2022届江苏省镇江市丹阳市市级名校中考考前最后一卷数学试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.在一次体育测试中,10名女生完成仰卧起坐的个数如下:38,52,47,46,50,50,61,72,45,48,则这10名女生仰卧起坐个数不少于50个的频率为( )
A.0.3 B.0.4 C.0.5 D.0.6
2.有理数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是( )
A.a>﹣4 B.bd>0 C.|a|>|b| D.b+c>0
3.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是( )
A. B. C. D.
4.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店( )
A.赚了10元 B.赔了10元 C.赚了50元 D.不赔不赚
5.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1等于( )
A.132° B.134° C.136° D.138°
6.如图,水平的讲台上放置的圆柱体笔筒和正方体粉笔盒,其左视图是( )
A. B.
C. D.
7.如图,△ABC的三个顶点分别为A(1,2)、B(4,2)、C(4,4).若反比例函数y=在第一象限内的图象与△ABC有交点,则k的取值范围是( )
A.1≤k≤4 B.2≤k≤8 C.2≤k≤16 D.8≤k≤16
8.如图,二次函数的图象开口向下,且经过第三象限的点若点P的横坐标为,则一次函数的图象大致是
A. B. C. D.
9.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()
A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1
10.如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是( )
A. B. C. D.
二、填空题(共7小题,每小题3分,满分21分)
11.如图是一本折扇,其中平面图是一个扇形,扇面ABDC的宽度AC是管柄长OA的一半,已知OA=30cm,∠AOB=120°,则扇面ABDC的周长为_____cm
12.如图,在正方形ABCD中,等边三角形AEF的顶点E,F分别在边BC和CD上,则∠AEB=__________.
13.分解因式:mx2﹣6mx+9m=_____.
14.同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是 .
15.如图,为保护门源百里油菜花海,由“芬芳浴”游客中心A处修建通往百米观景长廊BC的两条栈道AB,AC.若∠B=56°,∠C=45°,则游客中心A到观景长廊BC的距离AD的长约为_____米.(sin56°≈0.8,tan56°≈1.5)
16.科技改变生活,手机导航极大方便了人们的出行.如图,小明一家自驾到古镇C游玩,到达A地后,导航显示车辆应沿北偏西60°方向行驶6千米至B地,再沿北偏东45°方向行驶一段距离到达古镇C.小明发现古镇C恰好在A地的正北方向,则B、C两地的距离是_____千米.
17.已知实数a、b、c满足+|10﹣2c|=0,则代数式ab+bc的值为__.
三、解答题(共7小题,满分69分)
18.(10分)已知开口向下的抛物线y=ax2-2ax+2与y轴的交点为A,顶点为B,对称轴与x轴的交点为C,点A与点D关于对称轴对称,直线BD与x轴交于点M,直线AB与直线OD交于点N.
(1)求点D的坐标.
(2)求点M的坐标(用含a的代数式表示).
(3)当点N在第一象限,且∠OMB=∠ONA时,求a的值.
19.(5分)一个口袋中有1个大小相同的小球,球面上分别写有数字1、2、1.从袋中随机地摸出一个小球,记录下数字后放回,再随机地摸出一个小球.
(1)请用树形图或列表法中的一种,列举出两次摸出的球上数字的所有可能结果;
(2)求两次摸出的球上的数字和为偶数的概率.
20.(8分)在平面直角坐标系中,函数()的图象经过点(4,1),直线与图象交于点,与轴交于点.求的值;横、纵坐标都是整数的点叫做整点.记图象在点,之间的部分与线段,,围成的区域(不含边界)为.
①当时,直接写出区域内的整点个数;
②若区域内恰有4个整点,结合函数图象,求的取值范围.
21.(10分)已知关于x的一元二次方程x2﹣(m+3)x+m+2=1.
(1)求证:无论实数m取何值,方程总有两个实数根;
(2)若方程有一个根的平方等于4,求m的值.
22.(10分)如图,某同学在测量建筑物AB的高度时,在地面的C处测得点A的仰角为30°,向前走60米到达D处,在D处测得点A的仰角为45°,求建筑物AB的高度.
23.(12分)(8分)如图,在平面直角坐标系中,O为原点,直线AB分别与x轴、y轴交于B和A,与反比例函数的图象交于C、D,CE⊥x轴于点E,tan∠ABO=,OB=4,OE=1.
(1)求直线AB和反比例函数的解析式;
(1)求△OCD的面积.
