年终活动
搜索
    上传资料 赚现金

    2021-2022学年重庆市巫山县毕业升学考试模拟卷数学卷含解析

    立即下载
    加入资料篮
    2021-2022学年重庆市巫山县毕业升学考试模拟卷数学卷含解析第1页
    2021-2022学年重庆市巫山县毕业升学考试模拟卷数学卷含解析第2页
    2021-2022学年重庆市巫山县毕业升学考试模拟卷数学卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年重庆市巫山县毕业升学考试模拟卷数学卷含解析

    展开

    这是一份2021-2022学年重庆市巫山县毕业升学考试模拟卷数学卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号,下列4个数,计算等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项
    1.考生要认真填写考场号和座位序号。
    2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
    3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

    一、选择题(共10小题,每小题3分,共30分)
    1.如图,内接于,若,则  

    A. B. C. D.
    2.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是(  )

    A. B. C. D.
    3.下列各式中,互为相反数的是( )
    A.和 B.和 C.和 D.和
    4.如图,一把带有60°角的三角尺放在两条平行线间,已知量得平行线间的距离为12cm,三角尺最短边和平行线成45°角,则三角尺斜边的长度为(  )

    A.12cm B.12cm C.24cm D.24cm
    5.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为(  )
    A. B. C. D.
    6.下列4个数:,,π,()0,其中无理数是(  )
    A. B. C.π D.()0
    7.计算:得(  )
    A.- B.- C.- D.
    8.据财政部网站消息,2018年中央财政困难群众救济补助预算指标约为929亿元,数据929亿元科学记数法表示为(  )
    A.9.29×109 B.9.29×1010 C.92.9×1010 D.9.29×1011
    9.若一次函数的图像过第一、三、四象限,则函数( )
    A.有最大值 B.有最大值 C.有最小值 D.有最小值
    10.如图,AB∥CD,FH平分∠BFG,∠EFB=58°,则下列说法错误的是(  )

    A.∠EGD=58° B.GF=GH C.∠FHG=61° D.FG=FH
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.若关于x的方程=0有增根,则m的值是______.
    12.下面是“作已知圆的内接正方形”的尺规作图过程.
    已知:⊙O.
    求作:⊙O的内接正方形.
    作法:如图,
    (1)作⊙O的直径AB;
    (2)分别以点A,点B为圆心,大于AB的长为半径作弧,两弧分别相交于M、N两点;
    (3)作直线MN与⊙O交于C、D两点,顺次连接A、C、B、D.即四边形ACBD为所求作的圆内接正方形.
    请回答:该尺规作图的依据是_____.

    13.某学校组织学生到首钢西十冬奥广场开展综合实践活动,数学小组的同学们在距奥组委办公楼(原首钢老厂区的筒仓)20m的点B处,用高为0.8m的测角仪测得筒仓顶点C的仰角为63°,则筒仓CD的高约为______m.(精确到0.1m,sin63°≈0.89,cos63°≈0.45,tan63°≈1.96)

    14.若关于x的分式方程有增根,则m的值为_____.
    15.函数中,自变量x的取值范围是_____.
    16.如果不等式组的解集是x<2,那么m的取值范围是_____
    三、解答题(共8题,共72分)
    17.(8分)如图,△ABC与△A1B1C1是位似图形.
    (1)在网格上建立平面直角坐标系,使得点A的坐标为(-6,-1),点C1的坐标为(-3,2),则点B的坐标为____________;
    (2)以点A为位似中心,在网格图中作△AB2C2,使△AB2C2和△ABC位似,且位似比为1∶2;
    (3)在图上标出△ABC与△A1B1C1的位似中心P,并写出点P的坐标为________,计算四边形ABCP的周长为_______.

    18.(8分)某校为了解本校九年级男生体育测试中跳绳成绩的情况,随机抽取该校九年级若干名男生,调查他们的跳绳成绩(次/分),按成绩分成,,,,五个等级.将所得数据绘制成如下统计图.根据图中信息,解答下列问题:
    该校被抽取的男生跳绳成绩频数分布直方图

    (1)本次调查中,男生的跳绳成绩的中位数在________等级;
    (2)若该校九年级共有男生400人,估计该校九年级男生跳绳成绩是等级的人数.
    19.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:
    此次共调查了   名学生;将条形统计图1补充完整;图2中“小说类”所在扇形的圆心角为   度;若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.
    20.(8分)动画片《小猪佩奇》分靡全球,受到孩子们的喜爱.现有4张《小猪佩奇》角色卡片,分别是A佩奇,B乔治,C佩奇妈妈,D佩奇爸爸(四张卡片除字母和内容外,其余完全相同).姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.
    (1)姐姐从中随机抽取一张卡片,恰好抽到A佩奇的概率为 ;
    (2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的分方法求出恰好姐姐抽到A佩奇弟弟抽到B乔治的概率.

