2021-2022学年江苏省仪征市市级名校中考考前最后一卷数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
A.48 B.60
C.76 D.80
2.下列计算结果是x5的为( )
A.x10÷x2 B.x6﹣x C.x2•x3 D.(x3)2
3.某班为奖励在学校运动会上取得好成绩的同学,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件.设购买甲种奖品x件,乙种奖品y件.依题意,可列方程组为( )
A. B.
C. D.
4.二次函数y=x2﹣6x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为( )
A.(﹣1,0) B.(4,0) C.(5,0) D.(﹣6,0)
5.按如下方法,将△ABC的三边缩小的原来的,如图,任取一点O,连AO、BO、CO,并取它们的中点D、E、F,得△DEF,则下列说法正确的个数是( )
①△ABC与△DEF是位似图形 ②△ABC与△DEF是相似图形
③△ABC与△DEF的周长比为1:2 ④△ABC与△DEF的面积比为4:1.
A.1 B.2 C.3 D.4
6.图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中正方形顶点A,B在围成的正方体中的距离是( )
A.0 B.1 C. D.
7.在Rt△ABC中,∠C=90°,那么sin∠B等于( )
A. B. C. D.
8.如图,AB是⊙O的直径,点C、D是圆上两点,且∠AOC=126°,则∠CDB=( )
A.54° B.64° C.27° D.37°
9.如图,△ABC中,DE垂直平分AC交AB于E,∠A=30°,∠ACB=80°,则∠BCE等于( )
A.40° B.70° C.60° D.50°
10.已知a,b为两个连续的整数,且a< A.7 B.8 C.9 D.10
11.从甲、乙、丙、丁四人中选一人参加诗词大会比赛,经过三轮初赛,他们的平均成绩都是86.5分,方差分别是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你认为派谁去参赛更合适( )
A.甲 B.乙 C.丙 D.丁
12.已知⊙O的半径为3,圆心O到直线L的距离为2,则直线L与⊙O的位置关系是( )
A.相交 B.相切 C.相离 D.不能确定
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=3,点D是BC上一动点,连接AD,将△ACD沿AD折叠,点C落在点E处,连接DE交AB于点F,当△DEB是直角三角形时,DF的长为_____.
14.分解因式:x2y﹣4xy+4y=_____.
15.如图,在▱ABCD中,AC是一条对角线,EF∥BC,且EF与AB相交于点E,与AC相交于点F,3AE=2EB,连接DF.若S△AEF=1,则S△ADF的值为_____.
16.已知线段a=4,线段b=9,则a,b的比例中项是_____.
17.如图,一次函数y1=kx+b的图象与反比例函数y2=(x<0)的图象相交于点A和点B.当y1>y2>0时,x的取值范围是_____.
18.在一次数学测试中,同年级人数相同的甲、乙两个班的成绩统计如下表:
班级
平均分
中位数
方差
甲班
乙班
数学老师让同学们针对统计的结果进行一下评估,学生的评估结果如下:
这次数学测试成绩中,甲、乙两个班的平均水平相同;
甲班学生中数学成绩95分及以上的人数少;
乙班学生的数学成绩比较整齐,分化较小.
上述评估中,正确的是______填序号
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)(阅读)如图1,在等腰△ABC中,AB=AC,AC边上的高为h,M是底边BC上的任意一点,点M到腰AB、AC的距离分别为h1,h1.连接AM.
∵ ∴
(思考)在上述问题中,h1,h1与h的数量关系为: .
(探究)如图1,当点M在BC延长线上时,h1、h1、h之间有怎样的数量关系式?并说明理由.
(应用)如图3,在平面直角坐标系中有两条直线l1:,l1:y=-3x+3,若l1上的一点M到l1的距离是1,请运用上述结论求出点M的坐标.
20.(6分)如图,AB是⊙O的直径,点C是AB延长线上的点,CD与⊙O相切于点D,连结BD、AD.求证;∠BDC=∠A.若∠C=45°,⊙O的半径为1,直接写出AC的长.
21.(6分)解不等式组:,并将它的解集在数轴上表示出来.
22.(8分)如图,在Rt△ABC的顶点A、B在x轴上,点C在y轴上正半轴上,且
A(-1,0),B(4,0),∠ACB=90°.
(1)求过A、B、C三点的抛物线解析式;
(2)设抛物线的对称轴l与BC边交于点D,若P是对称轴l上的点,且满足以P、C、D为顶点的三角形与△AOC相似,求P点的坐标;
(3)在对称轴l和抛物线上是否分别存在点M、N,使得以A、O、M、N为顶点的四边形是平行四边形,若存在请直接写出点M、点N的坐标;若不存在,请说明理由.
