2021-2022学年浙江省绍兴市初中六校联谊学校中考猜题数学试卷含解析
展开
这是一份2021-2022学年浙江省绍兴市初中六校联谊学校中考猜题数学试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.苹果的单价为a元/千克,香蕉的单价为b元/千克,买2千克苹果和3千克香蕉共需( )
A.(a+b)元 B.(3a+2b)元 C.(2a+3b)元 D.5(a+b)元
2.若a与5互为倒数,则a=( )
A. B.5 C.-5 D.
3.已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y=在同一坐标系中的图象的形状大致是( )
A. B.
C. D.
4.如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠使AB落在AD边上,折痕为AE,再将△ABE以BE为折痕向右折叠,AE与CD交于点F,则的值是( )
A.1 B. C. D.
5.如图,⊙O的半径为6,直径CD过弦EF的中点G,若∠EOD=60°,则弦CF的长等于( )
A.6 B.6 C.3 D.9
6.如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM,ON上滑动,下列结论:
①若C,O两点关于AB对称,则OA=;
②C,O两点距离的最大值为4;
③若AB平分CO,则AB⊥CO;
④斜边AB的中点D运动路径的长为π.
其中正确的是( )
A.①② B.①②③ C.①③④ D.①②④
7.如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,则DE的长为( )
A.6 B.8 C.10 D.12
8.下列几何体中,主视图和左视图都是矩形的是( )
A. B. C. D.
9.右图是由四个小正方体叠成的一个立体图形,那么它的俯视图是( )
A. B. C. D.
10.下列运算正确的是( )
A.a2+a3=a5 B.(a3)2÷a6=1 C.a2•a3=a6 D.(+)2=5
二、填空题(本大题共6个小题,每小题3分,共18分)
11.等腰中,是BC边上的高,且,则等腰底角的度数为__________.
12.如图是某商品的标志图案,AC与BD是⊙O的两条直径,首尾顺次连接点A、B、C、D,得到四边形ABCD,若AC=10cm,∠BAC=36°,则图中阴影部分的面积为_____.
13.一元二次方程x2=3x的解是:________.
14.方程的根为_____.
15.如图,在矩形ABCD中,AB=3,BC=5,在CD上任取一点E,连接BE,将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,则CE的长为_____.
16.如果a+b=2,那么代数式(a﹣)÷的值是______.
三、解答题(共8题,共72分)
17.(8分)先化简,再求代数式()÷的值,其中a=2sin45°+tan45°.
18.(8分)某化工材料经销公司购进一种化工材料若干千克,价格为每千克40元,物价部门规定其销售单价不高于每千克70元,不低于每千克40元.经市场调查发现,日销量y(千克)是销售单价x(元)的一次函数,且当x=70时,y=80;x=60时,y=1.在销售过程中,每天还要支付其他费用350元.求y与x的函数关系式,并写出自变量x的取值范围;求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式;当销售单价为多少元时,该公司日获利最大?最大利润是多少元?
19.(8分)如图,AB、CD是⊙O的直径,DF、BE是弦,且DF=BE,求证:∠D=∠B.
20.(8分)先化简,再求值:,请你从﹣1≤x<3的范围内选取一个适当的整数作为x的值.
21.(8分)甲、乙两个商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%.设所买商品为x件时,甲商场收费为y1元,乙商场收费为y2元.分别求出y1,y2与x之间的关系式;当甲、乙两个商场的收费相同时,所买商品为多少件?当所买商品为5件时,应选择哪个商场更优惠?请说明理由.
22.(10分)徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高铁B前往北京.已知A车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?
23.(12分)如图,△ABC是等腰直角三角形,且AC=BC,P是△ABC外接圆⊙O上的一动点(点P与点C位于直线AB的异侧)连接AP、BP,延长AP到D,使PD=PB,连接BD.
(1)求证:PC∥BD;
(2)若⊙O的半径为2,∠ABP=60°,求CP的长;
(3)随着点P的运动,的值是否会发生变化,若变化,请说明理由;若不变,请给出证明.