    21.(8分)经过江汉平原的沪蓉(上海﹣成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A处测得对岸岸边的一根标杆B在它的正北方向,测量员从A点开始沿岸边向正东方向前进100米到达点C处,测得∠ACB=68°.
    (1)求所测之处江的宽度(sin68°≈0.93,cos68°≈0.37,tan68°≈2.1.);
    (2)除(1)的测量方案外,请你再设计一种测量江宽的方案,并在图②中画出图形.(不用考虑计算问题,叙述清楚即可)

    22.(10分)如图,AB是⊙O的直径,BC⊥AB,垂足为点B,连接CO并延长交⊙O于点D、E,连接AD并延长交BC于点F.
    (1)试判断∠CBD与∠CEB是否相等,并证明你的结论;
    (2)求证:
    (3)若BC=AB,求tan∠CDF的值.

    23.(12分)在正方形ABCD中,AB=4cm,AC为对角线,AC上有一动点P,M是AB边的中点,连接PM、PB,设A、P两点间的距离为xcm,PM+PB长度为ycm.

    小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请补充完整:
    (1)通过取点、画图、测量,得到了x与y的几组值,如表:
    x/cm
    0
    1
    2
    3
    4
    5
    y/cm
    6.0
    4.8
    4.5

    6.0
    7.4
    (说明:补全表格时相关数值保留一位小数)
    (2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.
    (3)结合画出的函数图象,解决问题:PM+PB的长度最小值约为______cm.
    24.如图,在△ABC中,BD平分∠ABC,AE⊥BD于点O,交BC于点E,AD∥BC,连接CD.
    (1)求证:AO=EO;
    (2)若AE是△ABC的中线,则四边形AECD是什么特殊四边形?证明你的结论.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    根据圆周角定理求出,根据三角形内角和定理计算即可.
    【详解】
    解:由圆周角定理得,,


    故选:B.
    【点睛】
    本题考查的是三角形的外接圆与外心,掌握圆周角定理、等腰三角形的性质、三角形内角和定理是解题的关键.
    2、B
    【解析】
    △ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系的图象.
    【详解】
    解:当P点由A运动到B点时,即0≤x≤2时,y=×2x=x,
    当P点由B运动到C点时,即2<x<4时,y=×2×2=2,
    符合题意的函数关系的图象是B;
    故选B.
    【点睛】
    本题考查了动点函数图象问题,用到的知识点是三角形的面积、一次函数,在图象中应注意自变量的取值范围.
    3、A
    【解析】
    根据乘方的法则进行计算,然后根据只有符号不同的两个数互为相反数,可得答案.
    【详解】
    解:A. =9,=-9,故和互为相反数,故正确;
    B. =9,=9,故和不是互为相反数,故错误;
    C. =-8,=-8,故和不是互为相反数,故错误;
    D. =8,=8故和不是互为相反数,故错误.
    故选A.
    【点睛】
    本题考查了有理数的乘方和相反数的定义,关键是掌握有理数乘方的运算法则.
    4、D
    【解析】
    过A作AD⊥BF于D,根据45°角的三角函数值可求出AB的长度,根据含30°角的直角三角形的性质求出斜边AC的长即可.
    【详解】
    如图,过A作AD⊥BF于D,
    ∵∠ABD=45°,AD=12,
    ∴=12,
    又∵Rt△ABC中,∠C=30°,
    ∴AC=2AB=24,
    故选:D.

