2021-2022学年威海市重点中学中考猜题数学试卷含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.估算的运算结果应在( )
A.2到3之间 B.3到4之间
C.4到5之间 D.5到6之间
2.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x﹣k)2+h.已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是( )
A.球不会过网 B.球会过球网但不会出界
C.球会过球网并会出界 D.无法确定
3.(2011•雅安)点P关于x轴对称点为P1(3,4),则点P的坐标为( )
A.(3,﹣4) B.(﹣3,﹣4)
C.(﹣4,﹣3) D.(﹣3,4)
4.方程=的解为( )
A.x=3 B.x=4 C.x=5 D.x=﹣5
5.某数学兴趣小组开展动手操作活动,设计了如图所示的三种图形,现计划用铁丝按照图形制作相应的造型,则所用铁丝的长度关系是( )
A.甲种方案所用铁丝最长 B.乙种方案所用铁丝最长
C.丙种方案所用铁丝最长 D.三种方案所用铁丝一样长:学*科*网]
6.2017年扬中地区生产总值约为546亿元,将546亿用科学记数法表示为( )
A.5.46×108 B.5.46×109 C.5.46×1010 D.5.46×1011
7.已知:如图是y=ax2+2x﹣1的图象,那么ax2+2x﹣1=0的根可能是下列哪幅图中抛物线与直线的交点横坐标( )
A. B.
C. D.
8.小明在学习了正方形之后,给同桌小文出了道题,从下列四个条件:①AB=BC,②∠ABC=90°,③AC=BD,④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图),现有下列四种选法,你认为其中错误的是( )
A.①② B.②③ C.①③ D.②④
9.如图是小强用八块相同的小正方体搭建的一个积木,它的左视图是( )
A. B. C. D.
10.如图,△ABC中,∠B=55°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N作直线MN,交BC于点D,连结AD,则∠BAD的度数为( )
A.65° B.60°
C.55° D.45°
11.观察下列图形,则第n个图形中三角形的个数是( )
A.2n+2 B.4n+4 C.4n﹣4 D.4n
12.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为( ).
A.60 ° B.75° C.85° D.90°
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图所示,数轴上点A所表示的数为a,则a的值是____.
14.如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P= 40°,则∠BAC= .
15.计算(-2)×3+(-3)=_______________.
16.若代数式在实数范围内有意义,则x的取值范围是_______.
17.如图,在中,,, ,,,点在上,交于点,交于点,当时,________.
18.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则EF=_____cm.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)(1)计算:|﹣3|+(+π)0﹣(﹣)﹣2﹣2cos60°;
(2)先化简,再求值:()+,其中a=﹣2+.
20.(6分)先化简,然后从﹣<x<的范围内选取一个合适的整数作为x的值代入求值.
21.(6分)如图,在矩形ABCD中,对角线AC,BD相交于点O.
(1)画出△AOB平移后的三角形,其平移后的方向为射线AD的方向,平移的距离为AD的长.
(2)观察平移后的图形,除了矩形ABCD外,还有一种特殊的平行四边形?请证明你的结论.
22.(8分)在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行
销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)于销售单价x(元
/个)之间的对应关系如图所示.试判断y与x之间的函数关系,并求出函数关系式;若许愿瓶的进价为6元/个,按照上述市场调查销售规律,求利润w(元)与销售单价x(元/个)之间的
函数关系式;若许愿瓶的进货成本不超过900元,要想获得最大利润,试求此时这种许愿瓶的销售单价,并求出
最大利润.
23.(8分)如图,四边形ABCD中,AC平分∠DAB,AC2=AB•AD,∠ADC=90°,E为AB的中点.
(1)求证:△ADC∽△ACB;
(2)CE与AD有怎样的位置关系?试说明理由;
(3)若AD=4,AB=6,求的值.
24.(10分)先化简,再求值:(﹣)÷,其中x的值从不等式组的整数解中选取.
25.(10分)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵?若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.
26.(12分)顶点为D的抛物线y=﹣x2+bx+c交x轴于A、B(3,0),交y轴于点C,直线y=﹣x+m经过点C,交x轴于E(4,0).
求出抛物线的解析式;如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线y=﹣x+m于G,交抛物线于H,连接CH,将△CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标.
