴OC=AB,又OA=OB=OC,
    ∴OA=OB=AB,
    ∴△AOB为等边三角形,
    ∵OF⊥OC,OC∥AB,
    ∴OF⊥AB,
    ∴∠BOF=∠AOF=30°,
    由圆周角定理得∠BAF=∠BOF=15°
    故选:B

    9、C
    【解析】
    直接利用有理数的除法运算法则计算得出答案.
    【详解】
    解:(-18)÷9=-1.
    故选:C.
    【点睛】
    此题主要考查了有理数的除法运算,正确掌握运算法则是解题关键.
    10、C
    【解析】
    原式去括号合并同类项即可得到结果.
    【详解】
    原式,
    故选:C.
    【点睛】
    本题主要考查了整式的加减运算,熟练掌握去括号及合并同类项是解决本题的关键.
    11、C
    【解析】
    根据题意画出图形,利用数形结合,即可得出答案.
    【详解】
    根据题意,画出图形,如图:

    当时,两条直线无交点;
    当时,两条直线的交点在第一象限.
    故选:C.
    【点睛】
    本题主要考查两个一次函数的交点问题,能够数形结合是解题的关键.
    12、D
    【解析】
    根据同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,逐项判定即可.
    【详解】
    ∵(a3)2=a6,
    ∴选项A不符合题意;
    ∵(-x)2÷x=x,
    ∴选项B不符合题意;
    ∵a3(-a)2=a5,
    ∴选项C不符合题意;
    ∵(-2x2)3=-8x6,
    ∴选项D符合题意.
    故选D.
    【点睛】
    此题主要考查了同底数幂的除法、乘法的运算方法,幂的乘方与积的乘方的运算方法,以及单项式乘单项式的方法,要熟练掌握.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、y1

    相关试卷

    山东省重点中学2021-2022学年毕业升学考试模拟卷数学卷含解析:

    这是一份山东省重点中学2021-2022学年毕业升学考试模拟卷数学卷含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。

    山东省高密市2022年毕业升学考试模拟卷数学卷含解析:

    这是一份山东省高密市2022年毕业升学考试模拟卷数学卷含解析,共21页。试卷主要包含了化简的结果是,下列方程中有实数解的是等内容,欢迎下载使用。

    2022年山东省青岛市西海岸新区毕业升学考试模拟卷数学卷含解析:

    这是一份2022年山东省青岛市西海岸新区毕业升学考试模拟卷数学卷含解析,共20页。试卷主要包含了下列各式,不等式的最小整数解是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map