终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年四川省巴中学市恩阳区中考数学考前最后一卷含解析

    立即下载
    加入资料篮
    2021-2022学年四川省巴中学市恩阳区中考数学考前最后一卷含解析第1页
    2021-2022学年四川省巴中学市恩阳区中考数学考前最后一卷含解析第2页
    2021-2022学年四川省巴中学市恩阳区中考数学考前最后一卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年四川省巴中学市恩阳区中考数学考前最后一卷含解析

    展开

    这是一份2021-2022学年四川省巴中学市恩阳区中考数学考前最后一卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.把直线l:y=kx+b绕着原点旋转180°,再向左平移1个单位长度后,经过点A(-2,0)和点B(0,4),则直线l的表达式是( )
    A.y=2x+2 B.y=2x-2 C.y=-2x+2 D.y=-2x-2
    2.反比例函数y=(a>0,a为常数)和y=在第一象限内的图象如图所示,点M在y=的图象上,MC⊥x轴于点C,交y=的图象于点A;MD⊥y轴于点D,交y=的图象于点B,当点M在y=的图象上运动时,以下结论:
    ①S△ODB=S△OCA;
    ②四边形OAMB的面积不变;
    ③当点A是MC的中点时,则点B是MD的中点.
    其中正确结论的个数是( )

    A.0 B.1 C.2 D.3
    3.如图:已知AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,则线段AP的长不可能是(  )

    A.3 B.3.5 C.4 D.5
    4.某班将举行“庆祝建党95周年知识竞赛”活动,班长安排小明购买奖品,如图是小明买回奖品时与班长的对话情境:请根据如图对话信息,计算乙种笔记本买了(  )

    A.25本 B.20本 C.15本 D.10本
    5.在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是(  )
    A. B. C. D.
    6.如图,O为直线 AB上一点,OE平分∠BOC,OD⊥OE 于点 O,若∠BOC=80°,则∠AOD的度数是( )

    A.70° B.50° C.40° D.35°
    7.已知△ABC中,∠BAC=90°,用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形,其作法不正确的是(   )
    A.         B.
    C.      D.
    8.已知是二元一次方程组的解,则m+3n的值是( )
    A.4 B.6 C.7 D.8
    9.如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为( )

    A. B. C. D.
    10.如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM,ON上滑动,下列结论:
    ①若C,O两点关于AB对称,则OA=;
    ②C,O两点距离的最大值为4;
    ③若AB平分CO,则AB⊥CO;
    ④斜边AB的中点D运动路径的长为π.
    其中正确的是(  )

    A.①② B.①②③ C.①③④ D.①②④
    二、填空题(共7小题,每小题3分,满分21分)
    11.已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是_______________.
    12.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为______.

    13.一个圆锥的高为3,侧面展开图是半圆,则圆锥的侧面积是_________
    14.某商场将一款品牌时装按标价打九折出售,可获利80%,这款商品的标价为1000元,则进价为 ________元。
    15.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.当点E、F在BC、CD上滑动时,则△CEF的面积最大值是____.

    16.已知点A(2,0),B(0,2),C(-1,m)在同一条直线上,则m的值为___________.
    17.观察下列等式:
    第1个等式:a1=;
    第2个等式:a2=;
    第3个等式:a3=;

    请按以上规律解答下列问题:
    (1)列出第5个等式:a5=_____;
    (2)求a1+a2+a3+…+an=,那么n的值为_____.
    三、解答题(共7小题,满分69分)
    18.(10分)已知,如图,在四边形ABCD中,∠ADB=∠ACB,延长AD、BC相交于点E.求证:△ACE∽△BDE;BE•DC=AB•DE.

    19.(5分)先化简,再求值:,其中.
    20.(8分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C(0,0)
    (1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;
    (2)画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2O;
    (3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标.