27.(12分)(1)计算:()﹣3×[﹣()3]﹣4cos30°+;
(2)解方程:x(x﹣4)=2x﹣8
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
解:= ,∵2<<3,∴在5到6之间.
故选D.
【点睛】
此题主要考查了估算无理数的大小,正确进行计算是解题关键.
2、C
【解析】
分析:(1)将点A(0,2)代入求出a的值;分别求出x=9和x=18时的函数值,再分别与2.43、0比较大小可得.
详解:根据题意,将点A(0,2)代入
得:36a+2.6=2,
解得:
∴y与x的关系式为
当x=9时,
∴球能过球网,
当x=18时,
∴球会出界.
故选C.
点睛:考查二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,根据题意确定范围.
3、A
【解析】
∵关于x轴对称的点,横坐标相同,纵坐标互为相反数,
∴点P的坐标为(3,﹣4).
故选A.
4、C
【解析】
方程两边同乘(x-1)(x+3),得
x+3-2(x-1)=0,
解得:x=5,
检验:当x=5时,(x-1)(x+3)≠0,
所以x=5是原方程的解,
故选C.
5、D
【解析】
试题分析:
解:由图形可得出:甲所用铁丝的长度为:2a+2b,
乙所用铁丝的长度为:2a+2b,
丙所用铁丝的长度为:2a+2b,
故三种方案所用铁丝一样长.
故选D.
考点:生活中的平移现象
6、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.
【详解】
解:将546亿用科学记数法表示为:5.46×1010 ,故本题选C.
【点睛】
本题考查的是科学计数法,熟练掌握它的定义是解题的关键.
7、C
【解析】
由原抛物线与x轴的交点位于y轴的两端,可排除A、D选项;
B、方程ax2+2x﹣1=0有两个不等实根,且负根的绝对值大于正根的绝对值,B不符合题意;
C、抛物线y=ax2与直线y=﹣2x+1的交点,即交点的横坐标为方程ax2+2x﹣1=0的根,C符合题意.此题得解.
【详解】
∵抛物线y=ax2+2x﹣1与x轴的交点位于y轴的两端,
∴A、D选项不符合题意;
B、∵方程ax2+2x﹣1=0有两个不等实根,且负根的绝对值大于正根的绝对值,
∴B选项不符合题意;
C、图中交点的横坐标为方程ax2+2x﹣1=0的根(抛物线y=ax2与直线y=﹣2x+1的交点),
∴C选项符合题意.
故选:C.
【点睛】
本题考查了抛物线与x轴的交点以及二次函数的图象与位置变化,逐一分析四个选项中的图形是解题的关键.
8、B
【解析】
A、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,
当②∠ABC=90°时,菱形ABCD是正方形,故此选项正确,不合题意;
B、∵四边形ABCD是平行四边形,
∴当②∠ABC=90°时,平行四边形ABCD是矩形,当AC=BD时,这是矩形的性质,无法得出四边形ABCD是正方形,故此选项错误,符合题意;
C、∵四边形ABCD是平行四边形,当①AB=BC时,平行四边形ABCD是菱形,当③AC=BD时,菱形ABCD是正方形,故此选项正确,不合题意;
D、∵四边形ABCD是平行四边形,∴当②∠ABC=90°时,平行四边形ABCD是矩形,当④AC⊥BD时,矩形ABCD是正方形,故此选项正确,不合题意.
故选C.
9、D
【解析】
左视图从左往右,2列正方形的个数依次为2,1,依此得出图形D正确.故选D.
【详解】
请在此输入详解!
10、A
【解析】
根据线段垂直平分线的性质得到AD=DC,根据等腰三角形的性质得到∠C=∠DAC,求得∠DAC=30°,根据三角形的内角和得到∠BAC=95°,即可得到结论.
【详解】
由题意可得:MN是AC的垂直平分线,
则AD=DC,故∠C=∠DAC,
∵∠C=30°,
∴∠DAC=30°,
∵∠B=55°,
∴∠BAC=95°,
∴∠BAD=∠BAC-∠CAD=65°,
故选A.
【点睛】
此题主要考查了线段垂直平分线的性质,三角形的内角和,正确掌握线段垂直平分线的性质是解题关键.
11、D
【解析】
试题分析:由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.
解:根据给出的3个图形可以知道:
第1个图形中三角形的个数是4,
第2个图形中三角形的个数是8,
第3个图形中三角形的个数是12,
从而得出一般的规律,第n个图形中三角形的个数是4n.