24.为进一步深化基教育课程改革,构建符合素质教育要求的学校课程体系,某学校自主开发了A书法、B阅读,C足球,D器乐四门校本选修课程供学生选择,每门课程被选到的机会均等.学生小红计划选修两门课程,请写出所有可能的选法;若学生小明和小刚各计划送修一门课程,则他们两人恰好选修同一门课程的概率为多少?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.
【详解】
买单价为a元的苹果2千克用去2a元,买单价为b元的香蕉3千克用去3b元,
共用去:(2a+3b)元.
故选C.
【点睛】
本题主要考查列代数式,总价=单价乘数量.
2、A
【解析】
分析:当两数的积为1时,则这两个数互为倒数,根据定义即可得出答案.
详解:根据题意可得:5a=1,解得:a=, 故选A.
点睛:本题主要考查的是倒数的定义,属于基础题型.理解倒数的定义是解题的关键.
3、C
【解析】
试题分析:如图所示,由一次函数y=kx+b的图象经过第一、三、四象限,可得k>1,b<1.因此可知正比例函数y=kx的图象经过第一、三象限,反比例函数y=的图象经过第二、四象限.综上所述,符合条件的图象是C选项.
故选C.
考点:1、反比例函数的图象;2、一次函数的图象;3、一次函数图象与系数的关系
4、C
【解析】
由题意知:AB=BE=6,BD=AD﹣AB=2(图2中),AD=AB﹣BD=4(图3中);
∵CE∥AB,
∴△ECF∽△ADF,
得,
即DF=2CF,所以CF:CD=1:3,
故选C.
【点睛】本题考查了矩形的性质,折叠问题,相似三角形的判定与性质等,准确识图是解题的关键.
5、B
【解析】
连接DF,根据垂径定理得到 , 得到∠DCF=∠EOD=30°,根据圆周角定理、余弦的定义计算即可.
【详解】
解:连接DF,
∵直径CD过弦EF的中点G,
∴,
∴∠DCF=∠EOD=30°,
∵CD是⊙O的直径,
∴∠CFD=90°,
∴CF=CD•cos∠DCF=12× = ,
故选B.
【点睛】
本题考查的是垂径定理的推论、解直角三角形,掌握平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解题的关键.
6、D
【解析】
分析:①先根据直角三角形30°的性质和勾股定理分别求AC和AB,由对称的性质可知:AB是OC的垂直平分线,所以
②当OC经过AB的中点E时,OC最大,则C、O两点距离的最大值为4;
③如图2,当∠ABO=30°时,易证四边形OACB是矩形,此时AB与CO互相平分,但所夹锐角为60°,明显不垂直,或者根据四点共圆可知:A、C、B、O四点共圆,则AB为直径,由垂径定理相关推论:平分弦(不是直径)的直径垂直于这条弦,但当这条弦也是直径时,即OC是直径时,AB与OC互相平分,但AB与OC不一定垂直;
④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可.
详解:在Rt△ABC中,∵
∴
①若C.O两点关于AB对称,如图1,
∴AB是OC的垂直平分线,
则
所以①正确;
②如图1,取AB的中点为E,连接OE、CE,
∵
∴
当OC经过点E时,OC最大,
则C.O两点距离的最大值为4;
所以②正确;
③如图2,当时,
∴四边形AOBC是矩形,
∴AB与OC互相平分,
但AB与OC的夹角为不垂直,
所以③不正确;
④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的
则:
所以④正确;
综上所述,本题正确的有:①②④;
故选D.
点睛:属于三角形的综合体,考查了直角三角形的性质,直角三角形斜边上中线的性质,轴对称的性质,弧长公式等,熟练掌握直角三角形斜边的中线等于斜边的一半是解题的关键.
7、C
【解析】
∵DE∥BC,
∴∠ADE=∠B,∠AED=∠C,
又∵∠ADE=∠EFC,
∴∠B=∠EFC,△ADE∽△EFC,
∴BD∥EF,,
∴四边形BFED是平行四边形,
∴BD=EF,
∴,解得:DE=10.
故选C.
8、C
【解析】
主视图、左视图是分别从物体正面、左面和上面看,所得到的图形.依此即可求解.
