|试卷下载
终身会员
搜索
    上传资料 赚现金
    2021-2022学年江苏省南京市溧水区达标名校中考数学模拟精编试卷含解析
    立即下载
    加入资料篮
    2021-2022学年江苏省南京市溧水区达标名校中考数学模拟精编试卷含解析01
    2021-2022学年江苏省南京市溧水区达标名校中考数学模拟精编试卷含解析02
    2021-2022学年江苏省南京市溧水区达标名校中考数学模拟精编试卷含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年江苏省南京市溧水区达标名校中考数学模拟精编试卷含解析

    展开
    这是一份2021-2022学年江苏省南京市溧水区达标名校中考数学模拟精编试卷含解析,共24页。试卷主要包含了尺规作图要求,-sin60°的倒数为等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,线段AB两个端点的坐标分别为A(4,4),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C和D的坐标分别为(  )

    A.(2,2),(3,2) B.(2,4),(3,1)
    C.(2,2),(3,1) D.(3,1),(2,2)
    2.如图,已知双曲线经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C.若点A的坐标为(,4),则△AOC的面积为

    A.12 B.9 C.6 D.4
    3.已知y关于x的函数图象如图所示,则当y<0时,自变量x的取值范围是(  )

    A.x<0 B.﹣1<x<1或x>2 C.x>﹣1 D.x<﹣1或1<x<2
    4.尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;
    Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.
    如图是按上述要求排乱顺序的尺规作图:

    则正确的配对是(  )
    A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣Ⅲ B.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣Ⅰ
    C.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣Ⅰ D.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ
    5.下列四个数表示在数轴上,它们对应的点中,离原点最远的是(  )
    A.﹣2 B.﹣1 C.0 D.1
    6.夏新同学上午卖废品收入13元,记为+13元,下午买旧书支出9元,记为(  )元.
    A.+4 B.﹣9 C.﹣4 D.+9
    7.如图,在平面直角坐标系中,⊙P的圆心坐标是(3,a)(a>3),半径为3,函数y=x的图象被⊙P截得的弦AB的长为4,则a的值是(  )

    A.4 B.3+ C.3 D.
    8.-sin60°的倒数为( )
    A.-2 B. C.- D.-
    9.如图所示是放置在正方形网格中的一个 ,则的值为( )

    A. B. C. D.
    10.已知一组数据1、2、3、x、5,它们的平均数是3,则这一组数据的方差为(  )
    A.1 B.2 C.3 D.4
    二、填空题(共7小题,每小题3分,满分21分)
    11.在△ABC中,点D在边BC上,BD=2CD,,,那么= .
    12.如图,在△ABC中,∠A=70°,∠B=50°,点D,E分别为AB,AC上的点,沿DE折叠,使点A落在BC边上点F处,若△EFC为直角三角形,则∠BDF的度数为______.

    13.如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁从外币A处到达内壁B处的最短距离为_______.

    14.如图,在菱形ABCD中,AB=BD.点E、F分别在AB、AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF.其中正确的结论有_____.(填序号)

    15.如图,以点为圆心的两个同心圆中,大圆的弦是小圆的切线,点是切点,则劣弧AB 的长为 .(结果保留)

    16.小青在八年级上学期的数学成绩如下表所示.

    平时测验
    期中考试
    期末考试
    成绩
    86
    90
    81
    如果学期总评成绩根据如图所示的权重计算,小青该学期的总评成绩是_____分.

    17.如图,在菱形ABCD中,DE⊥AB于点E,cosA=,BE=4,则tan∠DBE的值是_____.

    三、解答题(共7小题,满分69分)
    18.(10分)学习了正多边形之后,小马同学发现利用对称、旋转等方法可以计算等分正多边形面积的方案.
    (1)请聪明的你将下面图①、图②、图③的等边三角形分别割成2个、3个、4个全等三角形;
    (2)如图④,等边△ABC边长AB=4,点O为它的外心,点M、N分别为边AB、BC上的动点(不与端点重合),且∠MON=120°,若四边形BMON的面积为s,它的周长记为l,求最小值;
    (3)如图⑤,等边△ABC的边长AB=4,点P为边CA延长线上一点,点Q为边AB延长线上一点,点D为BC边中点,且∠PDQ=120°,若PA=x,请用含x的代数式表示△BDQ的面积S△BDQ.