故选D.
考点:规律型:图形的变化类.
12、C
【解析】
试题分析:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.
如图,设AD⊥BC于点F.则∠AFB=90°,
∴在Rt△ABF中,∠B=90°-∠BAD=25°,
∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,
即∠BAC的度数为85°.故选C.
考点: 旋转的性质.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
根据数轴上点的特点和相关线段的长,利用勾股定理求出斜边的长,即知表示0的点和A之间的线段的长,进而可推出A的坐标.
【详解】
∵直角三角形的两直角边为1,2,
∴斜边长为,
那么a的值是:﹣.
故答案为.
【点睛】
此题主要考查了实数与数轴之间的对应关系,其中主要利用了:已知两点间的距离,求较大的数,就用较小的数加上两点间的距离.
14、20°
【解析】
根据切线的性质可知∠PAC=90°,由切线长定理得PA=PB,∠P=40°,求出∠PAB的度数,用∠PAC﹣∠PAB得到∠BAC的度数.
【详解】
解:∵PA是⊙O的切线,AC是⊙O的直径,
∴∠PAC=90°.
∵PA,PB是⊙O的切线,
∴PA=PB.
∵∠P=40°,
∴∠PAB=(180°﹣∠P)÷2=(180°﹣40°)÷2=70°,
∴∠BAC=∠PAC﹣∠PAB=90°﹣70°=20°.
故答案为20°.
【点睛】
本题考查了切线的性质,根据切线的性质和切线长定理进行计算求出角的度数.
15、-9
【解析】
根据有理数的计算即可求解.
【详解】
(-2)×3+(-3)=-6-3=-9
【点睛】
此题主要考查有理数的混合运算,解题的关键是熟知有理数的运算法则.
16、
【解析】
先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.
解:∵在实数范围内有意义,
∴x-1≥2,
解得x≥1.
故答案为x≥1.
本题考查的是二次根式有意义的条件,即被开方数大于等于2.
17、1
【解析】
如图作PQ⊥AB于Q,PR⊥BC于R.由△QPE∽△RPF,推出==2,可得PQ=2PR=2BQ,由PQ∥BC,可得AQ:QP:AP=AB:BC:AC=1:4:5,设PQ=4x,则AQ=1x,AP=5x,BQ=2x,可得2x+1x=1,求出x即可解决问题.
【详解】
如图,作PQ⊥AB于Q,PR⊥BC于R.
∵∠PQB=∠QBR=∠BRP=90°,∴四边形PQBR是矩形,∴∠QPR=90°=∠MPN,∴∠QPE=∠RPF,∴△QPE∽△RPF,∴==2,∴PQ=2PR=2BQ.
∵PQ∥BC,∴AQ:QP:AP=AB:BC:AC=1:4:5,设PQ=4x,则AQ=1x,AP=5x,BQ=2x,∴2x+1x=1,∴x=,∴AP=5x=1.
故答案为:1.
【点睛】
本题考查了相似三角形的判定和性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.
18、2.1
【解析】
根据勾股定理求出AC,根据矩形性质得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根据三角形中位线求出即可.
【详解】
∵四边形ABCD是矩形,
∴∠ABC=90°,BD=AC,BO=OD,
∵AB=6cm,BC=8cm,
∴由勾股定理得:BD=AC==10(cm),
∴DO=1cm,
∵点E、F分别是AO、AD的中点,
∴EF=OD=2.1cm,
故答案为2.1.
【点评】
本题考查了勾股定理,矩形性质,三角形中位线的应用,熟练掌握相关性质及定理是解题的关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)-1;(2).
【解析】
(1)根据零指数幂的意义、特殊角的锐角三角函数以及负整数指数幂的意义即可求出答案;
(2)先化简原式,然后将a的值代入即可求出答案.
【详解】
(1)原式=3+1﹣(﹣2)2﹣2×=4﹣4﹣1=﹣1;
(2)原式=+
=
当a=﹣2+时,原式==.
【点睛】
本题考查了学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.
20、
【解析】
根据分式的减法和除法可以化简题目中的式子,然后从﹣<x<的范围内选取一个使得原分式有意义的整数作为x的值代入即可解答本题.
【详解】
解:÷(﹣x+1)
=
=
=
=,
当x=﹣2时,原式= .