图1 备用图
23.(8分)已知:如图,梯形ABCD中,AD∥BC,DE∥AB,与对角线交于点,∥,且FG=EF.
(1)求证:四边形是菱形;
(2)联结AE,又知AC⊥ED,求证: .
24.(10分)列方程解应用题:
某商场用8万元购进一批新款衬衫,上架后很快销售一空,商场又紧急购进第二批这种衬衫,数量是第一次的2倍,但进价涨了4元/件,结果共用去17.6万元.该商场第一批购进衬衫多少件?商场销售这种衬衫时,每件定价都是58元,剩至150件时按八折出售,全部售完.售完这两批衬衫,商场共盈利多少元?
25.(10分)(2017江苏省常州市)为了解某校学生的课余兴趣爱好情况,某调查小组设计了“阅读”、“打球”、“书法”和“其他”四个选项,用随机抽样的方法调查了该校部分学生的课余兴趣爱好情况(每个学生必须选一项且只能选一项),并根据调查结果绘制了如下统计图:
根据统计图所提供的信息,解答下列问题:
(1)本次抽样调查中的样本容量是 ;
(2)补全条形统计图;
(3)该校共有2000名学生,请根据统计结果估计该校课余兴趣爱好为“打球”的学生人数.
26.(12分)如图,已知是的直径,点、在上,且,过点作,垂足为.
求的长;
若的延长线交于点,求弦、和弧围成的图形(阴影部分)的面积.
27.(12分)如图,BD是矩形ABCD的一条对角线.
(1)作BD的垂直平分线EF,分别交AD、BC于点E、F,垂足为点O.(要求用尺规作图,保留作图痕迹,不要求写作法);
(2)求证:DE=BF.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
试题解析:∵∠AEB=90°,AE=6,BE=8,
∴AB=
∴S阴影部分=S正方形ABCD-SRt△ABE=102-
=100-24
=76.
故选C.
考点:勾股定理.
2、C
【解析】解:A.x10÷x2=x8,不符合题意;
B.x6﹣x不能进一步计算,不符合题意;
C.x2x3=x5,符合题意;
D.(x3)2=x6,不符合题意.
故选C.
3、A
【解析】
根据题意设未知数,找到等量关系即可解题,见详解.
【详解】
解:设购买甲种奖品x件,乙种奖品y件.依题意,甲、乙两种奖品共20件,即x+y=20, 购买甲、乙两种奖品共花费了650元,即40x+30y=650,
综上方程组为,
故选A.
【点睛】
本题考查了二元一次方程组的列式,属于简单题,找到等量关系是解题关键.
4、C
【解析】
根据二次函数解析式求得对称轴是x=3,由抛物线的对称性得到答案.
【详解】
解:由二次函数得到对称轴是直线,则抛物线与轴的两个交点坐标关于直线对称,
∵其中一个交点的坐标为,则另一个交点的坐标为,
故选C.
【点睛】
考查抛物线与x轴的交点坐标,解题关键是掌握抛物线的对称性质.
5、C
【解析】
根据位似图形的性质,得出①△ABC与△DEF是位似图形进而根据位似图形一定是相似图形得出 ②△ABC与△DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案.
【详解】
解:根据位似性质得出①△ABC与△DEF是位似图形,
②△ABC与△DEF是相似图形,
∵将△ABC的三边缩小的原来的,
∴△ABC与△DEF的周长比为2:1,
故③选项错误,
根据面积比等于相似比的平方,
∴④△ABC与△DEF的面积比为4:1.
故选C.
【点睛】
此题主要考查了位似图形的性质,中等难度,熟悉位似图形的性质是解决问题的关键.
6、C
【解析】
试题分析: 本题考查了勾股定理、展开图折叠成几何体、正方形的性质;熟练掌握正方形的性质和勾股定理,并能进行推理计算是解决问题的关键.由正方形的性质和勾股定理求出AB的长,即可得出结果.
解:连接AB,如图所示:
根据题意得:∠ACB=90°,
由勾股定理得:AB==;
故选C.
考点:1.勾股定理;2.展开图折叠成几何体.
7、A
【解析】
根据锐角三角函数的定义得出sinB等于∠B的对边除以斜边,即可得出答案.
【详解】
根据在△ABC中,∠C=90°,
那么sinB= =,
故答案选A.
【点睛】
本题考查的知识点是锐角三角函数的定义,解题的关键是熟练的掌握锐角三角函数的定义.