    19.(5分)解分式方程:.
    20.(8分)已知AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AG交CD于K.
    (1)如图1,求证:KE=GE;
    (2)如图2,连接CABG,若∠FGB=∠ACH,求证:CA∥FE;
    (3)如图3,在(2)的条件下,连接CG交AB于点N,若sinE=,AK=,求CN的长.

    21.(10分)如图,⊙O中,AB是⊙O的直径,G为弦AE的中点,连接OG并延长交⊙O于点D,连接BD交AE于点F,延长AE至点C,使得FC=BC,连接BC.
    (1)求证:BC是⊙O的切线;
    (2)⊙O的半径为5,tanA=,求FD的长.

    22.(10分)抛物线y=ax2+bx+3(a≠0)经过点A(﹣1,0),B(,0),且与y轴相交于点C.
    (1)求这条抛物线的表达式;
    (2)求∠ACB的度数;
    (3)点D是抛物线上的一动点,是否存在点D,使得tan∠DCB=tan∠ACO.若存在,请求出点D的坐标,若不存在,说明理由.

    23.(12分)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°.求∠DAC的度数.

    24.(14分)先化简,再求值:,其中.



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、C
    【解析】
    直接利用位似图形的性质得出对应点坐标乘以得出即可.
    【详解】
    解:∵线段AB两个端点的坐标分别为A(4,4),B(6,2),
    以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,
    ∴端点的坐标为:(2,2),(3,1).
    故选C.
    【点睛】
    本题考查位似变换;坐标与图形性质,数形结合思想解题是本题的解题关键.
    2、B
    【解析】
    ∵点,是中点
    ∴点坐标
    ∵在双曲线上,代入可得

    ∵点在直角边上,而直线边与轴垂直
    ∴点的横坐标为-6
    又∵点在双曲线
    ∴点坐标为

    从而,故选B
    3、B
    【解析】
    y<0时,即x轴下方的部分,
    ∴自变量x的取值范围分两个部分是−12.
    故选B.
    4、D
    【解析】
    【分析】分别利用过直线外一点作这条直线的垂线作法以及线段垂直平分线的作法和过直线上一点作这条直线的垂线、角平分线的作法分别得出符合题意的答案.
    【详解】Ⅰ、过直线外一点作这条直线的垂线,观察可知图②符合;
    Ⅱ、作线段的垂直平分线,观察可知图③符合;
    Ⅲ、过直线上一点作这条直线的垂线,观察可知图④符合;
    Ⅳ、作角的平分线,观察可知图①符合,
    所以正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ,
    故选D.
    【点睛】本题主要考查了基本作图,正确掌握基本作图方法是解题关键.
    5、A
    【解析】
    由于要求四个数的点中距离原点最远的点,所以求这四个点对应的实数绝对值即可求解.
    【详解】
    ∵|-1|=1,|-1|=1,
    ∴|-1|>|-1|=1>0,
    ∴四个数表示在数轴上,它们对应的点中,离原点最远的是-1.
    故选A.
    【点睛】
    本题考查了实数与数轴的对应关系,以及估算无理数大小的能力,也利用了数形结合的思想.
    6、B
    【解析】
    收入和支出是两个相反的概念,故两个数字分别为正数和负数.
    【详解】
    收入13元记为+13元,那么支出9元记作-9元
    【点睛】
    本题主要考查了正负数的运用,熟练掌握正负数的概念是本题的关键.
    7、B
    【解析】
    试题解析:作PC⊥x轴于C,交AB于D,作PE⊥AB于E,连结PB,如图,

    ∵⊙P的圆心坐标是(3,a),
    ∴OC=3,PC=a,
    把x=3代入y=x得y=3,
    ∴D点坐标为(3,3),
    ∴CD=3,
    ∴△OCD为等腰直角三角形,
    ∴△PED也为等腰直角三角形,
    ∵PE⊥AB,
    ∴AE=BE=AB=×4=2,
    在Rt△PBE中,PB=3,
    ∴PE=,
    ∴PD=PE=,
    ∴a=3+.
    故选B.
    考点:1.垂径定理;2.一次函数图象上点的坐标特征;3.勾股定理.
    8、D
    【解析】
    分析:根据乘积为1的两个数互为倒数,求出它的倒数即可.
    详解:

    的倒数是.
    故选D.
    点睛:考查特殊角的三角函数和倒数的定义,熟记特殊角的三角函数值是解题的关键.
    9、D
    【解析】
    首先过点A向CB引垂线,与CB交于D,表示出BD、AD的长,根据正切的计算公式可算出答案.
    【详解】
    解:过点A向CB引垂线,与CB交于D,

    △ABD是直角三角形,
    ∵BD=4,AD=2,
    ∴tan∠ABC=
    故选:D.
    【点睛】
    此题主要考查了锐角三角函数的定义,关键是掌握正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.
    10、B
    【解析】
    先由平均数是3可得x的值,再结合方差公式计算.
    【详解】
    ∵数据1、2、3、x、5的平均数是3,
    ∴=3,
    解得:x=4,
    则数据为1、2、3、4、5,
    ∴方差为×[(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2]=2,
    故选B.
    【点睛】
    本题主要考查算术平均数和方差,解题的关键是熟练掌握平均数和方差的定义.

    二、填空题(共7小题,每小题3分,满分21分)
    11、
    【解析】
    首先利用平行四边形法则,求得的值,再由BD=2CD,求得的值,即可求得的值.
    【详解】
    ∵,,
    ∴=-=-,
    ∵BD=2CD,
    ∴==,
    ∴=+==.

    故答案为.
    12、110°或50°.
    【解析】
    由内角和定理得出∠C=60°,根据翻折变换的性质知∠DFE=∠A=70°,再分∠EFC=90°和∠FEC=90°两种情况,先求出∠DFC度数,继而由∠BDF=∠DFC﹣∠B可得答案.
    【详解】
    ∵△ABC中,∠A=70°、∠B=50°,∴∠C=180°﹣∠A﹣∠B=60°,由翻折性质知∠DFE=∠A=70°,分两种情况讨论:
    ①当∠EFC=90°时,∠DFC=∠DFE+∠EFC=160°,则∠BDF=∠DFC﹣∠B=110°;
    ②当∠FEC=90°时,∠EFC=180°﹣∠FEC﹣∠C=30°,∴∠DFC=∠DFE+∠EFC=100°,∠BDF=∠DFC﹣∠B=50°;
    综上:∠BDF的度数为110°或50°.
    故答案为110°或50°.
    【点睛】
    本题考查的是图形翻折变换的性质及三角形内角和定理,熟知折叠的性质、三角形的内角和定理、三角形外角性质是解答此题的关键.
    13、20 cm.
    【解析】
    将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.
    【详解】
    解:如答图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离.
    根据勾股定理,得(cm).

    故答案为:20cm.
    【点睛】
    本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.
    14、①②③
    【解析】
    (1)由已知条件易得∠A=∠BDF=60°,结合BD=AB=AD,AE=DF,即可证得△AED≌△DFB,从而说明结论①正确;(2)由已知条件可证点B、C、D、G四点共圆,从而可得∠CDN=∠CBM,如图,过点C作CM⊥BF于点M,过点C作CN⊥ED于点N,结合CB=CD即可证得△CBM≌△CDN,由此可得S四边形BCDG=S四边形CMGN=2S△CGN,在Rt△CGN中,由∠CGN=∠DBC=60°,∠CNG=90°可得GN=CG,CN=CG,由此即可求得S△CGN=CG2,从而可得结论②是正确的;(3)过点F作FK∥AB交DE于点K,由此可得△DFK∽△DAE,△GFK∽△GBE,结合AF=2DF和相似三角形的性质即可证得结论④成立.
    【详解】
    (1)∵四边形ABCD是菱形,BD=AB,
    ∴AB=BD=BC=DC=DA,
    ∴△ABD和△CBD都是等边三角形,
    ∴∠A=∠BDF=60°,
    又∵AE=DF,
    ∴△AED≌△DFB,即结论①正确;
    (2)∵△AED≌△DFB,△ABD和△DBC是等边三角形,
    ∴∠ADE=∠DBF,∠DBC=∠CDB=∠BDA=60°,
    ∴∠GBC+∠CDG=∠DBF+∠DBC+∠CDB+∠GDB=∠DBC+∠CDB+∠GDB+∠ADE=∠DBC+∠CDB+∠BDA=180°,
    ∴点B、C、D、G四点共圆,
    ∴∠CDN=∠CBM,
    如下图,过点C作CM⊥BF于点M,过点C作CN⊥ED于点N,
    ∴∠CDN=∠CBM=90°,
    又∵CB=CD,
    ∴△CBM≌△CDN,
    ∴S四边形BCDG=S四边形CMGN=2S△CGN,
    ∵在Rt△CGN中,∠CGN=∠DBC=60°,∠CNG=90°
    ∴GN=CG,CN=CG,
    ∴S△CGN=CG2,
    ∴S四边形BCDG=2S△CGN,=CG2,即结论②是正确的;

