2021-2022学年浙江省慈溪市达标名校中考猜题数学试卷含解析
展开
这是一份2021-2022学年浙江省慈溪市达标名校中考猜题数学试卷含解析,共18页。试卷主要包含了答题时请按要求用笔,﹣18的倒数是,的整数部分是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。 一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,⊙O的半径为6,直径CD过弦EF的中点G,若∠EOD=60°,则弦CF的长等于( )A.6 B.6 C.3 D.92.如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )A. B. C. D.3.如图,以正方形ABCD的边CD为边向正方形ABCD外作等边△CDE,AC与BE交于点F,则∠AFE的度数是( )A.135° B.120° C.60° D.45°4.下列图形中,是轴对称图形的是( )A. B. C. D.5.从﹣1,2,3,﹣6这四个数中任选两数,分别记作m,n,那么点(m,n)在函数y=图象上的概率是( )A. B. C. D.6.﹣18的倒数是( )A.18 B.﹣18 C.- D.7.小亮家与姥姥家相距24 km,小亮8:00从家出发,骑自行车去姥姥家.妈妈8:30从家出发,乘车沿相同路线去姥姥家.在同一直角坐标系中,小亮和妈妈的行进路程s(km)与时间t(h)的函数图象如图所示.根据图象得出下列结论,其中错误的是( )A.小亮骑自行车的平均速度是12 km/hB.妈妈比小亮提前0.5 h到达姥姥家C.妈妈在距家12 km处追上小亮D.9:30妈妈追上小亮8.的整数部分是( )A.3 B.5 C.9 D.69.在中国集邮总公司设计的2017年纪特邮票首日纪念截图案中,可以看作中心对称图形的是( )A.千里江山图B.京津冀协同发展C.内蒙古自治区成立七十周年D.河北雄安新区建立纪念10.某校今年共毕业生297人,其中女生人数为男生人数的65%,则该校今年的女毕业生有() A.180人 B.117人 C.215人 D.257人二、填空题(共7小题,每小题3分,满分21分)11.如图,在边长为4的菱形ABCD中,∠A=60°,M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则线段A′C长度的最小值是______.12.关于x的方程x2-3x+2=0的两根为x1,x2,则x1+x2+x1x2的值为______.13.若a是方程的根,则=_____.14.如图,在扇形OAB中,∠O=60°,OA=4,四边形OECF是扇形OAB中最大的菱形,其中点E,C,F分别在OA,,OB上,则图中阴影部分的面积为__________.15.如果把抛物线y=2x2﹣1向左平移1个单位,同时向上平移4个单位,那么得到的新的抛物线是_____.16.函数中自变量的取值范围是______________17.直线y=x与双曲线y=在第一象限的交点为(a,1),则k=_____.三、解答题(共7小题,满分69分)18.(10分)校园手机现象已经受到社会的广泛关注.某校的一个兴趣小组对“是否赞成中学生带手机进校园”的问题在该校校园内进行了随机调查.并将调查数据作出如下不完整的整理;看法频数频率赞成5 无所谓 0.1反对400.8(1)本次调查共调查了 人;(直接填空)请把整理的不完整图表补充完整;若该校有3000名学生,请您估计该校持“反对”态度的学生人数.19.(5分)如图矩形ABCD中AB=6,AD=4,点P为AB上一点,把矩形ABCD沿过P点的直线l折叠,使D点落在BC边上的D′处,直线l与CD边交于Q点.(1)在图(1)中利用无刻度的直尺和圆规作出直线l.(保留作图痕迹,不写作法和理由)(2)若PD′⊥PD,①求线段AP的长度;②求sin∠QD′D.20.(8分)如图,平面直角坐标系中,直线与x轴,y轴分别交于A,B两点,与反比例函数的图象交于点.求反比例函数的表达式;若点C在反比例函数的图象上,点D在x轴上,当四边形ABCD是平行四边形时,求点D的坐标.21.(10分)先化简再求值:÷(a﹣),其中a=2cos30°+1,b=tan45°.22.(10分)用你发现的规律解答下列问题.┅┅计算 .探究 .(用含有的式子表示)若的值为,求的值.23.(12分)如图,AB为⊙O直径,过⊙O外的点D作DE⊥OA于点E,射线DC切⊙O于点C、交AB的延长线于点P,连接AC交DE于点F,作CH⊥AB于点H.(1)求证:∠D=2∠A;(2)若HB=2,cosD=,请求出AC的长.24.(14分)如图,已知AC和BD相交于点O,且AB∥DC,OA=OB.求证:OC=OD.