24.(14分)受益于国家支持新能源汽车发展和“一带一路”发展战略等多重利好因素,我市某汽车零部件生产企业的利润逐年提高,据统计,2014年利润为2亿元,2016年利润为2.88亿元.求该企业从2014年到2016年利润的年平均增长率;若2017年保持前两年利润的年平均增长率不变,该企业2017年的利润能否超过3.4亿元?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
用仰卧起坐个数不少于10个的频数除以女生总人数10计算即可得解.
【详解】
仰卧起坐个数不少于10个的有12、10、10、61、72共1个,
所以,频率==0.1.
故选C.
【点睛】
本题考查了频数与频率,频率=.
2、C
【解析】
根据数轴上点的位置关系,可得a,b,c,d的大小,根据有理数的运算,绝对值的性质,可得答案.
【详解】
解:由数轴上点的位置,得
a<﹣4<b<0<c<1<d.
A、a<﹣4,故A不符合题意;
B、bd<0,故B不符合题意;
C、∵|a|>4,|b|<2,∴|a|>|b|,故C符合题意;
D、b+c<0,故D不符合题意;
故选:C.
【点睛】
本题考查了有理数大小的比较、有理数的运算,绝对值的性质,熟练掌握相关的知识是解题的关键
3、C
【解析】
分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.
详解:将三个小区分别记为A、B、C,
列表如下:
| A | B | C |
A | (A,A) | (B,A) | (C,A) |
B | (A,B) | (B,B) | (C,B) |
C | (A,C) | (B,C) | (C,C) |
由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,
所以两个组恰好抽到同一个小区的概率为.
故选:C.
点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.
4、A
【解析】
试题分析:第一个的进价为:80÷(1+60%)=50元,第二个的进价为:80÷(1-20%)=100元,则80×2-(50+100)=10元,即盈利10元.
考点:一元一次方程的应用
5、B
【解析】
过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.
解:
过E作EF∥AB,
∵AB∥CD,
∴AB∥CD∥EF,
∴∠C=∠FEC,∠BAE=∠FEA,
∵∠C=44°,∠AEC为直角,
∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,
∴∠1=180°﹣∠BAE=180°﹣46°=134°,
故选B.
“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.
6、C
【解析】
根据左视图是从物体的左面看得到的视图解答即可.
【详解】
解:水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其左视图是一个含虚线的
长方形,
故选C.
【点睛】
本题考查的是几何体的三视图,左视图是从物体的左面看得到的视图.
7、C
【解析】
试题解析:由于△ABC是直角三角形,所以当反比例函数经过点A时k最小,进过点C时k最大,据此可得出结论.
∵△ABC是直角三角形,∴当反比例函数经过点A时k最小,经过点C时k最大,
∴k最小=1×2=2,k最大=4×4=1,∴2≤k≤1.故选C.
8、D
【解析】
【分析】根据二次函数的图象可以判断a、b、的正负情况,从而可以得到一次函数经过哪几个象限,观察各选项即可得答案.
【详解】由二次函数的图象可知,
,,
当时,,
的图象经过二、三、四象限,
观察可得D选项的图象符合,
故选D.
【点睛】本题考查二次函数的图象与性质、一次函数的图象与性质,认真识图,会用函数的思想、数形结合思想解答问题是关键.
9、B
【解析】
∵观察可知:左边三角形的数字规律为:1,2,…,n,
右边三角形的数字规律为:2,,…,,
下边三角形的数字规律为:1+2,,…,,
∴最后一个三角形中y与n之间的关系式是y=2n+n.
故选B.
【点睛】
考点:规律型:数字的变化类.
10、C
【解析】
试题分析:根据三视图的意义,可知俯视图为从上面往下看,因此可知共有三个正方形,在一条线上.
故选C.
考点:三视图
二、填空题(共7小题,每小题3分,满分21分)
11、1π+1.
【解析】
分析:根据题意求出OC,根据弧长公式分别求出AB、CD的弧长,根据扇形周长公式计算.
详解:由题意得,OC=AC=OA=15,
的长==20π,
的长==10π,
∴扇面ABDC的周长=20π+10π+15+15=1π+1(cm),
故答案为1π+1.
点睛:本题考查的是弧长的计算,掌握弧长公式: 是解题的关键.
12、75
【解析】
因为△AEF是等边三角形,所以∠EAF=60°,AE=AF,
因为四边形ABCD是正方形,所以AB=AD,∠B=∠D=∠BAD=90°.
所以Rt△ABE≌Rt△ADF(HL),所以∠BAE=∠DAF.