【点睛】
本题考查分式的化简求值、估算无理数的大小,解答本题的关键是明确分式化简求值的方法.
21、(1)如图所示见解析;(2)四边形OCED是菱形.理由见解析.
【解析】
(1)根据图形平移的性质画出平移后的△DEC即可;
(2)根据图形平移的性质得出AC∥DE,OA=DE,故四边形OCED是平行四边形,再由矩形的性质可知OA=OB,故DE=CE,由此可得出结论.
【详解】
(1)如图所示;
(2)四边形OCED是菱形.
理由:∵△DEC由△AOB平移而成,
∴AC∥DE,BD∥CE,OA=DE,OB=CE,
∴四边形OCED是平行四边形.
∵四边形ABCD是矩形,
∴OA=OB,
∴DE=CE,
∴四边形OCED是菱形.
【点睛】
本题考查了作图与矩形的性质,解题的关键是熟练的掌握矩形的性质与根据题意作图.
22、(1)y是x的一次函数,y=-30x+1(2)w=-30x2+780x-31(3)以3元/个的价格销售这批许愿瓶可获得最大利润4元
【解析】
(1)观察可得该函数图象是一次函数,设出一次函数解析式,把其中两点代入即可求得该函数解析式,进而把其余两点的横坐标代入看纵坐标是否与点的纵坐标相同.
(2)销售利润=每个许愿瓶的利润×销售量.
(3)根据进货成本可得自变量的取值,结合二次函数的关系式即可求得相应的最大利润.
【详解】
解:(1)y是x的一次函数,设y=kx+b,
∵图象过点(10,300),(12,240),
∴,解得.∴y=-30x+1.
当x=14时,y=180;当x=16时,y=120,
∴点(14,180),(16,120)均在函数y=-30x+1图象上.
∴y与x之间的函数关系式为y=-30x+1.
(2)∵w=(x-6)(-30x+1)=-30x2+780x-31,
∴w与x之间的函数关系式为w=-30x2+780x-31.
(3)由题意得:6(-30x+1)≤900,解得x≥3.
w=-30x2+780x-31图象对称轴为:.
∵a=-30<0,∴抛物线开口向下,当x≥3时,w随x增大而减小.
∴当x=3时,w最大=4.
∴以3元/个的价格销售这批许愿瓶可获得最大利润4元.
23、(1)证明见解析;(2)CE∥AD,理由见解析;(3).
【解析】
(1)根据角平分线的定义得到∠DAC=∠CAB,根据相似三角形的判定定理证明;
(2)根据相似三角形的性质得到∠ACB=∠ADC=90°,根据直角三角形的性质得到CE=AE,根据等腰三角形的性质、平行线的判定定理证明;
(3)根据相似三角形的性质列出比例式,计算即可.
【详解】
解:(1)∵AC平分∠DAB,
∴∠DAC=∠CAB,
又∵AC2=AB•AD,
∴AD:AC=AC:AB,
∴△ADC∽△ACB;
(2)CE∥AD,
理由:∵△ADC∽△ACB,
∴∠ACB=∠ADC=90°,
又∵E为AB的中点,
∴∠EAC=∠ECA,
∵∠DAC=∠CAE,
∴∠DAC=∠ECA,
∴CE∥AD;
(3)∵AD=4,AB=6,CE=AB=AE=3,
∵CE∥AD,
∴∠FCE=∠DAC,∠CEF=∠ADF,
∴△CEF∽△ADF,
∴==,
∴=.
24、-
【解析】
先化简,再解不等式组确定x的值,最后代入求值即可.
【详解】
(﹣)÷,
=÷
=
解不等式组,
可得:﹣2<x≤2,
∴x=﹣1,0,1,2,
∵x=﹣1,0,1时,分式无意义,
∴x=2,
∴原式==﹣.
25、(1)购进A种树苗1棵,B种树苗2棵(2)购进A种树苗9棵,B种树苗8棵,这时所需费用为1200元
【解析】
(1)设购进A种树苗x棵,则购进B种树苗(12﹣x)棵,利用购进A、B两种树苗刚好用去1220元,结合单价,得出等式方程求出即可;
(2)结合(1)的解和购买B种树苗的数量少于A种树苗的数量,可找出方案.