参考答案 一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】
连接DF,根据垂径定理得到 , 得到∠DCF=∠EOD=30°,根据圆周角定理、余弦的定义计算即可.【详解】解:连接DF,∵直径CD过弦EF的中点G,∴,∴∠DCF=∠EOD=30°,∵CD是⊙O的直径,
∴∠CFD=90°,
∴CF=CD•cos∠DCF=12× = ,故选B.【点睛】本题考查的是垂径定理的推论、解直角三角形,掌握平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解题的关键.2、A【解析】
根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看第一层是三个小正方形,第二层中间有一个小正方形,
故选:A.【点睛】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.3、B【解析】
易得△ABF与△ADF全等,∠AFD=∠AFB,因此只要求出∠AFB的度数即可.【详解】∵四边形ABCD是正方形,∴AB=AD,∠BAF=∠DAF,∴△ABF≌△ADF,∴∠AFD=∠AFB,∵CB=CE,∴∠CBE=∠CEB,∵∠BCE=∠BCD+∠DCE=90°+60°=150°,∴∠CBE=15°,∵∠ACB=45°,∴∠AFB=∠ACB+∠CBE=60°.∴∠AFE=120°.故选B.【点睛】此题考查正方形的性质,熟练掌握正方形及等边三角形的性质,会运用其性质进行一些简单的转化.4、B【解析】分析:根据轴对称图形的概念求解.详解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选B.点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.5、B【解析】
首先根据题意画出树状图,然后由树状图求得所有等可能的结果与点(m,n)恰好在反比例函数y=图象上的情况,再利用概率公式即可求得答案.【详解】解:画树状图得:∵共有12种等可能的结果,点(m,n)恰好在反比例函数y=图象上的有:(2,3),(﹣1,﹣6),(3,2),(﹣6,﹣1),∴点(m,n)在函数y=图象上的概率是:.故选B.【点睛】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.6、C【解析】
根据乘积为1的两个数互为倒数,可得一个数的倒数.【详解】∵-18=1,∴﹣18的倒数是,故选C.【点睛】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.7、D【解析】
根据函数图象可知根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,进而得到小亮骑自行车的平均速度,对应函数图象,得到妈妈到姥姥家所用的时间,根据交点坐标确定妈妈追上小亮所用时间,即可解答.【详解】解:A、根据函数图象小亮去姥姥家所用时间为10﹣8=2小时,∴小亮骑自行车的平均速度为:24÷2=12(km/h),故正确;B、由图象可得,妈妈到姥姥家对应的时间t=9.5,小亮到姥姥家对应的时间t=10,10﹣9.5=0.5(小时),∴妈妈比小亮提前0.5小时到达姥姥家,故正确;C、由图象可知,当t=9时,妈妈追上小亮,此时小亮离家的时间为9﹣8=1小时,∴小亮走的路程为:1×12=12km,∴妈妈在距家12km出追上小亮,故正确;D、由图象可知,当t=9时,妈妈追上小亮,故错误;故选D.【点睛】本题考查函数图像的应用,从图像中读取关键信息是解题的关键.8、C【解析】解:∵=﹣1,=﹣…=﹣+,∴原式=﹣1+﹣+…﹣+=﹣1+10=1.故选C.9、C【解析】
根据中心对称图形的概念求解.【详解】解:A选项是轴对称图形,不是中心对称图形,故本选项错误;B选项不是中心对称图形,故本选项错误;C选项为中心对称图形,故本选项正确;D选项不是中心对称图形,故本选项错误.故选C.【点睛】本题主要考查了中心对称图形的概念:关键是找到相关图形的对称中心,旋转180度后与原图重合.10、B【解析】
设男生为x人,则女生有65%x人,根据今年共毕业生297人列方程求解即可.【详解】设男生为x人,则女生有65%x人,由题意得,x+65%x=297,解之得x=180,297-180=117人.故选B.【点睛】本题考查了一元一次方程的应用,根据题意找出等量关系列出方程是解答本题的关键. 二、填空题(共7小题,每小题3分,满分21分)11、 【解析】
解:如图所示:∵MA′是定值,A′C长度取最小值时,即A′在MC上时,过点M作MF⊥DC于点F,∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=1,∴FM=DM×cos30°=,∴,∴A′C=MC﹣MA′=.故答案为.【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,得出A′点位置是解题关键.12、5【解析】试题分析:利用根与系数的关系进行求解即可.解:∵x1,x2是方程x2-3x+2=0的两根,∴x1+ x2=,x1x2=,∴x1+x2+x1x2=3+2=5.故答案为:5.13、1【解析】
利用一元二次方程解的定义得到3a2-a=2,再把变形为,然后利用整体代入的方法计算.【详解】∵a是方程的根,
∴3a2-a-2=0,
∴3a2-a=2,
∴==5-2×2=1.