    【点睛】
    本题考查解直角三角形,在直角三角形中,30°角所对的直角边等于斜边的一半,熟记特殊角三角函数值是解题关键.
    5、C
    【解析】
    设大马有x匹,小马有y匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可.
    【详解】
    解:设大马有x匹,小马有y匹,由题意得:,
    故选C.
    【点睛】
    此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.
    6、C
    【解析】
    =3,是无限循环小数,π是无限不循环小数,,所以π是无理数,故选C.
    7、B
    【解析】
    同级运算从左向右依次计算,计算过程中注意正负符号的变化.
    【详解】
    -
    故选B.
    【点睛】
    本题考查的是有理数的混合运算,熟练掌握运算法则是解题的关键.
    8、B
    【解析】
    科学记数法的表示形式为a×1n的形式,其中1≤|a|<1,n为整数.确定n的值是易错点,由于929亿有11位,所以可以确定n=11-1=1.
    【详解】
    解:929亿=92900000000=9.29×11.
    故选B.
    【点睛】
    此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.
    9、B
    【解析】
    解:∵一次函数y=(m+1)x+m的图象过第一、三、四象限,
    ∴m+1>0,m<0,即-1<m<0,
    ∴函数有最大值,
    ∴最大值为,
    故选B.
    10、D
    【解析】
    根据平行线的性质以及角平分线的定义,即可得到正确的结论.
    【详解】
    解:

    ,故A选项正确;





    故B选项正确;
    平分


    ,故C选项正确;

    ,故选项错误;
    故选.
    【点睛】
    本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、2
    【解析】
    去分母得,m-1-x=0.
    ∵方程有增根,∴x=1, ∴m-1-1=0, ∴m=2.
    12、相等的圆心角所对的弦相等,直径所对的圆周角是直角.
    【解析】
    根据圆内接正四边形的定义即可得到答案.
    【详解】
    到线段两端距离相等的点在这条线段的中垂线上;两点确定一条直线;互相垂直的直径将圆四等分,从而得到答案.
    【点睛】
    本题主要考查了圆内接正四边形的定义以及基本性质,解本题的要点在于熟知相关基本知识点.
    13、40.0
    【解析】
    首先过点A作AE∥BD,交CD于点E,易证得四边形ABDE是矩形,即可得AE=BD=20m,DE=AB=0.8m,然后Rt△ACE中,由三角函数的定义,而求得CE的长,继而求得筒仓CD的高.
    【详解】
    过点A作AE∥BD,交CD于点E,

    ∵AB⊥BD,CD⊥BD,
    ∴∠BAE=∠ABD=∠BDE=90°,
    ∴四边形ABDE是矩形,
    ∴AE=BD=20m,DE=AB=0.8m,
    在Rt△ACE中,∠CAE=63°,
    ∴CE=AE•tan63°=20×1.96≈39.2(m),
    ∴CD=CE+DE=39.2+0.8=40.0(m).
    答:筒仓CD的高约40.0m,
    故答案为:40.0
    【点睛】
    此题考查解直角三角形的应用−仰角的定义,注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想的应用.
    14、±
    【解析】
    增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x-3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出m的值.
    【详解】
    方程两边都乘x-3,得
    x-2(x-3)=m2,
    ∵原方程增根为x=3,
    ∴把x=3代入整式方程,得m=±.
    【点睛】
    解决增根问题的步骤:
    ①确定增根的值;
    ②化分式方程为整式方程;
    ③把增根代入整式方程即可求得相关字母的值.
    15、x>1
    【解析】
    试题分析:二次根号下的数为非负数,二次根式才有意义,故需要满足
    考点:二次根式、分式有意义的条件
    点评:解答本题的关键是熟练掌握二次根号下的数为非负数,二次根式才有意义;分式的分母不能为0,分式才有意义.
    16、m≥1.
    【解析】
    分析:先解第一个不等式,再根据不等式组的解集是x<1,从而得出关于m的不等式,解不等式即可.
    详解:解第一个不等式得,x<1,
    ∵不等式组的解集是x<1,
    ∴m≥1,
    故答案为m≥1.
    点睛:本题是已知不等式组的解集,求不等式中字母取值范围的问题.可以先将字母当作已知数处理,求出解集与已知解集比较,进而求得字母的范围.求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,大小小大中间找,大大小小解不了.

