2021-2022学年江苏省镇江市京口中学中考联考数学试题含解析
展开
这是一份2021-2022学年江苏省镇江市京口中学中考联考数学试题含解析,共24页。试卷主要包含了答题时请按要求用笔,3的相反数是,下列各式中,正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值为( )
A. B. C. D.
2.若分式的值为0,则x的值为( )
A.-2 B.0 C.2 D.±2
3.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=( )
A.110° B.120° C.125° D.135°
4.如图,在中,,的垂直平分线交于点,垂足为.如果,则的长为( )
A.2 B.3 C.4 D.6
5.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为( )
A. B. C. D.
6.3的相反数是( )
A.﹣3 B.3 C. D.﹣
7.下列各式中,正确的是( )
A.t5·t5 = 2t5 B.t4+t2 = t 6 C.t3·t4 = t12 D.t2·t3 = t5
8.下列图形中,是中心对称但不是轴对称图形的为( )
A. B.
C. D.
9.若正多边形的一个内角是150°,则该正多边形的边数是( )
A.6 B.12 C.16 D.18
10.如图,某厂生产一种扇形折扇,OB=10cm,AB=20cm,其中裱花的部分是用纸糊的,若扇子完全打开摊平时纸面面积为π cm2,则扇形圆心角的度数为( )
A.120° B.140° C.150° D.160°
11.如图,在平面直角坐标系中,以A(-1,0),B(2,0),C(0,1)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是( )
A.(3,1) B.(-4,1) C.(1,-1) D.(-3,1)
12.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件作服装仍可获利15元,则这种服装每件的成本是( )
A.120元 B.125元 C.135元 D.140元
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.已知,且,则的值为__________.
14.如果,那么______.
15.如图,在同一平面内,将边长相等的正三角形和正六边形的一条边重合并叠在一起,则∠1的度数为_____.
16.分解因式:4m2﹣16n2=_____.
17.菱形的两条对角线长分别是方程的两实根,则菱形的面积为______.
18.因式分解:a3-a=______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图1,菱形ABCD,AB=4,∠ADC=120o,连接对角线AC、BD交于点O,
(1)如图2,将△AOD沿DB平移,使点D与点O重合,求平移后的△A′BO与菱形ABCD重合部分的面积.
(2)如图3,将△A′BO绕点O逆时针旋转交AB于点E′,交BC于点F,
①求证:BE′+BF=2,
②求出四边形OE′BF的面积.
20.(6分)综合与探究
如图1,平面直角坐标系中,抛物线y=ax2+bx+3与x轴分别交于点A(﹣2,0),B(4,0),与y轴交于点C,点D是y轴负半轴上一点,直线BD与抛物线y=ax2+bx+3在第三象限交于点E(﹣4,y)点F是抛物线y=ax2+bx+3上的一点,且点F在直线BE上方,将点F沿平行于x轴的直线向右平移m个单位长度后恰好落在直线BE上的点G处.
(1)求抛物线y=ax2+bx+3的表达式,并求点E的坐标;
(2)设点F的横坐标为x(﹣4<x<4),解决下列问题:
①当点G与点D重合时,求平移距离m的值;
②用含x的式子表示平移距离m,并求m的最大值;
(3)如图2,过点F作x轴的垂线FP,交直线BE于点P,垂足为F,连接FD.是否存在点F,使△FDP与△FDG的面积比为1:2?若存在,直接写出点F的坐标;若不存在,说明理由.
21.(6分)如图,四边形ABCD的四个顶点分别在反比例函数与(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为1.当m=1,n=20时.
①若点P的纵坐标为2,求直线AB的函数表达式.
②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.
22.(8分)如图,△ABC中,∠A=90°,AB=AC=4,D是BC边上一点,将点D绕点A逆时针旋转60°得到点E,连接CE.