    21.(10分)(1)观察猜想
    如图①点B、A、C在同一条直线上,DB⊥BC,EC⊥BC且∠DAE=90°,AD=AE,则BC、BD、CE之间的数量关系为______;
    (2)问题解决
    如图②,在Rt△ABC中,∠ABC=90°,CB=4,AB=2,以AC为直角边向外作等腰Rt△DAC,连结BD,求BD的长;
    (3)拓展延伸
    如图③,在四边形ABCD中,∠ABC=∠ADC=90°,CB=4,AB=2,DC=DA,请直接写出BD的长.

    22.(10分)某市A,B两个蔬菜基地得知四川C,D两个灾民安置点分别急需蔬菜240t和260t的消息后,决定调运蔬菜支援灾区,已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,现将这些蔬菜全部调运C,D两个灾区安置点.从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;

    C
    D
    总计/t
    A


    200
    B
    x

    300
    总计/t
    240
    260
    500
    (2)设A,B两个蔬菜基地的总运费为w元,求出w与x之间的函数关系式,并求
    总运费最小的调运方案;经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余线路的运费不变,试讨论总运费最小的调动方案.
    23.(12分)某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.
    (1)求y与x之间的函数关系式;
    (2)当每件售价定为多少元时,每星期的销售利润最大,最大利润是多少元?
    (3)若该网店每星期想要获得不低于6480元的利润,每星期至少要销售该款童装多少件?
    24.(14分)如图,以O为圆心,4为半径的圆与x轴交于点A,C在⊙O上,∠OAC=60°.
    (1)求∠AOC的度数;
    (2)P为x轴正半轴上一点,且PA=OA,连接PC,试判断PC与⊙O的位置关系,并说明理由;
    (3)有一动点M从A点出发,在⊙O上按顺时针方向运动一周,当S△MAO=S△CAO时,求动点M所经过的弧长,并写出此时M点的坐标.




    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、B
    【解析】
    先利用待定系数法求出直线AB的解析式,再求出将直线AB向右平移1个单位长度后得到的解析式,然后将所得解析式绕着原点旋转180°即可得到直线l.
    【详解】
    解:设直线AB的解析式为y=mx+n.
    ∵A(−2,0),B(0,1),
    ∴ ,
    解得 ,
    ∴直线AB的解析式为y=2x+1.
    将直线AB向右平移1个单位长度后得到的解析式为y=2(x−1)+1,即y=2x+2,
    再将y=2x+2绕着原点旋转180°后得到的解析式为−y=−2x+2,即y=2x−2,
    所以直线l的表达式是y=2x−2.
    故选:B.
    【点睛】
    本题考查了一次函数图象平移问题,掌握解析式“左加右减”的规律以及关于原点对称的规律是解题的关键.
    2、D
    【解析】
    根据反比例函数的性质和比例系数的几何意义逐项分析可得出解.
    【详解】
    ①由于A、B在同一反比例函数y=图象上,由反比例系数的几何意义可得S△ODB=S△OCA=1,正确;
    ②由于矩形OCMD、△ODB、△OCA为定值,则四边形MAOB的面积不会发生变化,正确;
    ③连接OM,点A是MC的中点,则S△ODM=S△OCM=,因S△ODB=S△OCA=1,所以△OBD和△OBM面积相等,点B一定是MD的中点.正确;
    故答案选D.