故答案为:1.【点睛】此题考查一元二次方程的解,解题关键在于掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.14、8π﹣8 【解析】
连接EF、OC交于点H,根据正切的概念求出FH,根据菱形的面积公式求出菱形FOEC的面积,根据扇形面积公式求出扇形OAB的面积,计算即可.【详解】连接EF、OC交于点H,则OH=2,∴FH=OH×tan30°=2,∴菱形FOEC的面积=×4×4=8,扇形OAB的面积==8π,则阴影部分的面积为8π﹣8,故答案为8π﹣8.【点睛】本题考查了扇形面积的计算、菱形的性质,熟练掌握扇形的面积公式、菱形的性质、灵活运用锐角三角函数的定义是解题的关键.15、y=2(x+1)2+1.【解析】原抛物线的顶点为(0,-1),向左平移1个单位,同时向上平移4个单位,那么新抛物线的顶点为(-1,1);可设新抛物线的解析式为y=2(x-h)2+k,代入得:y=2(x+1)2+1.16、x≤2且x≠1【解析】
解:根据题意得:且x−1≠0,解得:且 故答案为且17、1【解析】分析:首先根据正比例函数得出a的值,然后将交点坐标代入反比例函数解析式得出k的值.详解:将(a,1)代入正比例函数可得:a=1, ∴交点坐标为(1,1),∴k=1×1=1.点睛:本题主要考查的是利用待定系数法求函数解析式,属于基础题型.根据正比例函数得出交点坐标是解题的关键. 三、解答题(共7小题,满分69分)18、(1)50;(2)见解析;(3)2400.【解析】
(1)用反对的频数除以反对的频率得到调查的总人数;(2)求无所谓的人数和赞成的频率即可把整理的不完整图表补充完整;(3)根据题意列式计算即可.【详解】解:(1)观察统计表知道:反对的频数为40,频率为0.8,故调查的人数为:40÷0.8=50人;故答案为:50;(2)无所谓的频数为:50﹣5﹣40=5人,赞成的频率为:1﹣0.1﹣0.8=0.1;看法频数频率赞成50.1无所谓50.1反对400.8统计图为:(3)0.8×3000=2400人,答:该校持“反对”态度的学生人数是2400人.【点睛】本题考查的是条形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.19、(1)见解析;(2) 【解析】
(1)根据题意作出图形即可;(2)由(1)知,PD=PD′,根据余角的性质得到∠ADP=∠BPD′,根据全等三角形的性质得到AD=PB=4,得到AP=2;根据勾股定理得到PD==2,根据三角函数的定义即可得到结论.【详解】(1)连接PD,以P为圆心,PD为半径画弧交BC于D′,过P作DD′的垂线交CD于Q,则直线PQ即为所求;(2)由(1)知,PD=PD′,∵PD′⊥PD,∴∠DPD′=90°,∵∠A=90°,∴∠ADP+∠APD=∠APD+∠BPD′=90°,∴∠ADP=∠BPD′,在△ADP与△BPD′中,,∴△ADP≌△BPD′,∴AD=PB=4,AP= BD′∵PB=AB﹣AP=6﹣AP=4,∴AP=2;∴PD==2,BD′=2∴CD′=BC- BD′=4-2=2∵PD=PD′,PD⊥PD′,∵DD′=PD=2,∵PQ垂直平分DD′,连接Q D′则DQ= D′Q∴∠QD′D=∠QDD′∴sin∠QD′D=sin∠QDD′=.【点睛】本题考查了作图-轴对称变换,矩形的性质,折叠的性质,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.20、(1)y= (1)(1,0)【解析】
