终身会员
搜索
    上传资料 赚现金

    四川省蓬安县达标名校2021-2022学年中考数学考前最后一卷含解析

    立即下载
    加入资料篮
    四川省蓬安县达标名校2021-2022学年中考数学考前最后一卷含解析第1页
    四川省蓬安县达标名校2021-2022学年中考数学考前最后一卷含解析第2页
    四川省蓬安县达标名校2021-2022学年中考数学考前最后一卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    四川省蓬安县达标名校2021-2022学年中考数学考前最后一卷含解析

    展开

    这是一份四川省蓬安县达标名校2021-2022学年中考数学考前最后一卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,某校八,下列计算正确的是,如图,一段抛物线等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.桌面上有A、B两球,若要将B球射向桌面任意一边的黑点,则B球一次反弹后击中A球的概率是(  )

    A. B. C. D.
    2.有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正确的是(  )
    A.①② B.②④ C.②③ D.③④
    3.如图所示,将矩形ABCD的四个角向内折起,恰好拼成一个既无缝隙又无重叠的四边形EFGH,若EH=3,EF=4,那么线段AD与AB的比等于(  )

    A.25:24 B.16:15 C.5:4 D.4:3
    4.某校八(2)班6名女同学的体重(单位:kg)分别为35,36,38,40,42,42,则这组数据的中位数是(  )
    A.38 B.39 C.40 D.42
    5.如图,将矩形ABCD沿EM折叠,使顶点B恰好落在CD边的中点N上.若AB=6,AD=9,则五边形ABMND的周长为(  )

    A.28 B.26 C.25 D.22
    6.下列计算正确的是( )
    A. B. C. D.
    7.如图,一段抛物线:y=﹣x(x﹣5)(0≤x≤5),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2, 交x轴于点A2;将C2绕点A2旋转180°得C3, 交x轴于点A3;…如此进行下去,得到一“波浪线”,若点P(2018,m)在此“波浪线”上,则m的值为(   )

    A.4 B.﹣4 C.﹣6 D.6
    8.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是( )

    A. B.2 C. D.
    9.如图所示,把直角三角形纸片沿过顶点B的直线(BE交CA于E)折叠,直角顶点C落在斜边AB上,如果折叠后得等腰△EBA,那么结论中:①∠A=30°;②点C与AB的中点重合;③点E到AB的距离等于CE的长,正确的个数是(  )

    A.0 B.1 C.2 D.3
    10.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为(  )
    A.y=(x﹣8)2+5 B.y=(x﹣4)2+5 C.y=(x﹣8)2+3 D.y=(x﹣4)2+3
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.若数据2、3、5、3、8的众数是a,则中位数是b,则a﹣b等于_____.
    12.如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F.若∠E+∠F=80°,则∠A=____°.

    13.点 C 在射线 AB上,若 AB=3,BC=2,则AC为_____.
    14.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=3cm,则EF=________cm.

    15.如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC和CD上,下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=.
    其中正确的序号是   (把你认为正确的都填上).

    16.观察下列的“蜂窝图”按照它呈现的规律第n个图案中的“”的个数是_____(用含n的代数式表示)

    三、解答题(共8题,共72分)
    17.(8分)在平面直角坐标系中,关于的一次函数的图象经过点,且平行于直线.
    (1)求该一次函数表达式;
    (2)若点Q(x,y)是该一次函数图象上的点,且点Q在直线的下方,求x的取值范围.
    18.(8分)西安汇聚了很多人们耳熟能详的陕西美食.李华和王涛同时去选美食,李华准备在“肉夹馍(A)、羊肉泡馍(B)、麻酱凉皮(C)、(biang)面(D)”这四种美食中选择一种,王涛准备在“秘制凉皮(E)、肉丸胡辣汤(F)、葫芦鸡(G)、水晶凉皮(H)”这四种美食中选择一种.
    (1)求李华选择的美食是羊肉泡馍的概率;
    (2)请用画树状图或列表的方法,求李华和王涛选择的美食都是凉皮的概率.
    19.(8分)某商场,为了吸引顾客,在“白色情人节”当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:一是直接获得20元的礼金券,二是得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其它都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色(如表)决定送礼金券的多少.

    两红
    一红一白
    两白
    礼金券(元)
    18
    24
    18
    (1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率.
    (2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠.
    20.(8分)某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.