    三、解答题(共8题,共72分)
    17、(1)作图见解析;点B的坐标为:(﹣2,﹣5);(2)作图见解析;(3)
    【解析】
    分析:(1)直接利用已知点位置得出B点坐标即可;
    (2)直接利用位似图形的性质得出对应点位置进而得出答案;
    (3)直接利用位似图形的性质得出对应点交点即可位似中心,再利用勾股定理得出四边形ABCP的周长.
    详解:(1)如图所示:点B的坐标为:(﹣2,﹣5);
    故答案为(﹣2,﹣5);
    (2)如图所示:△AB2C2,即为所求;
    (3)如图所示:P点即为所求,P点坐标为:(﹣2,1),四边形ABCP的周长为:+++=4+2+2+2=6+4.
    故答案为6+4.

    点睛:本题主要考查了位似变换以及勾股定理,正确利用位似图形的性质分析是解题的关键.
    18、(1)C;(2)100
    【解析】
    (1)根据中位数的定义即可作出判断;
    (2)先算出样本中C等级的百分比,再用总数乘以400即可.
    【详解】
    解:(1)由直方图中可知数据总数为40个,第20,21个数据的平均数为本组数据的中位数,第20,21个数据的等级都是C等级,故本次调查中,男生的跳绳成绩的中位数在C等级;
    故答案为C.
    (2)400 =100(人)
    答:估计该校九年级男生跳绳成绩是等级的人数有100人.
    【点睛】
    本题考查了中位数的求法和用样本数估计总体数据,理解相关知识是解题的关键.
    19、 (1)200;(2)见解析;(3)126°;(4)240人.
    【解析】
    (1)根据文史类的人数以及文史类所占的百分比即可求出总人数
    (2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;
    (3)根据小说类的百分比即可求出圆心角的度数;
    (4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数
    【详解】
    (1)∵喜欢文史类的人数为76人,占总人数的38%,
    ∴此次调查的总人数为:76÷38%=200人,
    故答案为200;
    (2)∵喜欢生活类书籍的人数占总人数的15%,
    ∴喜欢生活类书籍的人数为:200×15%=30人,
    ∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,
    如图所示:

    (3)∵喜欢社科类书籍的人数为:24人,
    ∴喜欢社科类书籍的人数占了总人数的百分比为:×100%=12%,
    ∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,
    ∴小说类所在圆心角为:360°×35%=126°;
    (4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,
    ∴该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%=240人.
    【点睛】
    此题考查扇形统计图和条形统计图,看懂图中数据是解题关键
    20、(1);(2)
    【解析】
    (1)直接利用求概率公式计算即可;(2)画树状图(或列表格)列出所有等可能结果,根据概率公式即可解答.
    【详解】
    (1);
    (2)方法1:根据题意可画树状图如下: 方法2:根据题意可列表格如下:

    弟弟
    姐姐
    A
    B
    C
    D
    A

    (A,B)
    (A,C)
    (A,D)
    B
    (B,A)

    (B,C)
    (B,D)
    C
    (C,A)
    (C,B)

    (C,D)
    D
    (D,A)
    (D,B)
    (D,C)

    由列表(树状图)可知,总共有12种结果,每种结果出现的可能性相同,其中姐姐抽到A佩奇,弟弟抽到B乔治的结果有1种:(A,B).
    ∴P(姐姐抽到A佩奇,弟弟抽到B乔治)
    【点睛】
    本题考查的是用列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解决问题用到概率公式:概率=所求情况数与总情况数之比.
    21、 (1)21米(2)见解析
    【解析】
    试题分析:(1)根据题意易发现,直角三角形ABC中,已知AC的长度,又知道了∠ACB的度数,那么AB的长就不难求出了.
    (2)从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识来解决问题的.
    解:(1)在Rt△BAC中,∠ACB=68°,
    ∴AB=AC•tan68°≈100×2.1=21(米)
    答:所测之处江的宽度约为21米.
    (2)
    ①延长BA至C,测得AC做记录;②从C沿平行于河岸的方向走到D,测得CD,做记录;③测AE,做记录.根据△BAE∽△BCD,得到比例线段,从而解答
    22、(1)∠CBD与∠CEB相等,证明见解析;(2)证明见解析;(3)tan∠CDF=.
    【解析】
    试题分析:
    (1)由AB是⊙O的直径,BC切⊙O于点B,可得∠ADB=∠ABC=90°,由此可得∠A+∠ABD=∠ABD+∠CBD=90°,从而可得∠A=∠CBD,结合∠A=∠CEB即可得到∠CBD=∠CEB;
    (2)由∠C=∠C,∠CEB=∠CBD,可得∠EBC=∠BDC,从而可得△EBC∽△BDC,再由相似三角形的性质即可得到结论;
    (3)设AB=2x,结合BC=AB,AB是直径,可得BC=3x,OB=OD=x,再结合∠ABC=90°,
    可得OC=x,CD=(-1)x;由AO=DO,可得∠CDF=∠A=∠DBF,从而可得△DCF∽△BCD,由此可得:==,这样即可得到tan∠CDF=tan∠DBF==.
    试题解析:
    (1)∠CBD与∠CEB相等,理由如下:
    ∵BC切⊙O于点B,
    ∴∠CBD=∠BAD,
    ∵∠BAD=∠CEB,
    ∴∠CEB=∠CBD,
    (2)∵∠C=∠C,∠CEB=∠CBD,
    ∴∠EBC=∠BDC,
    ∴△EBC∽△BDC,
    ∴;