    (3)如下图,过点F作FK∥AB交DE于点K,
    ∴△DFK∽△DAE,△GFK∽△GBE,
    ∴,,
    ∵AF=2DF,
    ∴,
    ∵AB=AD,AE=DF,AF=2DF,
    ∴BE=2AE,
    ∴,
    ∴BG=6FG,即结论③成立.

    综上所述,本题中正确的结论是:
    故答案为①②③
    点睛:本题是一道涉及菱形、相似三角形、全等三角形和含30°角的直角三角形等多种几何图形的判定与性质的题,题目难度较大,熟悉所涉及图形的性质和判定方法,作出如图所示的辅助线是正确解答本题的关键.
    15、8π.
    【解析】
    试题分析: 因为AB为切线,P为切点,

    劣弧AB所对圆心角

    考点: 勾股定理;垂径定理;弧长公式.
    16、84.2
    【解析】
    小青该学期的总评成绩为:86×10%+90×30%+81×60%=84.2(分),故答案为: 84.2.
    17、1.
    【解析】
    求出AD=AB,设AD=AB=5x,AE=3x,则5x﹣3x=4,求出x,得出AD=10,AE=6,在Rt△ADE中,由勾股定理求出DE=8,在Rt△BDE中得出代入求出即可,
    【详解】
    解:∵四边形ABCD是菱形,
    ∴AD=AB,
    ∵cosA=,BE=4,DE⊥AB,
    ∴设AD=AB=5x,AE=3x,
    则5x﹣3x=4,
    x=1,
    即AD=10,AE=6,
    在Rt△ADE中,由勾股定理得:
    在Rt△BDE中,
    故答案为:1.
    【点睛】
    本题考查了菱形的性质,勾股定理,解直角三角形的应用,关键是求出DE的长.

    三、解答题(共7小题,满分69分)
    18、(1)详见解析;(2)2+2;(3)S△BDQx+.
    【解析】
    (1)根据要求利用全等三角形的判定和性质画出图形即可.
    (2)如图④中,作OE⊥AB于E,OF⊥BC于F,连接OB.证明△OEM≌△OFN(ASA),推出EM=FN,ON=OM,S△EOM=S△NOF,推出S四边形BMON=S四边形BEOF=定值,证明Rt△OBE≌Rt△OBF(HL),推出BM+BN=BE+EM+BF﹣FN=2BE=定值,推出欲求最小值,只要求出l的最小值,因为l=BM+BN+ON+OM=定值+ON+OM所以欲求最小值,只要求出ON+OM的最小值,因为OM=ON,根据垂线段最短可知,当OM与OE重合时,OM定值最小,由此即可解决问题.
    (3)如图⑤中,连接AD,作DE⊥AB于E,DF⊥AC于F.证明△PDF≌△QDE(ASA),即可解决问题.
    【详解】
    解:(1)如图1,作一边上的中线可分割成2个全等三角形,
    如图2,连接外心和各顶点的线段可分割成3个全等三角形,
    如图3,连接各边的中点可分割成4个全等三角形,

    (2)如图④中,作OE⊥AB于E,OF⊥BC于F,连接OB.

    ∵△ABC是等边三角形,O是外心,
    ∴OB平分∠ABC,∠ABC=60°∵OE⊥AB,OF⊥BC,
    ∴OE=OF,
    ∵∠OEB=∠OFB=90°,
    ∴∠EOF+∠EBF=180°,
    ∴∠EOF=∠NOM=120°,
    ∴∠EOM=∠FON,
    ∴△OEM≌△OFN(ASA),
    ∴EM=FN,ON=OM,S△EOM=S△NOF,
    ∴S四边形BMON=S四边形BEOF=定值,
    ∵OB=OB,OE=OF,∠OEB=∠OFB=90°,
    ∴Rt△OBE≌Rt△OBF(HL),
    ∴BE=BF,
    ∴BM+BN=BE+EM+BF﹣FN=2BE=定值,
    ∴欲求最小值,只要求出l的最小值,
    ∵l=BM+BN+ON+OM=定值+ON+OM,
    欲求最小值,只要求出ON+OM的最小值,
    ∵OM=ON,根据垂线段最短可知,当OM与OE重合时,OM定值最小,
    此时定值最小,s=×2×=,l=2+2++=4+,
    ∴的最小值==2+2.
    (3)如图⑤中,连接AD,作DE⊥AB于E,DF⊥AC于F.