8、C
【解析】
由∠AOC=126°,可求得∠BOC的度数,然后由圆周角定理,求得∠CDB的度数.
【详解】
解:∵∠AOC=126°,
∴∠BOC=180°﹣∠AOC=54°,
∵∠CDB=∠BOC=27°
故选:C.
【点睛】
此题考查了圆周角定理.注意在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.
9、D
【解析】
根据线段垂直平分线性质得出AE=CE,推出∠A=∠ACE=30°,代入∠BCE=∠ACB-∠ACE求出即可.
【详解】
∵DE垂直平分AC交AB于E,
∴AE=CE,
∴∠A=∠ACE,
∵∠A=30°,
∴∠ACE=30°,
∵∠ACB=80°,
∴∠BCE=∠ACB-∠ACE=50°,
故选D.
【点睛】
本题考查了等腰三角形的性质,线段垂直平分线性质的应用,注意:线段垂直平分线上的点到线段两个端点的距离相等.
10、A
【解析】
∵9<11<16,
∴,
即,
∵a,b为两个连续的整数,且,
∴a=3,b=4,
∴a+b=7,
故选A.
11、A
【解析】
根据方差的概念进行解答即可.
【详解】
由题意可知甲的方差最小,则应该选择甲.
故答案为A.
【点睛】
本题考查了方差,解题的关键是掌握方差的定义进行解题.
12、A
【解析】
试题分析:根据圆O的半径和,圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.
解:∵⊙O的半径为3,圆心O到直线L的距离为2,
∵3>2,即:d<r,
∴直线L与⊙O的位置关系是相交.
故选A.
考点:直线与圆的位置关系.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、或
【解析】
试题分析:如图4所示;点E与点C′重合时.在Rt△ABC中,BC==4.由翻折的性质可知;AE=AC=3、DC=DE.则EB=2.设DC=ED=x,则BD=4﹣x.在Rt△DBE中,DE2+BE2=DB2,即x2+22=(4﹣x)2.解得:x=.∴DE=.如图2所示:∠EDB=90时.由翻折的性质可知:AC=AC′,∠C=∠C′=90°.∵∠C=∠C′=∠CDC′=90°,∴四边形ACDC′为矩形.又∵AC=AC′,∴四边形ACDC′为正方形.∴CD=AC=3.∴DB=BC﹣DC=4﹣3=4.∵DE∥AC,∴△BDE∽△BCA.∴,即.解得:DE=.点D在CB上运动,∠DBC′<90°,故∠DBC′不可能为直角.
考点:翻折变换(折叠问题).
14、y(x-2)2
【解析】
先提取公因式y,再根据完全平方公式分解即可得.
【详解】
原式==,
故答案为.
15、
【解析】
由3AE=2EB,和EF∥BC,证明△AEF∽△ABC,得=,结合S△AEF=1,可知再由==,得==,再根据S△ADF= S△ADC即可求解.
【详解】
解:∵3AE=2EB,
设AE=2a,BE=3a,
∵EF∥BC,
∴△AEF∽△ABC,
∴=()2=()2=,
∵S△AEF=1,
∴S△ABC=,
∵四边形ABCD为平行四边形,
∴
∵EF∥BC,
∴===,
∴==,
∴S△ADF= S△ADC=,
故答案是:
【点睛】
本题考查了图形的相似和平行线分线段成比例定理,中等难度,找到相似比是解题关键.
16、6
【解析】
根据已知线段a=4,b=9,设线段x是a,b的比例中项,列出等式,利用两内项之积等于两外项之积即可得出答案.
【详解】
解:∵a=4,b=9,设线段x是a,b的比例中项,
∴ ,
∴x2=ab=4×9=36,
∴x=6,x=﹣6(舍去).
故答案为6
【点睛】
本题主要考查比例线段问题,解题关键是利用两内项之积等于两外项之积解答.
17、-2
根据图象可直接得到y1>y2>0时x的取值范围.
【详解】
根据图象得:当y1>y2>0时,x的取值范围是﹣2<x<﹣0.5,
故答案为﹣2<x<﹣0.5.
【点睛】
本题考查了反比例函数与一次函数的交点问题,熟悉待定系数法以及理解函数图象与不等式的关系是解题的关键.
18、
【解析】
根据平均数、中位数和方差的意义分别对每一项进行解答,即可得出答案.