所以∠BAE+∠DAF=∠BAD-∠EAF=90°-60°=30°,
所以∠BAE=15°,所以∠AEB=90°-15°=75°.
故答案为75.
13、m(x﹣3)1.
【解析】
先把提出来,然后对括号里面的多项式用公式法分解即可。
【详解】
【点睛】
解题的关键是熟练掌握因式分解的方法。
14、.
【解析】
试题分析:画树状图为:
共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率=.故答案为.
考点:列表法与树状图法.
15、60
【解析】
根据题意和图形可以分别表示出AD和CD的长,从而可以求得AD的长,本题得以解决.
【详解】
∵∠B=56°,∠C=45°,∠ADB=∠ADC=90°,BC=BD+CD=100米, ∴BD=,CD=,
∴+=100, 解得,AD≈60
考点:解直角三角形的应用.
16、3
【解析】
作BE⊥AC于E,根据正弦的定义求出BE,再根据正弦的定义计算即可.
【详解】
解:作BE⊥AC于E,
在Rt△ABE中,sin∠BAC=,
∴BE=AB•sin∠BAC=,
由题意得,∠C=45°,
∴BC==(千米),
故答案为3.
【点睛】
本题考查的是解直角三角形的应用-方向角问题,掌握方向角的概念、熟记锐角三角函数的定义是解题的关键.
17、-1
【解析】
试题分析:根据非负数的性质可得:,解得:,则ab+bc=(-11)×6+6×5=-66+30=-1.
三、解答题(共7小题,满分69分)
18、(1)D(2,2);(2);(3)
【解析】
(1)令x=0求出A的坐标,根据顶点坐标公式或配方法求出顶点B的坐标、对称轴直线,根据点A与点D关于对称轴对称,确定D点坐标.
(2)根据点B、D的坐标用待定系数法求出直线BD的解析式,令y=0,即可求得M点的坐标.
(3)根据点A、B的坐标用待定系数法求出直线AB的解析式,求直线OD的解析式,进而求出交点N的坐标,得到ON的长.过A点作AE⊥OD,可证△AOE为等腰直角三角形,根据OA=2,可求得AE、OE的长,表示出EN的长.根据tan∠OMB=tan∠ONA,得到比例式,代入数值即可求得a的值.
【详解】
(1)当x=0时,,
∴A点的坐标为(0,2)
∵
∴顶点B的坐标为:(1,2-a),对称轴为x= 1,
∵点A与点D关于对称轴对称
∴D点的坐标为:(2,2)
(2)设直线BD的解析式为:y=kx+b
把B(1,2-a)D(2,2)代入得:
,解得:
∴直线BD的解析式为:y=ax+2-2a
当y=0时,ax+2-2a=0,解得:x=
∴M点的坐标为:
(3)由D(2,2)可得:直线OD解析式为:y=x
设直线AB的解析式为y=mx+n,代入A(0,2)B(1,2-a)可得:
解得:
∴直线AB的解析式为y= -ax+2
联立成方程组: ,解得:
∴N点的坐标为:()
ON=()
过A点作AE⊥OD于E点,则△AOE为等腰直角三角形.
∵OA=2
∴OE=AE=,EN=ON-OE=()-=)
∵M,C(1,0), B(1,2-a)
∴MC=,BE=2-a
∵∠OMB=∠ONA
∴tan∠OMB=tan∠ONA
∴,即
解得:a=或
∵抛物线开口向下,故a<0,
∴ a=舍去,
【点睛】
本题是一道二次函数与一次函数及三角函数综合题,掌握并灵活应用二次函数与一次函数的图象与性质,以及构建直角三角形借助点的坐标使用相等角的三角函数是解题的关键.
19、(1)画树状图得:
则共有9种等可能的结果;
(2)两次摸出的球上的数字和为偶数的概率为:.
【解析】
试题分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;
(2)由(1)可求得两次摸出的球上的数字和为偶数的有5种情况,再利用概率公式即可求得答案.
试题解析:(1)画树状图得:
则共有9种等可能的结果;
(2)由(1)得:两次摸出的球上的数字和为偶数的有5种情况,
∴两次摸出的球上的数字和为偶数的概率为:.
考点:列表法与树状图法.
20、(1)4;(2)①3个.(1,0),(2,0),(3,0).②或.
【解析】
分析:(1)根据点(4,1)在()的图象上,即可求出的值;
(2)①当时,根据整点的概念,直接写出区域内的整点个数即可.
②分.当直线过(4,0)时,.当直线过(5,0)时,.当直线过(1,2)时,.当直线过(1,3)时四种情况进行讨论即可.