(1)将点M的坐标代入一次函数解析式求得a的值;然后将点M的坐标代入反比例函数解析式,求得k的值即可;(1)根据平行四边形的性质得到BC∥AD且BD=AD,结合图形与坐标的性质求得点D的坐标.【详解】解:(1)∵点M(a,4)在直线y=1x+1上,∴4=1a+1,解得a=1,∴M(1,4),将其代入y=得到:k=xy=1×4=4,∴反比例函数y=(x>0)的表达式为y=;(1)∵平面直角坐标系中,直线y=1x+1与x轴,y轴分别交于A,B两点,∴当x=0时,y=1.当y=0时,x=﹣1,∴B(0,1),A(﹣1,0).∵BC∥AD,∴点C的纵坐标也等于1,且点C在反比例函数图象上,将y=1代入y=,得1=,解得x=1,∴C(1,1).∵四边形ABCD是平行四边形,∴BC∥AD且BD=AD,由B(0,1),C(1,1)两点的坐标知,BC∥AD.又BC=1,∴AD=1,∵A(﹣1,0),点D在点A的右侧,∴点D的坐标是(1,0).【点睛】考查了反比例函数与一次函数交点问题.熟练掌握平行四边形的性质和函数图象上点的坐标特征是解决问题的关键,难度适中.21、;【解析】
先根据分式的混合运算顺序和运算法则化简原式,再由特殊锐角的三角函数值得出a和b的值,代入计算可得.【详解】原式=÷(﹣)===,当a=2cos30°+1=2×+1=+1,b=tan45°=1时,原式=.【点睛】本题主要考查分式的化简求值,在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式,也考查了特殊锐角的三角函数值.22、解:(1);(2);(3)n=17.【解析】
(1)、根据给出的式子将各式进行拆开,然后得出答案;(2)、根据给出的式子得出规律,然后根据规律进行计算;(3)、根据题意将式子进行展开,然后列出关于n的一元一次方程,从而得出n的值.【详解】(1)原式=1−+−+−+−+−=1−=.故答案为; (2)原式=1−+−+−+…+−=1−=故答案为; (3) +++…+= (1−+−+−+…+−)=(1−)==解得:n=17.考点:规律题.23、(1)证明见解析;(2)AC=4.【解析】
(1)连接,根据切线的性质得到,根据垂直的定义得到,得到,然后根据圆周角定理证明即可;(2)设的半径为,根据余弦的定义、勾股定理计算即可.【详解】(1)连接.∵射线切于点,.,,,,,由圆周角定理得:,;(2)由(1)可知:,,,,,设的半径为,则,在中,,,,∴由勾股定理可知:,.在中,,由勾股定理可知:.【点睛】本题考查了切线的性质、圆周角定理以及解直角三角形,掌握切线的性质定理、圆周角定理、余弦的定义是解题的关键.24、证明见解析.【解析】试题分析:首先根据等边对等角可得∠A=∠B,再由DC∥AB,可得∠D=∠A,∠C=∠B,进而得到∠C=∠D,根据等角对等边可得CO=DO.试题解析:证明:∵AB∥CD∴∠A=∠D ∠B=∠C∵OA=OB∴∠A=∠B∴∠C=∠D∴OC=OD考点:等腰三角形的性质与判定,平行线的性质
相关试卷
这是一份温州市达标名校2021-2022学年中考猜题数学试卷含解析,共21页。试卷主要包含了不等式的最小整数解是等内容,欢迎下载使用。
这是一份2021-2022学年辽宁省本溪市达标名校中考猜题数学试卷含解析,共23页。
这是一份2021-2022学年江西省上饶县达标名校中考猜题数学试卷含解析,共21页。试卷主要包含了考生要认真填写考场号和座位序号,的相反数是,a、b是实数,点A,计算 的结果是,下列命题是真命题的是,函数的自变量x的取值范围是等内容,欢迎下载使用。