【详解】
A. 主视图为圆形,左视图为圆,故选项错误;
B. 主视图为三角形,左视图为三角形,故选项错误;
C. 主视图为矩形,左视图为矩形,故选项正确;
D. 主视图为矩形,左视图为圆形,故选项错误.
故答案选:C.
【点睛】
本题考查的知识点是截一个几何体,解题的关键是熟练的掌握截一个几何体.
9、B
【解析】
解:从上面看,上面一排有两个正方形,下面一排只有一个正方形,故选B.
10、B
【解析】
利用合并同类项对A进行判断;根据幂的乘方和同底数幂的除法对B进行判断;根据同底数幂的乘法法则对C进行判断;利用完全平方公式对D进行判断.
【详解】
解:A、a2与a3不能合并,所以A选项错误;
B、原式=a6÷a6=1,所以A选项正确;
C、原式=a5,所以C选项错误;
D、原式=2+2+3=5+2,所以D选项错误.
故选:B.
【点睛】
本题考查同底数幂的乘除、二次根式的混合运算,:二次根式的混合运算先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.解题关键是在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、,,
【解析】
分三种情况:①点A是顶角顶点时,②点A是底角顶点,且AD在△ABC外部时,③点A是底角顶点,且AD在△ABC内部时,再结合直角三角形中,30°的角所对的直角边等于斜边的一半即可求解.
【详解】
①如图,若点A是顶角顶点时,
∵AB=AC,AD⊥BC,
∴BD=CD,∵,
∴AD=BD=CD,
在Rt△ABD中,∠B=∠BAD=
;
②如图,若点A是底角顶点,且AD在△ABC外部时,
∵,AC=BC,
∴,
∴∠ACD=30°,
∴∠BAC=∠ABC=×30°=15°;
③如图,若点A是底角顶点,且AD在△ABC内部时,
∵,AC=BC,
∴,
∴∠C=30°,
∴∠BAC=∠ABC=(180°-30°)=75°;
综上所述,△ABC底角的度数为45°或15°或75°;
故答案为,,.
【点睛】
本题考查了等腰三角形的性质和直角三角形中30°的角所对的直角边等于斜边的一半的性质,解题的关键是要分情况讨论.
12、10πcm1.
【解析】
根据已知条件得到四边形ABCD是矩形,求得图中阴影部分的面积=S扇形AOD+S扇形BOC=1S扇形AOD,根据等腰三角形的性质得到∠BAC=∠ABO=36°,由圆周角定理得到∠AOD=71°,于是得到结论.
【详解】
解:∵AC与BD是⊙O的两条直径,
∴∠ABC=∠ADC=∠DAB=∠BCD=90°,
∴四边形ABCD是矩形,
∴S△ABO=S△CDO =S△AOD=S△BOD,
∴图中阴影部分的面积=S扇形AOD+S扇形BOC=1S扇形AOD,
∵OA=OB,
∴∠BAC=∠ABO=36°,
∴∠AOD=71°,
∴图中阴影部分的面积=1×=10π,
故答案为10πcm1.
点睛:本题考查了扇形的面积,矩形的判定和性质,圆周角定理的推论,三角形外角的性质,熟练掌握扇形的面积公式是解题的关键.
13、x1=0,x2=1
【解析】
先移项,然后利用因式分解法求解.
【详解】
x2=1x
x2-1x=0,
x(x-1)=0,
x=0或x-1=0,
∴x1=0,x2=1.
故答案为:x1=0,x2=1
【点睛】
本题考查了解一元二次方程-因式分解法:先把方程右边变形为0,再把方程左边分解为两个一次式的乘积,这样原方程转化为两个一元一次方程,然后解一次方程即可得到一元二次方程的解
14、﹣2或﹣7
【解析】
把无理方程转化为整式方程即可解决问题.
【详解】
两边平方得到:13+2=25,
∴=6,
∴(x+11)(2-x)=36,
解得x=-2或-7,
经检验x=-2或-7都是原方程的解.
故答案为-2或-7
【点睛】
本题考查无理方程,解题的关键是学会把无理方程转化为整式方程.