(1)当点E在BC边上时,画出图形并求出∠BAD的度数;
(2)当△CDE为等腰三角形时,求∠BAD的度数;
(3)在点D的运动过程中,求CE的最小值.
(参考数值:sin75°=, cos75°=,tan75°=)
23.(8分)科研所计划建一幢宿舍楼,因为科研所实验中会产生辐射,所以需要有两项配套工程.①在科研所到宿舍楼之间修一条高科技的道路;②对宿含楼进行防辐射处理;已知防辐射费y万元与科研所到宿舍楼的距离xkm之间的关系式为y=ax+b(0≤x≤3).当科研所到宿舍楼的距离为1km时,防辐射费用为720万元;当科研所到宿含楼的距离为3km或大于3km时,辐射影响忽略不计,不进行防辐射处理,设修路的费用与x2成正比,且比例系数为m万元,配套工程费w=防辐射费+修路费.
(1)当科研所到宿舍楼的距离x=3km时,防辐射费y=____万元,a=____,b=____;
(2)若m=90时,求当科研所到宿舍楼的距离为多少km时,配套工程费最少?
(3)如果最低配套工程费不超过675万元,且科研所到宿含楼的距离小于等于3km,求m的范围?
24.(10分)如图,已知反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4),点B(﹣4,n).求n和b的值;求△OAB的面积;直接写出一次函数值大于反比例函数值的自变量x的取值范围.
25.(10分)(1)解不等式组:;
(2)解方程:.
26.(12分)先化简,再求值÷(x﹣),其中x=.
27.(12分)计算:(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、A
【解析】
根据锐角三角函数的定义求出即可.
【详解】
解:在Rt△ABC中,∠C=90°,AC=4,BC=3,∴ tanA=.
故选A.
【点睛】
本题考查了锐角三角函数的定义,熟记锐角三角函数的定义内容是解题的关键.
2、C
【解析】
由题意可知:,
解得:x=2,
故选C.
3、D
【解析】
如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,
∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,
∴∠ABE+∠BED+∠CDE=360°.
又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,
∴∠FBE+∠FDE=(∠ABE+∠CDE)=(360°﹣90°)=135°,
∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.
故选D.
【点睛】
本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.
4、C
【解析】
先利用垂直平分线的性质证明BE=CE=8,再在Rt△BED中利用30°角的性质即可求解ED.
【详解】
解:因为垂直平分,
所以,
在中,,
则;
故选:C.
【点睛】
本题主要考查了线段垂直平分线的性质、30°直角三角形的性质,线段的垂直平分线上的点到线段的两个端点的距离相等.
5、C
【解析】
设大马有x匹,小马有y匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可.
【详解】
解:设大马有x匹,小马有y匹,由题意得:,
故选C.
【点睛】
此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.
6、A
【解析】
试题分析:根据相反数的概念知:1的相反数是﹣1.
故选A.
【考点】相反数.
7、D
【解析】选项A,根据同底数幂的乘法可得原式=t10;选项B,不是同类项,不能合并;选项C,根据同底数幂的乘法可得原式=t7;选项D,根据同底数幂的乘法可得原式=t5,四个选项中只有选项D正确,故选D.
8、C
【解析】
试题分析:根据轴对称图形及中心对称图形的定义,结合所给图形进行判断即可.A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误.
故选C.
考点:中心对称图形;轴对称图形.
9、B
【解析】设多边形的边数为n,则有(n-2)×180°=n×150°,解得:n=12,
故选B.
10、C
【解析】
根据扇形的面积公式列方程即可得到结论.
【详解】
∵OB=10cm,AB=20cm,
∴OA=OB+AB=30cm,
设扇形圆心角的度数为α,
∵纸面面积为π cm2,
∴,
∴α=150°,
故选:C.
【点睛】
本题考了扇形面积的计算的应用,解题的关键是熟练掌握扇形面积计算公式:扇形的面积= .
11、B
【解析】
作出图形,结合图形进行分析可得.