【详解】
解:(1)设购进A种树苗x棵,则购进B种树苗(12﹣x)棵,根据题意得:
80x+60(12﹣x )=1220,解得:x=1.∴12﹣x=2.
答:购进A种树苗1棵,B种树苗2棵.
(2)设购进A种树苗x棵,则购进B种树苗(12﹣x)棵,根据题意得:
12﹣x<x,解得:x>8.3.
∵购进A、B两种树苗所需费用为80x+60(12﹣x)=20x+120,是x的增函数,
∴费用最省需x取最小整数9,此时12﹣x=8,所需费用为20×9+120=1200(元).
答:费用最省方案为:购进A种树苗9棵,B种树苗8棵,这时所需费用为1200元.
26、 (1)y=﹣x2+2x+3;(2)S=﹣(x﹣)2+;当x=时,S有最大值,最大值为;(3)存在,点P的坐标为(4,0)或(,0).
【解析】
(1)将点E代入直线解析式中,可求出点C的坐标,将点C、B代入抛物线解析式中,可求出抛物线解析式.
(2)将抛物线解析式配成顶点式,可求出点D的坐标,设直线BD的解析式,代入点B、D,可求出直线BD的解析式,则MN可表示,则S可表示.
(3)设点P的坐标,则点G的坐标可表示,点H的坐标可表示,HG长度可表示,利用翻折推出CG=HG,列等式求解即可.
【详解】
(1)将点E代入直线解析式中,
0=﹣×4+m,
解得m=3,
∴解析式为y=﹣x+3,
∴C(0,3),
∵B(3,0),
则有,
解得,
∴抛物线的解析式为:y=﹣x2+2x+3;
(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴D(1,4),
设直线BD的解析式为y=kx+b,代入点B、D,
,
解得,
∴直线BD的解析式为y=﹣2x+6,
则点M的坐标为(x,﹣2x+6),
∴S=(3+6﹣2x)•x•=﹣(x﹣)2+,
∴当x=时,S有最大值,最大值为.
(3)存在,
如图所示,
设点P的坐标为(t,0),
则点G(t,﹣t+3),H(t,﹣t2+2t+3),
∴HG=|﹣t2+2t+3﹣(﹣t+3)|=|t2﹣t|
CG==t,
∵△CGH沿GH翻折,G的对应点为点F,F落在y轴上,
而HG∥y轴,
∴HG∥CF,HG=HF,CG=CF,
∠GHC=∠CHF,
∴∠FCH=∠CHG,
∴∠FCH=∠FHC,
∴∠GCH=∠GHC,
∴CG=HG,
∴|t2﹣t|=t,
当t2﹣t=t时,
解得t1=0(舍),t2=4,
此时点P(4,0).
当t2﹣t=﹣t时,
解得t1=0(舍),t2=,
此时点P(,0).
综上,点P的坐标为(4,0)或(,0).
【点睛】
此题考查了待定系数法求函数解析式,点坐标转换为线段长度,几何图形与二次函数结合的问题,最后一问推出CG=HG为解题关键.
27、(1)3;(1)x1=4,x1=1.
【解析】
(1)根据有理数的混合运算法则计算即可;
(1)先移项,再提取公因式求解即可.
【详解】
解:(1)原式=8×(﹣)﹣4×+1
=8×﹣1+1
=3;
(1)移项得:x(x﹣4)﹣1(x﹣4)=0,
(x﹣4)(x﹣1)=0,
x﹣4=0,x﹣1=0,
x1=4,x1=1.
【点睛】
本题考查了有理数的混合运算与解一元二次方程,解题的关键是熟练的掌握有理数的混合运算法则与根据因式分解法解一元二次方程.
山东省威海市文登区2021-2022学年中考猜题数学试卷含解析: 这是一份山东省威海市文登区2021-2022学年中考猜题数学试卷含解析,共19页。试卷主要包含了答题时请按要求用笔,下列说法正确的是等内容,欢迎下载使用。
江西省南昌市重点中学2021-2022学年中考猜题数学试卷含解析: 这是一份江西省南昌市重点中学2021-2022学年中考猜题数学试卷含解析,共22页。试卷主要包含了下列计算正确的是,下列运算正确的是等内容,欢迎下载使用。
2021-2022学年铜陵市重点中学中考猜题数学试卷含解析: 这是一份2021-2022学年铜陵市重点中学中考猜题数学试卷含解析,共24页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。