    考点:反比例系数的几何意义.
    3、A
    【解析】
    根据直线外一点和直线上点的连线中,垂线段最短的性质,可得答案.
    【详解】
    解:由AB⊥BC,垂足为B,AB=3.5,点P是射线BC上的动点,得
    AP≥AB,
    AP≥3.5,
    故选:A.
    【点睛】
    本题考查垂线段最短的性质,解题关键是利用垂线段的性质.
    4、C
    【解析】
    设甲种笔记本买了x本,甲种笔记本的单价是y元,则乙种笔记本买了(40﹣x)本,乙种笔记本的单价是(y+3)元,根据题意列出关于x、y的二元一次方程组,求出x、y的值即可.
    【详解】
    解:设甲种笔记本买了x本,甲种笔记本的单价是y元,则乙种笔记本买了(40﹣x)本,乙种笔记本的单价是(y+3)元,
    根据题意,得:,
    解得:,
    答:甲种笔记本买了25本,乙种笔记本买了15本.
    故选C.
    【点睛】
    本题考查的是二元二次方程组的应用,能根据题意得出关于x、y的二元二次方程组是解答此题的关键.
    5、D
    【解析】
    根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是D.
    【详解】
    解:观察图形可知图案D通过平移后可以得到.
    故选D.
    【点睛】
    本题考查图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.
    6、B
    【解析】
    分析:由OE是∠BOC的平分线得∠COE=40°,由OD⊥OE得∠DOC=50°,从而可求出∠AOD的度数.
    详解:∵OE是∠BOC的平分线,∠BOC=80°,
    ∴∠COE=∠BOC=×80°=40°,
    ∵OD⊥OE
    ∴∠DOE=90°,
    ∴∠DOC=∠DOE-∠COE=90°-40°=50°,
    ∴∠AOD=180°-∠BOC-∠DOC==180°-80°-50°=50°.
    故选B.
    点睛:本题考查了角平分线的定义:从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.性质:若OC是∠AOB的平分线则∠AOC=∠BOC=∠AOB或∠AOB=2∠AOC=2∠BOC.
    7、D
    【解析】
    分析:根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.
    详解:A、在角∠BAC内作作∠CAD=∠B,交BC于点D,根据余角的定义及等量代换得出∠B+∠BAD=90°,进而得出AD⊥BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;A不符合题意;
    B、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;B不符合题意;
    C、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;C不符合题意;
    D、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;D符合题意;
    故选D.
    点睛:此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键.
    8、D
    【解析】
    分析:根据二元一次方程组的解,直接代入构成含有m、n的新方程组,解方程组求出m、n的值,代入即可求解.
    详解:根据题意,将代入,得:,
    ①+②,得:m+3n=8,
    故选D.
    点睛:此题主要考查了二元一次方程组的解,利用代入法求出未知参数是解题关键,比较简单,是常考题型.
    9、D
    【解析】
    过C点作CD⊥AB,垂足为D,根据旋转性质可知,∠B′=∠B,把求tanB′的问题,转化为在Rt△BCD中求tanB.
    【详解】
    过C点作CD⊥AB,垂足为D.

    根据旋转性质可知,∠B′=∠B.
    在Rt△BCD中,tanB=,
    ∴tanB′=tanB=.
    故选D.
    【点睛】
    本题考查了旋转的性质,旋转后对应角相等;三角函数的定义及三角函数值的求法.
    10、D
    【解析】
    分析:①先根据直角三角形30°的性质和勾股定理分别求AC和AB,由对称的性质可知:AB是OC的垂直平分线,所以
    ②当OC经过AB的中点E时,OC最大,则C、O两点距离的最大值为4;
    ③如图2,当∠ABO=30°时,易证四边形OACB是矩形,此时AB与CO互相平分,但所夹锐角为60°,明显不垂直,或者根据四点共圆可知:A、C、B、O四点共圆,则AB为直径,由垂径定理相关推论:平分弦(不是直径)的直径垂直于这条弦,但当这条弦也是直径时,即OC是直径时,AB与OC互相平分,但AB与OC不一定垂直;
    ④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可.
    详解:在Rt△ABC中,∵


    ①若C.O两点关于AB对称,如图1,
    ∴AB是OC的垂直平分线,

    所以①正确;
    ②如图1,取AB的中点为E,连接OE、CE,


    当OC经过点E时,OC最大,
    则C.O两点距离的最大值为4;
    所以②正确;
    ③如图2,当时,

    ∴四边形AOBC是矩形,
    ∴AB与OC互相平分,
    但AB与OC的夹角为不垂直,
    所以③不正确;
    ④如图3,斜边AB的中点D运动路径是:以O为圆心,以2为半径的圆周的

    则:
    所以④正确;
    综上所述,本题正确的有:①②④;
    故选D.
    点睛:属于三角形的综合体,考查了直角三角形的性质,直角三角形斜边上中线的性质,轴对称的性质,弧长公式等,熟练掌握直角三角形斜边的中线等于斜边的一半是解题的关键.