    (1)甲车间每天加工零件为_____件,图中d值为_____.
    (2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式.
    (3)甲车间加工多长时间时,两车间加工零件总数为1000件?
    21.(8分)为评估九年级学生的体育成绩情况,某校九年级500名学生全部参加了“中考体育模拟考试”,随机抽取了部分学生的测试成绩作为样本,并绘制出如下两幅不完整的统计表和频数分布直方图:
    成绩x分
    人数
    频率
    25≤x<30
    4
    0.08
    30≤x<35
    8
    0.16
    35≤x<40
    a
    0.32
    40≤x<45
    b
    c
    45≤x<50
    10
    0.2
    (1)求此次抽查了多少名学生的成绩;
    (2)通过计算将频数分布直方图补充完整;
    (3)若测试成绩不低于40分为优秀,请估计本次测试九年级学生中成绩优秀的人数.

    22.(10分)甲、乙、丙、丁四位同学进行乒乓球单打比赛,要从中选出两位同学打第一场比赛. 若确定甲打第一场,再从其余三位同学中随机选取一位,恰好选中乙同学的概率是 . 若随机抽取两位同学,请用画树状图法或列表法,求恰好选中甲、乙两位同学的概率.
    23.(12分)班级的课外活动,学生们都很积极.梁老师在某班对同学们进行了一次关于“我喜爱的体育项目”的调査,下面是他通过收集数据后,绘制的两幅不完整的统计图.请根据图中的信息,解答下列问题:
    调查了________名学生;补全条形统计图;在扇形统计图中,“乒乓球”部分所对应的圆心角度数为________;学校将举办运动会,该班将推选5位同学参加乒乓球比赛,有3位男同学和2位女同学,现准备从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.
    24.如图,已知△ABC,请用尺规作图,使得圆心到△ABC各边距离相等(保留作图痕迹,不写作法).




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    试题解析:由图可知可以瞄准的点有2个.

    ∴B球一次反弹后击中A球的概率是.
    故选B.
    2、D
    【解析】
    试题分析:首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.
    解:根据总人数列方程,应是40m+10=43m+1,①错误,④正确;
    根据客车数列方程,应该为,②错误,③正确;
    所以正确的是③④.
    故选D.
    考点:由实际问题抽象出一元一次方程.
    3、A
    【解析】
    先根据图形翻折的性质可得到四边形EFGH是矩形,再根据全等三角形的判定定理得出Rt△AHE≌Rt△CFG,再由勾股定理及直角三角形的面积公式即可解答.
    【详解】
    ∵∠1=∠2,∠3=∠4,
    ∴∠2+∠3=90°,
    ∴∠HEF=90°,
    同理四边形EFGH的其它内角都是90°,
    ∴四边形EFGH是矩形,
    ∴EH=FG(矩形的对边相等),
    又∵∠1+∠4=90°,∠4+∠5=90°,
    ∴∠1=∠5(等量代换),
    同理∠5=∠7=∠8,
    ∴∠1=∠8,
    ∴Rt△AHE≌Rt△CFG,
    ∴AH=CF=FN,
    又∵HD=HN,
    ∴AD=HF,
    在Rt△HEF中,EH=3,EF=4,根据勾股定理得HF==5,
    又∵HE•EF=HF•EM,
    ∴EM=,
    又∵AE=EM=EB(折叠后A、B都落在M点上),
    ∴AB=2EM=,
    ∴AD:AB=5:==25:1.
    故选A
    【点睛】
    本题考查的是图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,折叠以后的图形与原图形全等.
    4、B
    【解析】
    根据中位数的定义求解,把数据按大小排列,第3、4个数的平均数为中位数.
    【详解】
    解:由于共有6个数据,
    所以中位数为第3、4个数的平均数,即中位数为=39,
    故选:B.
    【点睛】
    本题主要考查了中位数.要明确定义:将一组数据从小到大(或从大到小)重新排列后,若这组数据的个数是奇数,则最中间的那个数叫做这组数据的中位数;若这组数据的个数是偶数,则最中间两个数的平均数是这组数据的中位数.
    5、A
    【解析】
    如图,运用矩形的性质首先证明CN=3,∠C=90°;运用翻折变换的性质证明BM=MN(设为λ),运用勾股定理列出关于λ的方程,求出λ,即可解决问题.
    【详解】
    如图,