【详解】
解:∵甲班的平均成绩是92.5分,乙班的平均成绩是92.5分,
∴这次数学测试成绩中,甲、乙两个班的平均水平相同;
故正确;
∵甲班的中位数是95.5分,乙班的中位数是90.5分,
甲班学生中数学成绩95分及以上的人数多,
故错误;
∵甲班的方差是41.25分,乙班的方差是36.06分,
甲班的方差大于乙班的方差,
乙班学生的数学成绩比较整齐,分化较小;
故正确;
上述评估中,正确的是;
故答案为:.
【点睛】
本题考查平均数、中位数和方差,平均数表示一组数据的平均程度中位数是将一组数据从小到大或从大到小重新排列后,最中间的那个数或最中间两个数的平均数;方差是用来衡量一组数据波动大小的量.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、【思考】h1+h1=h;【探究】h1-h1=h.理由见解析;【应用】所求点M的坐标为(,1)或(-,4).
【解析】
思考:根据等腰三角形的性质,把代数式化简可得.
探究:当点M在BC延长线上时,连接,可得,化简可得.
应用:先证明,△ABC为等腰三角形,即可运用上面得到的性质,再分点M在BC边上和在CB延长线上两种情况讨论,第一种有1+My=OB,第二种为My-1=OB,解得的纵坐标,再分别代入的解析式即可求解.
【详解】
思考
即
h1+h1=h.
探究
h1-h1=h.
理由.连接,
∵
∴
∴h1-h1=h.
应用
在中,令x=0得y=3;
令y=0得x=-4,则:
A(-4,0),B(0,3)
同理求得C(1,0),
,
又因为AC=5,
所以AB=AC,即△ABC为等腰三角形.
①当点M在BC边上时,
由h1+h1=h得:
1+My=OB,My=3-1=1,
把它代入y=-3x+3中求得:
,
∴;
②当点M在CB延长线上时,
由h1-h1=h得:
My-1=OB,My=3+1=4,
把它代入y=-3x+3中求得:
,
∴,
综上,所求点M的坐标为或.
【点睛】
本题结合三角形的面积和等腰三角形的性质考查了新性质的推理与证明,熟练掌握三角形的性质,结合图形层层推进是解答的关键.
20、(1)详见解析;(2)1+
【解析】
(1)连接OD,结合切线的性质和直径所对的圆周角性质,利用等量代换求解(2)根据勾股定理先求OC,再求AC.
【详解】
(1)证明:连结.如图,
与相切于点D,
是的直径,
即
(2)解:在中,
.
【点睛】
此题重点考查学生对圆的认识,熟练掌握圆的性质是解题的关键.
21、-1≤x<4,在数轴上表示见解析.
【解析】
试题分析: 分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.
试题解析:
,
由①得,x<4;
由②得,x⩾−1.
故不等式组的解集为:−1⩽x<4.
在数轴上表示为:
22、见解析
【解析】
分析:(1)根据求出点的坐标,用待定系数法即可求出抛物线的解析式.
(2)分两种情况进行讨论即可.
(3)存在. 假设直线l上存在点M,抛物线上存在点N,使得以A、O、M、N为顶点的四边形为平行四边形.分当平行四边形是平行四边形时,当平行四边形AONM是平行四边形时,当四边形AMON为平行四边形时,三种情况进行讨论.
详解:(1)易证,得,
∴OC=2,∴C(0,2),
∵抛物线过点A(-1,0),B(4,0)
因此可设抛物线的解析式为
将C点(0,2)代入得:,即
∴抛物线的解析式为
(2)如图2,
当时,则P1(,2),
当 时,
∴OC∥l,
∴,
∴P2H=·OC=5,
∴P2 (,5)
因此P点的坐标为(,2)或(,5).
(3)存在.
假设直线l上存在点M,抛物线上存在点N,使得以A、O、M、N为顶点的四边形为平行四边形.
如图3,
当平行四边形是平行四边形时,M(,),(,),
当平行四边形AONM是平行四边形时,M(,),N(,),
如图4,当四边形AMON为平行四边形时,MN与OA互相平分,此时可设M(,m),则
∵点N在抛物线上,
∴-m=-·(-+1)( --4)=-,
∴m=,
此时M(,), N(-,-).
综上所述,M(,),N(,)或M(,),N(,) 或 M(,), N(-,-).
点睛:属于二次函数综合题,考查相似三角形的判定与性质,待定系数法求二次函数解析式等,注意分类讨论的思想方法在数学中的应用.
23、 (1)见解析;(2)见解析
【解析】
分析:(1)由两组对边分别平行的四边形是平行四边形,得到是平行四边形.
再由平行线分线段成比例定理得到:, ,=,即可得到结论;
(2)连接,与交于点.由菱形的性质得到⊥,进而得到 ,,即有,得到△∽△,由相似三角形的性质即可得到结论.