【详解】
如图所示:
①以AC为对角线,可以画出▱AFCB,F(-3,1);
②以AB为对角线,可以画出▱ACBE,E(1,-1);
③以BC为对角线,可以画出▱ACDB,D(3,1),
故选B.
12、B
【解析】
试题分析:通过理解题意可知本题的等量关系,即每件作服装仍可获利=按成本价提高40%后标价,又以8折卖出,根据这两个等量关系,可列出方程,再求解.
解:设这种服装每件的成本是x元,根据题意列方程得:x+15=(x+40%x)×80%
解这个方程得:x=125
则这种服装每件的成本是125元.
故选B.
考点:一元一次方程的应用.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、1
【解析】
分析:直接利用已知比例式假设出a,b,c的值,进而利用a+b-2c=6,得出答案.
详解:∵,
∴设a=6x,b=5x,c=4x,
∵a+b-2c=6,
∴6x+5x-8x=6,
解得:x=2,
故a=1.
故答案为1.
点睛:此题主要考查了比例的性质,正确表示出各数是解题关键.
14、;
【解析】
先对等式进行转换,再求解.
【详解】
∵
∴3x=5x-5y
∴2x=5y
∴
【点睛】
本题考查的是分式,熟练掌握分式是解题的关键.
15、60°
【解析】
先根据多边形的内角和公式求出正六边形每个内角的度数,然后用正六边形内角的度数减去正三角形内角的度数即可.
【详解】
(6-2)×180°÷6=120°,
∠1=120°-60°=60°.
故答案为:60°.
【点睛】
题考查了多边形的内角和公式,熟记多边形的内角和公式为(n-2) ×180°是解答本题的关键.
16、4(m+2n)(m﹣2n).
【解析】
原式提取4后,利用平方差公式分解即可.
【详解】
解:原式=4( ).
故答案为
【点睛】
本题考查提公因式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法.
17、2
【解析】
解:x2﹣14x+41=0,则有(x-6)(x-1)=0解得:x=6或x=1.所以菱形的面积为:(6×1)÷2=2.菱形的面积为:2.故答案为2.
点睛:本题考查菱形的性质.菱形的对角线互相垂直,以及对角线互相垂直的四边形的面积的特点和根与系数的关系.
18、a(a-1)(a + 1)
【解析】
分析:先提取公因式a,再对余下的多项式利用平方差公式继续分解.
解答:解:a3-a,
=a(a2-1),
=a(a+1)(a-1).
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、 (1);(2)①2,②
【解析】
分析:(1)重合部分是等边三角形,计算出边长即可.
①证明:在图3中,取AB中点E,证明≌,即可得到
,
②由①知,在旋转过程60°中始终有≌四边形的面积等于 =.
详解:(1)∵四边形为菱形,
∴
∴为等边三角形
∴
∵AD//
∴
∴为等边三角形,边长
∴重合部分的面积:
①证明:在图3中,取AB中点E,
由上题知,
∴
又∵
∴≌,
∴
∴,
②由①知,在旋转过程60°中始终有≌
∴四边形的面积等于=.
点睛:属于四边形的综合题,考查了菱形的性质,全等三角形的判定与性质等,熟练掌握每个知识点是解题的关键.
20、(3)(﹣4,﹣6);(3)①-3;②4;(2)F的坐标为(﹣3,0)或(﹣3,).
【解析】
(3)先将A(﹣3,0),B(4,0),代入y=ax3+bx+2求出a,b的值即可求出抛物线的表达式,再将E点坐标代入表达式求出y的值即可;
(3)①设直线BD的表达式为y=kx+b,将B(4,0),E(﹣4,﹣6)代入求出k,b的值,再将x=0代入表达式求出D点坐标,当点G与点D重合时,可得G点坐标,GF∥x轴,故可得F的纵坐标, 再将y=﹣2代入抛物线的解析式求解可得点F的坐标,再根据m=FG即可得m的值;
②设点F与点G的坐标,根据m=FG列出方程化简可得出m的二次函数关系式,再根据二次函数的图象可得m的取值范围;
(2)分别分析当点F在x轴的左侧时与右侧时的两种情况,根据△FDP与△FDG的面积比为3:3,故PD:DG=3:3.已知FP∥HD,则FH:HG=3:3.再分别设出F,G点的坐标,再根据两点关系列出等式化简求解即可得F的坐标.