    二、填空题(共7小题,每小题3分,满分21分)
    11、a<2且a≠1.
    【解析】
    利用一元二次方程根的判别式列不等式,解不等式求出a的取值范围.
    【详解】
    试题解析:∵关于x的一元二次方程(a-1)x2-2x+l=0有两个不相等的实数根,
    ∴△=b2-4ac>0,即4-4×(a-2)×1>0,
    解这个不等式得,a<2,
    又∵二次项系数是(a-1),
    ∴a≠1.
    故a的取值范围是a<2且a≠1.
    【点睛】
    本题考查的是一元二次方程根的判别式,根据方程有两不等的实数根,得到判别式大于零,求出a的取值范围,同时方程是一元二次方程,二次项系数不为零.
    12、1.
    【解析】
    试题解析:设俯视图的正方形的边长为.
    ∵其俯视图为正方形,从主视图可以看出,正方形的对角线长为

    解得
    ∴这个长方体的体积为4×3=1.
    13、18π
    【解析】解:设圆锥的半径为 ,母线长为 .则

    解得

    14、500
    【解析】
    设该品牌时装的进价为x元,根据题意列出方程,求出方程的解得到x的值,即可得到结果.
    【详解】
    解:设该品牌时装的进价为x元,根据题意得:1000×90%-x=80%x,解得:x=500,则该品牌时装的进价为500元.
    故答案为:500.
    【点睛】
    本题考查了一元一次方程的应用,找出题中的等量关系是解本题的关键.
    15、
    【解析】
    解:如图,连接AC,∵四边形ABCD为菱形,∠BAD=120°,∠1+∠EAC=60°,∠3+∠EAC=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=60°,∴△ABC和△ACD为等边三角形,∴∠4=60°,AC=AB.
    在△ABE和△ACF中,∵∠1=∠3,AC=AC,∠ABC=∠4,∴△ABE≌△ACF(ASA),∴S△ABE=S△ACF,∴S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,作AH⊥BC于H点,则BH=2,∴S四边形AECF=S△ABC=BC•AH=BC•=,由“垂线段最短”可知:当正三角形AEF的边AE与BC垂直时,边AE最短,∴△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又∵S△CEF=S四边形AECF﹣S△AEF,则此时△CEF的面积就会最大,∴S△CEF=S四边形AECF﹣S△AEF=﹣×× =.
    故答案为:.

    点睛:本题主要考查了菱形的性质、全等三角形判定与性质及三角形面积的计算,根据△ABE≌△ACF,得出四边形AECF的面积是定值是解题的关键.
    16、3
    【解析】
    设过点A(2,0)和点B(0,2)的直线的解析式为:,
    则 ,解得: ,
    ∴直线AB的解析式为:,
    ∵点C(-1,m)在直线AB上,
    ∴,即.
    故答案为3.
    点睛:在平面直角坐标系中,已知三点共线和其中两点的坐标,求第3点坐标中待定字母的值时,通常先由已知两点的坐标求出过这两点的直线的解析式,在将第3点的坐标代入所求解析式中,即可求得待定字母的值.
    17、 49
    【解析】
    (1)观察等式可得 然后根据此规律就可解决问题;
    (2)只需运用以上规律,采用拆项相消法即可解决问题.
    【详解】
    (1)观察等式,可得以下规律:,

    (2)

    解得:n=49.
    故答案为:49.
    【点睛】
    属于规律型:数字的变化类,观察题目,找出题目中数字的变化规律是解题的关键.