15、
【解析】
设CE=x,由矩形的性质得出AD=BC=5,CD=AB=3,∠A=∠D=90°.由折叠的性质得出BF=BC=5,EF=CE=x,DE=CD-CE=3-x.在Rt△ABF中利用勾股定理求出AF的长度,进而求出DF的长度;然后在Rt△DEF根据勾股定理列出关于x的方程即可解决问题.
【详解】
设CE=x.
∵四边形ABCD是矩形,
∴AD=BC=5,CD=AB=3,∠A=∠D=90°.
∵将△BCE沿BE折叠,使点C恰好落在AD边上的点F处,
∴BF=BC=5,EF=CE=x,DE=CD-CE=3-x.
在Rt△ABF中,由勾股定理得:
AF2=52-32=16,
∴AF=4,DF=5-4=1.
在Rt△DEF中,由勾股定理得:
EF2=DE2+DF2,
即x2=(3-x)2+12,
解得:x=,
故答案为.
16、2
【解析】
分析:根据分式的运算法则即可求出答案.
详解:当a+b=2时,
原式=
=
=a+b
=2
故答案为:2
点睛:本题考查分式的运算,解题的关键熟练运用分式的运算法则,本题属于基础题型.
三、解答题(共8题,共72分)
17、,.
【解析】
先把小括号内的通分,按照分式的减法和分式除法法则进行化简,再把字母的值代入运算即可.
【详解】
解:原式
当时
原式
【点睛】
考查分式的混合运算,掌握运算顺序是解题的关键.
18、 (1) y=﹣2x+220(40≤x≤70);(2) w=﹣2x2+300x﹣9150;(3) 当销售单价为70元时,该公司日获利最大,为2050元.
【解析】
(1)根据y与x成一次函数解析式,设为y=kx+b(k≠0),把x与y的两对值代入求出k与b的值,即可确定出y与x的解析式,并求出x的范围即可;
(2)根据利润=单价×销售量,列出w关于x的二次函数解析式即可;
(3)利用二次函数的性质求出w的最大值,以及此时x的值即可.
【详解】
(1)设y=kx+b(k≠0),
根据题意得,
解得:k=﹣2,b=220,
∴y=﹣2x+220(40≤x≤70);
(2)w=(x﹣40)(﹣2x+220)﹣350=﹣2x2+300x﹣9150=﹣2(x﹣75)2+21;
(3)w=﹣2(x﹣75)2+21,
∵40≤x≤70,
∴x=70时,w有最大值为w=﹣2×25+21=2050元,
∴当销售单价为70元时,该公司日获利最大,为2050元.
【点睛】
此题考查了二次函数的应用,待定系数法求一次函数解析式,以及二次函数的性质,熟练掌握二次函数性质是解本题的关键.
19、证明见解析.
【解析】
根据在同圆中等弦对的弧相等,AB、CD是⊙O的直径,则,由FD=EB,得,,由等量减去等量仍是等量得:,即,由等弧对的圆周角相等,得∠D=∠B.
【详解】
解:方法(一)
证明:∵AB、CD是⊙O的直径,
∴.
∵FD=EB,
∴.
∴.
即.
∴∠D=∠B.
方法(二)
证明:如图,连接CF,AE.
∵AB、CD是⊙O的直径,
∴∠F=∠E=90°(直径所对的圆周角是直角).
∵AB=CD,DF=BE,
∴Rt△DFC≌Rt△BEA(HL).
∴∠D=∠B.
【点睛】
本题利用了在同圆中等弦对的弧相等,等弧对的弦,圆周角相等,等量减去等量仍是等量求解.
20、1.
【解析】
根据分式的化简法则:先算括号里的,再算乘除,最后算加减.对不同分母的先通分,按同分母分式加减法计算,且要把复杂的因式分解因式,最后约分,化简完后再代入求值,但是不能代入-1,0,1,保证分式有意义.
【详解】
解:
=
=
=
=
当x=2时,原式==1.
【点睛】
本题考查分式的化简求值及分式成立的条件,掌握运算法则准确计算是本题的解题关键.