【详解】
解:(3)将A(﹣3,0),B(4,0),代入y=ax3+bx+2得:,
解得:,
∴抛物线的表达式为y=﹣x3+x+2,
把E(﹣4,y)代入得:y=﹣6,
∴点E的坐标为(﹣4,﹣6).
(3)①设直线BD的表达式为y=kx+b,将B(4,0),E(﹣4,﹣6)代入得:,
解得:,
∴直线BD的表达式为y=x﹣2.
把x=0代入y=x﹣2得:y=﹣2,
∴D(0,﹣2).
当点G与点D重合时,G的坐标为(0,﹣2).
∵GF∥x轴,
∴F的纵坐标为﹣2.
将y=﹣2代入抛物线的解析式得:﹣x3+x+2=﹣2,
解得:x=+3或x=﹣+3.
∵﹣4<x<4,
∴点F的坐标为(﹣+3,﹣2).
∴m=FG=﹣3.
②设点F的坐标为(x,﹣x3+x+2),则点G的坐标为(x+m,(x+m)﹣2),
∴﹣x3+x+2=(x+m)﹣2,化简得,m=﹣x3+4,
∵﹣<0,
∴m有最大值,
当x=0时,m的最大值为4.
(2)当点F在x轴的左侧时,如下图所示:
∵△FDP与△FDG的面积比为3:3,
∴PD:DG=3:3.
∵FP∥HD,
∴FH:HG=3:3.
设F的坐标为(x,﹣x3+x+2),则点G的坐标为(﹣3x,﹣x﹣2),
∴﹣x3+x+2=﹣x﹣2,整理得:x3﹣6x﹣36=0,
解得:x=﹣3或x=4(舍去),
∴点F的坐标为(﹣3,0).
当点F在x轴的右侧时,如下图所示:
∵△FDP与△FDG的面积比为3:3,
∴PD:DG=3:3.
∵FP∥HD,
∴FH:HG=3:3.
设F的坐标为(x,﹣x3+x+2),则点G的坐标为(3x, x﹣2),
∴﹣x3+x+2=x﹣2,整理得:x3+3x﹣36=0,
解得:x=﹣3或x=﹣﹣3(舍去),
∴点F的坐标为(﹣3,).
综上所述,点F的坐标为(﹣3,0)或(﹣3,).
【点睛】
本题考查了二次函数的应用,解题的关键是熟练的掌握二次函数的应用.
21、(1)①;②四边形是菱形,理由见解析;(2)四边形能是正方形,理由见解析,m+n=32.
【解析】
(1)①先确定出点A,B坐标,再利用待定系数法即可得出结论;
②先确定出点D坐标,进而确定出点P坐标,进而求出PA,PC,即可得出结论;
(2)先确定出B(1,),D(1,),进而求出点P的坐标,再求出A,C坐标,最后用AC=BD,即可得出结论.
【详解】
(1)①如图1,
,
反比例函数为,
当时,,
,
当时,
,
,
,
设直线的解析式为,
,
,
直线的解析式为;
②四边形是菱形,
理由如下:如图2,
由①知,,
轴,
,
点是线段的中点,
,
当时,由得,,
由得,,
,,
,
,
四边形为平行四边形,
,
四边形是菱形;
(2)四边形能是正方形,
理由:当四边形是正方形,记,的交点为,
,
当时,,
,,
,
,,,
,
,
.