    (3)设AB=2x,∵BC=AB,AB是直径,
    ∴BC=3x,OB=OD=x,
    ∵∠ABC=90°,
    ∴OC=x,
    ∴CD=(-1)x,
    ∵AO=DO,
    ∴∠CDF=∠A=∠DBF,
    ∴△DCF∽△BCD,
    ∴==,
    ∵tan∠DBF==,
    ∴tan∠CDF=.
    点睛:解答本题第3问的要点是:(1)通过证∠CDF=∠A=∠DBF,把求tan∠CDF转化为求tan∠DBF=;(2)通过证△DCF∽△BCD,得到.
    23、(1)2.1;(2)见解析;(3)x=2时,函数有最小值y=4.2
    【解析】
    (1)通过作辅助线,应用三角函数可求得HM+HN的值即为x=2时,y的值;
    (2)可在网格图中直接画出函数图象;
    (3)由函数图象可知函数的最小值.
    【详解】
    (1)当点P运动到点H时,AH=3,作HN⊥AB于点N.
    ∵在正方形ABCD中,AB=4cm,AC为对角线,AC上有一动点P,M是AB边的中点,∴∠HAN=42°,∴AN=HN=AH•sin42°=3,∴HM,HB,∴HM+HN==≈≈2.122+2.834≈2.1.

    故答案为:2.1;
    (2)

    (3)根据函数图象可知,当x=2时,函数有最小值y=4.2.
    故答案为:4.2.
    【点睛】
    本题考查了二次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    24、(1)详见解析;(2)平行四边形.
    【解析】
    (1)由“三线合一”定理即可得到结论;
    (2)由AD∥BC,BD平分∠ABC,得到∠ADB=∠ABD,由等腰三角形的判定得到AD=AB,根据垂直平分线的性质有AB=BE,于是AD=BE,进而得到AD=EC,根据平行四边形的判定即可得到结论.
    【详解】
    证明:(1)∵BD平分∠ABC,AE⊥BD,
    ∴AO=EO;
    (2)平行四边形,
    证明:∵AD∥BC,
    ∴∠ADB=∠ABD,
    ∴AD=AB,
    ∵OA=OE,OB⊥AE,
    ∴AB=BE,
    ∴AD=BE,
    ∵BE=CE,
    ∴AD=EC,
    ∴四边形AECD是平行四边形.

    【点睛】
    考查等腰直角三角形的性质以及平行四边形的判定,掌握平行四边形的判定方法是解题的关键.

    相关试卷

    重庆市忠县达标名校2022年毕业升学考试模拟卷数学卷含解析:

    这是一份重庆市忠县达标名校2022年毕业升学考试模拟卷数学卷含解析,共17页。试卷主要包含了计算3–等内容,欢迎下载使用。

    2021-2022学年重庆市育才中学毕业升学考试模拟卷数学卷含解析:

    这是一份2021-2022学年重庆市育才中学毕业升学考试模拟卷数学卷含解析,共15页。试卷主要包含了下列交通标志是中心对称图形的为,下列各组数中,互为相反数的是,计算的结果为,某一公司共有51名员工等内容,欢迎下载使用。

    2021-2022学年宁夏中学宁县毕业升学考试模拟卷数学卷含解析:

    这是一份2021-2022学年宁夏中学宁县毕业升学考试模拟卷数学卷含解析,共19页。试卷主要包含了一元二次方程的根的情况是,八边形的内角和为,有以下图形等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map