    三、解答题(共7小题,满分69分)
    18、(1)答案见解析;(2)答案见解析.
    【解析】
    (1)根据邻补角的定义得到∠BDE=∠ACE,即可得到结论;
    (2)根据相似三角形的性质得到 ,由于∠E=∠E,得到△ECD∽△EAB,由相似三角形的性质得到 ,等量代换得到,即可得到结论.
    本题解析:
    【详解】
    证明:(1)∵∠ADB=∠ACB,∴∠BDE=∠ACE,又∵∠E=∠E,∴△ACE∽△BDE;
    (2)∵△ACE∽△BDE
    ∴,∵∠E=∠E,∴△ECD∽△EAB,∴,∴BE•DC=AB•DE.
    【点睛】
    本题考查相似三角形的判定与性质,熟练掌握判定定理是关键.
    19、,4.
    【解析】
    先括号内通分,然后计算除法,最后代入化简即可.
    【详解】
    原式= .
    当时,原式=4.
    【点睛】
    此题考查分式的化简求值,解题关键在于掌握运算法则.
    20、(1)作图见解析;(2)作图见解析;(3)P(,0).
    【解析】
    (1)分别将点A、B、C向上平移1个单位,再向右平移5个单位,然后顺次连接;(2)根据网格结构找出点A、B、C以点O为旋转中心顺时针旋转90°后的对应点,然后顺次连接即可;(3)利用最短路径问题解决,首先作A1点关于x轴的对称点A3,再连接A2A3与x轴的交点即为所求.
    【详解】
    解:(1)如图所示,△A1B1C1为所求做的三角形;
    (2)如图所示,△A2B2O为所求做的三角形;
    (3)∵A2坐标为(3,1),A3坐标为(4,﹣4),
    ∴A2A3所在直线的解析式为:y=﹣5x+16,
    令y=0,则x=,
    ∴P点的坐标(,0).

    考点:平移变换;旋转变换;轴对称-最短路线问题.
    21、(1)BC=BD+CE,(2);(3).
    【解析】
    (1)证明△ADB≌△EAC,根据全等三角形的性质得到BD=AC,EC=AB,即可得到BC、BD、CE之间的数量关系;
    (2)过D作DE⊥AB,交BA的延长线于E,证明△ABC≌△DEA,得到DE=AB=2,AE=BC=4,Rt△BDE中,BE=6,根据勾股定理即可得到BD的长;
    (3)过D作DE⊥BC于E,作DF⊥AB于F,证明△CED≌△AFD,根据全等三角形的性质得到CE=AF,ED=DF,设AF=x,DF=y,根据CB=4,AB=2,列出方程组,求出
    的值,根据勾股定理即可求出BD的长.
    【详解】
    解:(1)观察猜想
    结论: BC=BD+CE,理由是:
    如图①,∵∠B=90°,∠DAE=90°,
    ∴∠D+∠DAB=∠DAB+∠EAC=90°,
    ∴∠D=∠EAC,
    ∵∠B=∠C=90°,AD=AE,
    ∴△ADB≌△EAC,
    ∴BD=AC,EC=AB,
    ∴BC=AB+AC=BD+CE;
    (2)问题解决
    如图②,过D作DE⊥AB,交BA的延长线于E,

    由(1)同理得:△ABC≌△DEA,
    ∴DE=AB=2,AE=BC=4,
    Rt△BDE中,BE=6,
    由勾股定理得:
    (3)拓展延伸
    如图③,过D作DE⊥BC于E,作DF⊥AB于F,
    同理得:△CED≌△AFD,
    ∴CE=AF,ED=DF,
    设AF=x,DF=y,
    则,解得:
    ∴BF=2+1=3,DF=3,
    由勾股定理得:

    【点睛】
    考查全等三角形的判定与性质,勾股定理,二元一次方程组的应用,熟练掌握全等三角形的判定与性质是解题的关键.
    22、(1)见解析;(2)w=2x+9200,方案见解析;(3)0

    相关试卷

    四川省巴中学市恩阳区五校2021-2022学年中考数学猜题卷含解析:

    这是一份四川省巴中学市恩阳区五校2021-2022学年中考数学猜题卷含解析,共27页。试卷主要包含了如果将直线l1等内容,欢迎下载使用。

    2022年四川省巴中学市恩阳区中考冲刺卷数学试题含解析:

    这是一份2022年四川省巴中学市恩阳区中考冲刺卷数学试题含解析,共17页。试卷主要包含了的倒数的绝对值是,如图图形中,是中心对称图形的是等内容,欢迎下载使用。

    2022届衡水市滏阳中学中考数学考前最后一卷含解析:

    这是一份2022届衡水市滏阳中学中考数学考前最后一卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,定义运算,下列运算正确的是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map