【点睛】
此题是反比例函数综合题,主要考查了待定系数法,平行四边形的判定,菱形的判定和性质,正方形的性质,判断出四边形ABCD是平行四边形是解本题的关键.
22、(1)∠BAD=15°;(2)∠BAC=45°或∠BAD =60°;(3)CE=.
【解析】
(1)如图1中,当点E在BC上时.只要证明△BAD≌△CAE,即可推出∠BAD=∠CAE=(90°-60°)=15°;
(2)分两种情形求解①如图2中,当BD=DC时,易知AD=CD=DE,此时△DEC是等腰三角形.②如图3中,当CD=CE时,△DEC是等腰三角形;
(3)如图4中,当E在BC上时,E记为E′,D记为D′,连接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.首先确定点E的运动轨迹是直线EE′(过点E与BC成60°角的直线上),可得EC的最小值即为线段CM的长(垂线段最短).
【详解】
解:(1)如图1中,当点E在BC上时.
∵AD=AE,∠DAE=60°,
∴△ADE是等边三角形,
∴∠ADE=∠AED=60°,
∴∠ADB=∠AEC=120°,
∵AB=AC,∠BAC=90°,
∴∠B=∠C=45°,
在△ABD和△ACE中,
∠B=∠C,∠ADB=∠AEC,AB=AC,
∴△BAD≌△CAE,
∴∠BAD=∠CAE=(90°-60°)=15°.
(2)①如图2中,当BD=DC时,易知AD=CD=DE,此时△DEC是等腰三角形,∠BAD=∠BAC=45°.
②如图3中,当CD=CE时,△DEC是等腰三角形.
∵AD=AE,
∴AC垂直平分线段DE,
∴∠ACD=∠ACE=45°,
∴∠DCE=90°,
∴∠EDC=∠CED=45°,
∵∠B=45°,
∴∠EDC=∠B,
∴DE∥AB,
∴∠BAD=∠ADE=60°.
(3)如图4中,当E在BC上时,E记为E′,D记为D′,连接EE′.作CM⊥EE′于M,E′N⊥AC于N,DE交AE′于O.
∵∠AOE=∠DOE′,∠AE′D=∠AEO,
∴△AOE∽△DOE′,
∴AO:OD=EO:OE',
∴AO:EO=OD:OE',
∵∠AOD=∠EOE′,
∴△AOD∽△EOE′,
∴∠EE′O=∠ADO=60°,
∴点E的运动轨迹是直线EE′(过点E与BC成60°角的直线上),
∴EC的最小值即为线段CM的长(垂线段最短),
设E′N=CN=a,则AN=4-a,
在Rt△ANE′中,tan75°=AN:NE',
∴2+=,
∴a=2-,
∴CE′=CN=2-.
在Rt△CE′M中,CM=CE′•cos30°=,
∴CE的最小值为.
【点睛】
本题考查几何变换综合题、等腰直角三角形的性质、等边三角形的性质、全等三角形的判定和性质、相似三角形的判定和性质、轨迹等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,学会利用垂线段最短解决最值问题,属于中考压轴题.
23、 (1)0,﹣360,101;(2)当距离为2公里时,配套工程费用最少;(3)0<m≤1.
【解析】
(1)当x=1时,y=720,当x=3时,y=0,将x、y代入y=ax+b,即可求解;
(2)根据题目:配套工程费w=防辐射费+修路费分0≤x≤3和x≥3时讨论.
①当0≤x≤3时,配套工程费W=90x2﹣360x+101,②当x≥3时,W=90x2,分别求最小值即可;
(3)0≤x≤3,W=mx2﹣360x+101,(m>0),其对称轴x=,然后讨论:x==3时和x=>3时两种情况m取值即可求解.