21、(1);y2=2250x;
(2)甲、乙两个商场的收费相同时,所买商品为6件;
(3)所买商品为5件时,应选择乙商场更优惠.
【解析】
试题分析:(1)由两家商场的优惠方案分别列式整理即可;
(2)由收费相同,列出方程求解即可;
(3)由函数解析式分别求出x=5时的函数值,即可得解
试题解析:(1)当x=1时,y1=3000;
当x>1时,y1=3000+3000(x﹣1)×(1﹣30%)=2100x+1.
∴;
y2=3000x(1﹣25%)=2250x,
∴y2=2250x;
(2)当甲、乙两个商场的收费相同时,2100x+1=2250x,
解得x=6,
答:甲、乙两个商场的收费相同时,所买商品为6件;
(3)x=5时,y1=2100x+1=2100×5+1=11400,
y2=2250x=2250×5=11250,
∵11400>11250,
∴所买商品为5件时,应选择乙商场更优惠.
考点:一次函数的应用
22、A车行驶的时间为3.1小时,B车行驶的时间为2.1小时.
【解析】
设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,根据题意得:﹣=80,解分式方程即可,注意验根.
【详解】
解:设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,
根据题意得:﹣=80,
解得:t=2.1,
经检验,t=2.1是原分式方程的解,且符合题意,
∴1.4t=3.1.
答:A车行驶的时间为3.1小时,B车行驶的时间为2.1小时.
【点睛】
本题考核知识点:列分式方程解应用题.解题关键点:根据题意找出数量关系,列出方程.
23、(1)证明见解析;(2)+;(3)的值不变,.
【解析】
(1)根据等腰三角形的性质得到∠ABC=45°,∠ACB=90°,根据圆周角定理得到∠APB=90°,得到∠APC=∠D,根据平行线的判定定理证明;
(2)作BH⊥CP,根据正弦、余弦的定义分别求出CH、PH,计算即可;
(3)证明△CBP∽△ABD,根据相似三角形的性质解答.
【详解】
(1)证明:∵△ABC是等腰直角三角形,且AC=BC,
∴∠ABC=45°,∠ACB=90°,
∴∠APC=∠ABC=45°,
∴AB为⊙O的直径,
∴∠APB=90°,
∵PD=PB,
∴∠PBD=∠D=45°,
∴∠APC=∠D=45°,
∴PC∥BD;
(2)作BH⊥CP,垂足为H,
∵⊙O的半径为2,∠ABP=60°,
∴BC=2,∠BCP=∠BAP=30°,∠CPB=∠BAC=45°,
在Rt△BCH中,CH=BC•cos∠BCH=,
BH=BC•sin∠BCH=,
在Rt△BHP中,PH=BH=,
∴CP=CH+PH=+;
(3)的值不变,
∵∠BCP=∠BAP,∠CPB=∠D,
∴△CBP∽△ABD,
∴=,
∴=,即=.
【点睛】
本题考查的是圆周角定理、相似三角形的判定和性质以及锐角三角函数的概念,掌握圆周角定理、相似三角形的判定定理和性质定理是解题的关键.
24、(1)答案见解析;(2)
【解析】
分析:(1)直接列举出所有可能的结果即可.
(2)画树状图展示所有16种等可能的结果数,再找出他们两人恰好选修同一门课程的结果数,然后根据概率公式求解.
详解:(1)学生小红计划选修两门课程,她所有可能的选法有:A书法、B阅读;A书法、C足球;A书法、D器乐;B阅读,C足球;B阅读,D器乐;C足球,D器乐.
共有6种等可能的结果数;
(2)画树状图为:
共有16种等可能的结果数,其中他们两人恰好选修同一门课程的结果数为4,
所以他们两人恰好选修同一门课程的概率
点睛:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.
相关试卷
这是一份浙江省吴兴区七校联考2021-2022学年中考猜题数学试卷含解析,共20页。试卷主要包含了如图,一、单选题等内容,欢迎下载使用。
这是一份浙江省衢州市六校联谊市级名校2022年中考数学猜题卷含解析,共21页。
这是一份2022届四川省仁寿县联谊学校中考猜题数学试卷含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是等内容,欢迎下载使用。