详解:(1)∵ ∥∥,∴四边形是平行四边形.
∵∥,∴.
同理 .
得:=
∵,∴.
∴四边形是菱形.
(2)连接,与交于点.
∵四边形是菱形,∴⊥.
得 .同理.
∴.
又∵是公共角,∴△∽△.
∴.
∴.
点睛:本题主要考查了菱形的判定和性质以及相似三角形的判定与性质.灵活运用菱形的判定与性质是解题的关键.
24、(1)2000件;(2)90260元.
【解析】
(1)设该商场第一批购进衬衫x件,则第二批购进衬衫2x件,根据单价=总价÷数量结合第二批比第一批的进价涨了4元/件,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)用(1)的结论×2可求出第二批购进该种衬衫的数量,再利用总利润=销售收入-成本,即可得出结论.
【详解】
解:(1)设该商场第一批购进衬衫x件,则第二批购进衬衫2x件,
根据题意得:-=4,
解得:x=2000,
经检验,x=2000是所列分式方程的解,且符合题意.
答:商场第一批购进衬衫2000件.
(2)2000×2=4000(件),
(2000+4000-150)×58+150×58×0.8-80000-176000=90260(元).
答:售完这两批衬衫,商场共盈利90260元.
【点睛】
本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列式计算.
25、(1)100;(2)作图见解析;(3)1.
【解析】
试题分析:(1)根据百分比= 计算即可;
(2)求出“打球”和“其他”的人数,画出条形图即可;
(3)用样本估计总体的思想解决问题即可.
试题解析:(1)本次抽样调查中的样本容量=30÷30%=100,
故答案为100;
(2)其他有100×10%=10人,打球有100﹣30﹣20﹣10=40人,条形图如图所示:
(3)估计该校课余兴趣爱好为“打球”的学生人数为2000×40%=1人.
26、(1)OE=;(2)阴影部分的面积为
【解析】
(1)由题意不难证明OE为△ABC的中位线,要求OE的长度即要求BC的长度,根据特殊角的三角函数即可求得;(2)由题意不难证明△COE≌△AFE,进而将要求的阴影部分面积转化为扇形FOC的面积,利用扇形面积公式求解即可.
【详解】
解:(1) ∵AB是⊙O的直径,
∴∠ACB=90°,
∵OE⊥AC,
∴OE // BC,
又∵点O是AB中点,
∴OE是△ABC的中位线,
∵∠D=60°,
∴∠B=60°,
又∵AB=6,
∴BC=AB·cos60°=3,
∴OE= BC=;
(2)连接OC,
∵∠D=60°,
∴∠AOC=120°,
∵OF⊥AC,
∴AE=CE,=,
∴∠AOF=∠COF=60°,
∴△AOF为等边三角形,
∴AF=AO=CO,
∵在Rt△COE与Rt△AFE中,
,
∴△COE≌△AFE,
∴阴影部分的面积=扇形FOC的面积,
∵S扇形FOC==π.
∴阴影部分的面积为π.
【点睛】
本题主要考查圆的性质、全等三角形的判定与性质、中位线的证明以及扇形面积的计算,较为综合.
27、(1)作图见解析;(2)证明见解析;
【解析】
(1)分别以B、D为圆心,以大于BD的长为半径四弧交于两点,过两点作直线即可得到线段BD的垂直平分线;
(2)利用垂直平分线证得△DEO≌△BFO即可证得结论.
【详解】
解:(1)如图:
(2)∵四边形ABCD为矩形,
∴AD∥BC,
∴∠ADB=∠CBD,
∵EF垂直平分线段BD,
∴BO=DO,
在△DEO和三角形BFO中,
,
∴△DEO≌△BFO(ASA),
∴DE=BF.
考点:1.作图—基本作图;2.线段垂直平分线的性质;3.矩形的性质.
2022届江苏省镇江市丹阳市市级名校中考考前最后一卷数学试卷含解析: 这是一份2022届江苏省镇江市丹阳市市级名校中考考前最后一卷数学试卷含解析,共17页。
2022届江苏省扬州市、仪征市市级名校中考考前最后一卷数学试卷含解析: 这是一份2022届江苏省扬州市、仪征市市级名校中考考前最后一卷数学试卷含解析,共26页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2022届江苏省兴化市市级名校中考数学考前最后一卷含解析: 这是一份2022届江苏省兴化市市级名校中考数学考前最后一卷含解析,共23页。试卷主要包含了股市有风险,投资需谨慎,某排球队名场上队员的身高等内容,欢迎下载使用。