    由题意得:BM=MN(设为λ),CN=DN=3;
    ∵四边形ABCD为矩形,
    ∴BC=AD=9,∠C=90°,MC=9-λ;
    由勾股定理得:λ2=(9-λ)2+32,
    解得:λ=5,
    ∴五边形ABMND的周长=6+5+5+3+9=28,
    故选A.
    【点睛】
    该题主要考查了翻折变换的性质、矩形的性质、勾股定理等几何知识点及其应用问题;解题的关键是灵活运用翻折变换的性质、矩形的性质、勾股定理等几何知识点来分析、判断、推理或解答.
    6、D
    【解析】
    分析:根据合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法的运算法则计算即可.
    解答:解:A、x+x=2x,选项错误;
    B、x?x=x2,选项错误;
    C、(x2)3=x6,选项错误;
    D、正确.
    故选D.
    7、C
    【解析】
    分析:根据图象的旋转变化规律以及二次函数的平移规律得出平移后解析式,进而求出m的值,由2017÷5=403…2,可知点P(2018,m)在此“波浪线”上C404段上,求出C404的解析式,然后把P(2018,m)代入即可.
    详解:当y=0时,﹣x(x﹣5)=0,解得x1=0,x2=5,则A1(5,0),
    ∴OA1=5,
    ∵将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…;如此进行下去,得到一“波浪线”,
    ∴A1A2=A2A3=…=OA1=5,
    ∴抛物线C404的解析式为y=(x﹣5×403)(x﹣5×404),即y=(x﹣2015)(x﹣2020),
    当x=2018时,y=(2018﹣2015)(2018﹣2020)=﹣1,
    即m=﹣1.
    故选C.
    点睛:此题主要考查了二次函数的平移规律,根据已知得出二次函数旋转后解析式是解题关键.
    8、A
    【解析】
    分析:连接AC,根据勾股定理求出AC、BC、AB的长,根据勾股定理的逆定理得到△ABC是直角三角形,根据正切的定义计算即可.
    详解:
    连接AC,

    由网格特点和勾股定理可知,
    AC=,
    AC2+AB2=10,BC2=10,
    ∴AC2+AB2=BC2,
    ∴△ABC是直角三角形,
    ∴tan∠ABC=.
    点睛:考查的是锐角三角函数的定义、勾股定理及其逆定理的应用,熟记锐角三角函数的定义、掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解题的关键.
    9、D
    【解析】
    根据翻折变换的性质分别得出对应角相等以及利用等腰三角形的性质判断得出即可.
    【详解】
    ∵把直角三角形纸片沿过顶点B的直线(BE交CA于E)折叠,直角顶点C落在斜边AB上,折叠后得等腰△EBA,
    ∴∠A=∠EBA,∠CBE=∠EBA,
    ∴∠A=∠CBE=∠EBA,
    ∵∠C=90°,
    ∴∠A+∠CBE+∠EBA=90°,
    ∴∠A=∠CBE=∠EBA=30°,故①选项正确;
    ∵∠A=∠EBA,∠EDB=90°,
    ∴AD=BD,故②选项正确;
    ∵∠C=∠EDB=90°,∠CBE=∠EBD=30°,
    ∴EC=ED(角平分线上的点到角的两边距离相等),
    ∴点E到AB的距离等于CE的长,故③选项正确,
    故正确的有3个.
    故选D.
    【点睛】
    此题主要考查了翻折变换的性质以及角平分线的性质和等腰三角形的性质等知识,利用折叠前后对应角相等是解题关键.
    10、D
    【解析】
    直接利用配方法将原式变形,进而利用平移规律得出答案.
    【详解】
    y=x2﹣6x+21
    =(x2﹣12x)+21
    =[(x﹣6)2﹣16]+21
    =(x﹣6)2+1,
    故y=(x﹣6)2+1,向左平移2个单位后,
    得到新抛物线的解析式为:y=(x﹣4)2+1.
    故选D.
    【点睛】
    本题考查了二次函数图象与几何变换,熟记函数图象平移的规律并正确配方将原式变形是解题关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、2
    【解析】
    将数据排序后,位置在最中间的数值。即将数据分成两部分,一部分大于该数值,一部分小于该数值。中位数的位置:当样本数为奇数时,中位数=(N+1)/2 ; 当样本数为偶数时,中位数为N/2与1+N/2的均值;众数是在一组数据中,出现次数最多的数据。根据定义即可算出.
    【详解】
    2、1、5、1、8中只有1出现两次,其余都是1次,得众数为a=1.
    2、1、5、1、8重新排列2、1、1、5、8,中间的数是1,中位数b=1.
    ∴a﹣b=1-1=2.
    故答案为:2.
    【点睛】
    中位数与众数的定义.
    12、50
    【解析】
    试题分析:连结EF,如图,根据圆内接四边形的性质得∠A+∠BCD=180°,根据对顶角相等得∠BCD=∠ECF,则∠A+∠ECF=180°,根据三角形内角和定理得∠ECF+∠1+∠2=180°,所以∠1+∠2=∠A,再利用三角形内角和定理得到∠A+∠AEB+∠1+∠2+∠AFD=180°,则∠A+80°+∠A=180°,然后解方程即可.
    试题解析:连结EF,如图,