    ∵△ABC是等边三角形,BD=DC,
    ∴AD平分∠BAC,
    ∵DE⊥AB,DF⊥AC,
    ∴DE=DF,
    ∵∠DEA=∠DEQ=∠AFD=90°,
    ∴∠EAF+∠EDF=180°,
    ∵∠EAF=60°,
    ∴∠EDF=∠PDQ=120°,
    ∴∠PDF=∠QDE,
    ∴△PDF≌△QDE(ASA),
    ∴PF=EQ,
    在Rt△DCF中,∵DC=2,∠C=60°,∠DFC=90°,
    ∴CF=CD=1,DF=,
    同法可得:BE=1,DE=DF=,
    ∵AF=AC﹣CF=4﹣1=3,PA=x,
    ∴PF=EQ=3+x,
    ∴BQ=EQ﹣BE=2+x,
    ∴S△BDQ=•BQ•DE=×(2+x)×=x+.
    【点睛】
    本题主要考查多边形的综合题,主要涉及的知识点:全等三角形的判定和性质、多边形内角和、角平分线的性质、等量代换、三角形的面积等,牢记并熟练运用这些知识点是解此类综合题的关键。
    19、.
    【解析】
    试题分析:方程最简公分母为,方程两边同乘将分式方程转化为整式方程求解,要注意检验.
    试题解析:方程两边同乘,得:,整理解得:,经检验:是原方程的解.
    考点:解分式方程.
    20、(1)证明见解析;(2)△EAD是等腰三角形.证明见解析;(3).
    【解析】
    试题分析:
    (1)连接OG,则由已知易得∠OGE=∠AHK=90°,由OG=OA可得∠AGO=∠OAG,从而可得∠KGE=∠AKH=∠EKG,这样即可得到KE=GE;
    (2)设∠FGB=α,由AB是直径可得∠AGB=90°,从而可得∠KGE=90°-α,结合GE=KE可得∠EKG=90°-α,这样在△GKE中可得∠E=2α,由∠FGB=∠ACH可得∠ACH=2α,这样可得∠E=∠ACH,由此即可得到CA∥EF;
    (3)如下图2,作NP⊥AC于P,
    由(2)可知∠ACH=∠E,由此可得sinE=sin∠ACH=,设AH=3a,可得AC=5a,CH=4a,则tan∠CAH=,由(2)中结论易得∠CAK=∠EGK=∠EKG=∠AKC,从而可得CK=AC=5a,由此可得HK=a,tan∠AKH=,AK=a,结合AK=可得a=1,则AC=5;在四边形BGKH中,由∠BHK=∠BKG=90°,可得∠ABG+∠HKG=180°,结合∠AKH+∠GKG=180°,∠ACG=∠ABG可得∠ACG=∠AKH,
    在Rt△APN中,由tan∠CAH=,可设PN=12b,AP=9b,由tan∠ACG=tan∠AKH=3可得CP=4b,由此可得AC=AP+CP==5,则可得b=,由此即可在Rt△CPN中由勾股定理解出CN的长.
    试题解析:
    (1)如图1,连接OG.