详解:(1)解:∵点(4,1)在()的图象上.
∴,
∴.
(2)① 3个.(1,0),(2,0),(3,0).
② .当直线过(4,0)时:,解得
.当直线过(5,0)时:,解得
.当直线过(1,2)时:,解得
.当直线过(1,3)时:,解得
∴综上所述:或.
点睛:属于反比例函数和一次函数的综合题,考查待定系数法求反比例函数解析式,一次函数的图象与性质,掌握整点的概念是解题的关键,注意分类讨论思想在解题中的应用.
21、(1)证明见解析;(2)m 的值为1或﹣2.
【解析】
(1)计算根的判别式的值可得(m+1)2≥1,由此即可证得结论;(2)根据题意得到 x=±2 是原方程的根,将其代入列出关于m新方程,通过解新方程求得m的值即可.
【详解】
(1)证明:∵△=[﹣(m+3)]2﹣2(m+2)=(m+1)2≥1,
∴无论实数 m 取何值,方程总有两个实数根;
(2)解:∵方程有一个根的平方等于 2,
∴x=±2 是原方程的根,
当 x=2 时,2﹣2(m+3)+m+2=1.
解得m=1;
当 x=﹣2 时,2+2(m+3)+m+2=1,
解得m=﹣2.
综上所述,m 的值为 1 或﹣2.
【点睛】
本题考查了根的判别式及一元二次方程的解的定义,在解答(2)时要分类讨论,这是此题的易错点.
22、(30+30)米.
【解析】
解:设建筑物AB的高度为x米
在Rt△ABD 中,∠ADB=45°
∴AB=DB=x
∴BC=DB+CD= x+60
在Rt△ABC 中,∠ACB=30°,
∴tan∠ACB=
∴
∴
∴x=30+30
∴建筑物AB的高度为(30+30)米
23、(1),;(1)2.
【解析】
试题分析:(1)先求出A、B、C点坐标,用待定系数法求出直线AB和反比例的函数解析式;
(1)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解.
试题解析:(1)∵OB=4,OE=1,∴BE=1+4=3.∵CE⊥x轴于点E,tan∠ABO==,∴OA=1,CE=3,∴点A的坐标为(0,1)、点B的坐标为C(4,0)、点C的坐标为(﹣1,3),设直线AB的解析式为,则,解得:,故直线AB的解析式为,设反比例函数的解析式为(),将点C的坐标代入,得3=,∴m=﹣3.∴该反比例函数的解析式为;
(1)联立反比例函数的解析式和直线AB的解析式可得,可得交点D的坐标为(3,﹣1),则△BOD的面积=4×1÷1=1,△BOD的面积=4×3÷1=3,故△OCD的面积为1+3=2.
考点:反比例函数与一次函数的交点问题.
24、(1)20%;(2)能.
【解析】
(1)设年平均增长率为x,则2015年利润为2(1+x)亿元,则2016年的年利润为2(1+x)(1+x),根据2016年利润为2.88亿元列方程即可.
(2)2017年的利润在2016年的基础上再增加(1+x),据此计算即可.
【详解】
(1)设该企业从2014年到2016年利润的年平均增长率为x.根据题意,得2(1+x)2=2.88,
解得x1=0.2=20%,x2=-2.2(不合题意,舍去).
答:该企业从2014年到2016年利润的年平均增长率为20%.
(2)如果2017年仍保持相同的年平均增长率,那么2017年该企业年利润为2.88×(1+20%)=3.456(亿元),因为3.456>3.4,
所以该企业2017年的利润能超过3.4亿元.
【点睛】
此题考查一元二次方程的应用---增长率问题,根据题意寻找相等关系列方程是关键,难度不大.
江苏省镇江市名校2022年中考数学考前最后一卷含解析: 这是一份江苏省镇江市名校2022年中考数学考前最后一卷含解析,共18页。试卷主要包含了考生必须保证答题卡的整洁,关于的方程有实数根,则满足,定义,如图所示的几何体的俯视图是,下列运算正确的是等内容,欢迎下载使用。
2022届江苏省扬州市、仪征市市级名校中考考前最后一卷数学试卷含解析: 这是一份2022届江苏省扬州市、仪征市市级名校中考考前最后一卷数学试卷含解析,共26页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
2022届江苏省兴化市市级名校中考数学考前最后一卷含解析: 这是一份2022届江苏省兴化市市级名校中考数学考前最后一卷含解析,共23页。试卷主要包含了股市有风险,投资需谨慎,某排球队名场上队员的身高等内容,欢迎下载使用。