    ∵四边形ABCD内接于⊙O,
    ∴∠A+∠BCD=180°,
    而∠BCD=∠ECF,
    ∴∠A+∠ECF=180°,
    ∵∠ECF+∠1+∠2=180°,
    ∴∠1+∠2=∠A,
    ∵∠A+∠AEF+∠AFE=180°,
    即∠A+∠AEB+∠1+∠2+∠AFD=180°,
    ∴∠A+80°+∠A=180°,
    ∴∠A=50°.
    考点:圆内接四边形的性质.
    13、2或2.
    【解析】
    解:本题有两种情形:
    (2)当点C在线段AB上时,如图,∵AB=3,BC=2,∴AC=AB﹣BC=3-2=2;

    (2)当点C在线段AB的延长线上时,如图,∵AB=3,BC=2,∴AC=AB+BC=3+2=2.

    故答案为2或2.
    点睛:在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.
    14、3
    【解析】试题分析:根据点D为AB的中点可得:CD为直角三角形斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD=6,根据E、F分别为中点可得:EF为△ABC的中位线,根据中位线的性质可得:EF=AB=3.
    考点:(1)、直角三角形的性质;(2)、中位线的性质
    15、①②④
    【解析】
    分析:∵四边形ABCD是正方形,∴AB=AD。
    ∵△AEF是等边三角形,∴AE=AF。
    ∵在Rt△ABE和Rt△ADF中,AB=AD,AE=AF,∴Rt△ABE≌Rt△ADF(HL)。∴BE=DF。
    ∵BC=DC,∴BC﹣BE=CD﹣DF。∴CE=CF。∴①说法正确。
    ∵CE=CF,∴△ECF是等腰直角三角形。∴∠CEF=45°。
    ∵∠AEF=60°,∴∠AEB=75°。∴②说法正确。
    如图,连接AC,交EF于G点,

    ∴AC⊥EF,且AC平分EF。
    ∵∠CAD≠∠DAF,∴DF≠FG。
    ∴BE+DF≠EF。∴③说法错误。
    ∵EF=2,∴CE=CF=。
    设正方形的边长为a,在Rt△ADF中,,解得,
    ∴。
    ∴。∴④说法正确。
    综上所述,正确的序号是①②④。
    16、3n+1
    【解析】
    根据题意可知:第1个图有4个图案,第2个共有7个图案,第3个共有10个图案,第4个共有13个图案,由此可得出规律.
    【详解】
    解:由题意可知:每1个都比前一个多出了3个“”,
    ∴第n个图案中共有“”为:4+3(n﹣1)=3n+1
    故答案为:3n+1.
    【点睛】
    本题考查学生的观察能力,解题的关键是熟练正确找出图中的规律,本题属于基础题型.

    三、解答题(共8题,共72分)
    17、(1);(2).
    【解析】
    (1)由题意可设该一次函数的解析式为:,将点M(4,7)代入所设解析式求出b的值即可得到一次函数的解析式;
    (2)根据直线上的点Q(x,y)在直线的下方可得2x-1

    相关试卷

    浙江省嘉兴地区达标名校2021-2022学年中考数学考前最后一卷含解析:

    这是一份浙江省嘉兴地区达标名校2021-2022学年中考数学考前最后一卷含解析,共17页。试卷主要包含了在平面直角坐标系内,点P等内容,欢迎下载使用。

    湖南省双峰县达标名校2021-2022学年中考数学考前最后一卷含解析:

    这是一份湖南省双峰县达标名校2021-2022学年中考数学考前最后一卷含解析,共22页。试卷主要包含了下列命题中,错误的是,下列各式中,计算正确的是等内容,欢迎下载使用。

    广东惠城区重点达标名校2021-2022学年中考数学考前最后一卷含解析:

    这是一份广东惠城区重点达标名校2021-2022学年中考数学考前最后一卷含解析,共17页。试卷主要包含了下列事件中,必然事件是,初三,下列运算正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map