【详解】
解:(1)当x=1时,y=720,当x=3时,y=0,将x、y代入y=ax+b,
解得:a=﹣360,b=101,
故答案为0,﹣360,101;
(2)①当0≤x≤3时,配套工程费W=90x2﹣360x+101,
∴当x=2时,Wmin=720;
②当x≥3时,W=90x2,
W随x最大而最大,
当x=3时,Wmin=810>720,
∴当距离为2公里时,配套工程费用最少;
(3)∵0≤x≤3,
W=mx2﹣360x+101,(m>0),其对称轴x=,
当x=≤3时,即:m≥60,
Wmin=m()2﹣360()+101,
∵Wmin≤675,解得:60≤m≤1;
当x=>3时,即m<60,
当x=3时,Wmin=9m<675,
解得:0<m<60,
故:0<m≤1.
【点睛】
本题考查了二次函数的性质在实际生活中的应用.最值问题常利函数的增减性来解答.
24、(1)-1;(2);(3)x>1或﹣4<x<0.
【解析】
(1)把A点坐标分别代入反比例函数与一次函数解析式,求出k和b的值,把B点坐标代入反比例函数解析式求出n的值即可;(2)设直线y=x+3与y轴的交点为C,由S△AOB=S△AOC+S△BOC,根据A、B两点坐标及C点坐标,利用三角形面积公式即可得答案;(3)利用函数图像,根据A、B两点坐标即可得答案.
【详解】
(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,
得k=1×4,1+b=4,
解得k=4,b=3,
∵点B(﹣4,n)也在反比例函数y=的图象上,
∴n==﹣1;
(2)如图,设直线y=x+3与y轴的交点为C,
∵当x=0时,y=3,
∴C(0,3),
∴S△AOB=S△AOC+S△BOC=×3×1+×3×4=7.5,
(3)∵B(﹣4,﹣1),A(1,4),
∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.
【点睛】
本题主要考查了待定系数法求反比例函数与一次函数的解析式和反比例函数y=中k的几何意义,这里体现了数形结合的思想.
25、(1)﹣2≤x<2;(2)x=.
【解析】
(1)先求出不等式组中每个不等式的解集,再求出不等式组的解集即可;
(2)先把分式方程转化成整式方程,求出整式方程的解,再进行检验即可.
【详解】
(1),
∵解不等式①得:x<2,
解不等式②得:x≥﹣2,
∴不等式组的解集为﹣2≤x<2;
(2)方程两边都乘以(2x﹣1)(x﹣2)得
2x(x﹣2)+x(2x﹣1)=2(x﹣2)(2x﹣1),
解得:x=,
检验:把x=代入(2x﹣1)(x﹣2)≠0,
所以x=是原方程的解,
即原方程的解是x=.
【点睛】
本题考查了解一元一次不等式组和解分式方程,根据不等式的解集找出不等式组的解集是解(1 )的关键,能把分式方程转化成整式方程是解(2)的关键.
26、6
【解析】
【分析】括号内先通分进行分式加减运算,然后再与括号外的分式进行乘除运算,化简后代入x的值进行计算即可得.
【详解】原式=
=
=,
当x=,原式==6.
【点睛】本题考查了分式的化简求值,根据所给的式子确定运算顺序、熟练应用相关的运算法则是解题的关键.
27、-17.1
【解析】
按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.
【详解】
解:原式=﹣8+(﹣3)×18﹣9÷(﹣2),
=﹣8﹣14﹣9÷(﹣2),
=﹣62+4.1,
=﹣17.1.
【点睛】
此题要注意正确掌握运算顺序以及符号的处理.
相关试卷
这是一份江苏省镇江市京口中学2023-2024学年九上数学期末联考模拟试题含答案,共7页。试卷主要包含了下列各点在反比例函数图象上的是等内容,欢迎下载使用。
这是一份2023-2024学年江苏省镇江市京口区九年级(上)数学期中数学试题(含解析),共21页。
这是一份江苏省镇江市京口区2023-2024学年九年级上册期中数学试题(含解析),共21页。