    ∵EF切⊙O于G,
    ∴OG⊥EF,
    ∴∠AGO+∠AGE=90°,
    ∵CD⊥AB于H,
    ∴∠AHD=90°,
    ∴∠OAG=∠AKH=90°,
    ∵OA=OG,
    ∴∠AGO=∠OAG,
    ∴∠AGE=∠AKH,
    ∵∠EKG=∠AKH,
    ∴∠EKG=∠AGE,
    ∴KE=GE.
    (2)设∠FGB=α,
    ∵AB是直径,
    ∴∠AGB=90°,
    ∴∠AGE=∠EKG=90°﹣α,
    ∴∠E=180°﹣∠AGE﹣∠EKG=2α,
    ∵∠FGB=∠ACH,
    ∴∠ACH=2α,
    ∴∠ACH=∠E,
    ∴CA∥FE.
    (3)作NP⊥AC于P.
    ∵∠ACH=∠E,
    ∴sin∠E=sin∠ACH=,设AH=3a,AC=5a,
    则CH=,tan∠CAH=,
    ∵CA∥FE,
    ∴∠CAK=∠AGE,
    ∵∠AGE=∠AKH,
    ∴∠CAK=∠AKH,
    ∴AC=CK=5a,HK=CK﹣CH=4a,tan∠AKH==3,AK=,
    ∵AK=,
    ∴,
    ∴a=1.AC=5,
    ∵∠BHD=∠AGB=90°,
    ∴∠BHD+∠AGB=180°,
    在四边形BGKH中,∠BHD+∠HKG+∠AGB+∠ABG=360°,
    ∴∠ABG+∠HKG=180°,
    ∵∠AKH+∠HKG=180°,
    ∴∠AKH=∠ABG,
    ∵∠ACN=∠ABG,
    ∴∠AKH=∠ACN,
    ∴tan∠AKH=tan∠ACN=3,
    ∵NP⊥AC于P,
    ∴∠APN=∠CPN=90°,
    在Rt△APN中,tan∠CAH=,设PN=12b,则AP=9b,
    在Rt△CPN中,tan∠ACN==3,
    ∴CP=4b,
    ∴AC=AP+CP=13b,
    ∵AC=5,
    ∴13b=5,
    ∴b=,
    ∴CN===.

    21、(1)证明见解析(2)
    【解析】
    (1)由点G是AE的中点,根据垂径定理可知OD⊥AE,由等腰三角形的性质可得∠CBF=∠DFG,∠D=∠OBD,从而∠OBD+∠CBF=90°,从而可证结论;
    (2)连接AD,解Rt△OAG可求出OG=3,AG=4,进而可求出DG的长,再证明△DAG∽△FDG,由相似三角形的性质求出FG的长,再由勾股定理即可求出FD的长.
    【详解】
    (1)∵点G是AE的中点,
    ∴OD⊥AE,
    ∵FC=BC,
    ∴∠CBF=∠CFB,
    ∵∠CFB=∠DFG,
    ∴∠CBF=∠DFG
    ∵OB=OD,
    ∴∠D=∠OBD,
    ∵∠D+∠DFG=90°,
    ∴∠OBD+∠CBF=90°
    即∠ABC=90°
    ∵OB是⊙O的半径,
    ∴BC是⊙O的切线;
    (2)连接AD,

    ∵OA=5,tanA=,
    ∴OG=3,AG=4,
    ∴DG=OD﹣OG=2,
    ∵AB是⊙O的直径,
    ∴∠ADF=90°,
    ∵∠DAG+∠ADG=90°,∠ADG+∠FDG=90°
    ∴∠DAG=∠FDG,
    ∴△DAG∽△FDG,
    ∴,
    ∴DG2=AG•FG,
    ∴4=4FG,
    ∴FG=1
    ∴由勾股定理可知:FD=.
    【点睛】
    本题考查了垂径定理,等腰三角形的性质,切线的判定,解直角三角形,相似三角形的判定与性质,勾股定理等知识,求出∠CBF=∠DFG,∠D=∠OBD是解(1)的关键,证明证明△DAG∽△FDG是解(2)的关键.
    22、(1)y=﹣2x2+x+3;(2)∠ACB=45°;(3)D点坐标为(1,2)或(4,﹣25).
    【解析】
    (1)设交点式y=a(x+1)(x﹣),展开得到﹣a=3,然后求出a即可得到抛物线解析式;
    (2)作AE⊥BC于E,如图1,先确定C(0,3),再分别计算出AC=,BC=,接着利用面积法计算出AE=,然后根据三角函数的定义求出∠ACE即可;
    (3)作BH⊥CD于H,如图2,设H(m,n),证明Rt△BCH∽Rt△ACO,利用相似计算出BH=,CH=,再根据两点间的距离公式得到(m﹣)2+n2=()2,m2+(n﹣3)2=()2,接着通过解方程组得到H(,﹣)或(),然后求出直线CD的解析式,与二次函数联立成方程组,解方程组即可.
    【详解】
    (1)设抛物线解析式为y=a(x+1)(x﹣),即y=ax2﹣ax﹣a,∴﹣a=3,解得:a=﹣2,∴抛物线解析式为y=﹣2x2+x+3;
    (2)作AE⊥BC于E,如图1,当x=0时,y=﹣2x2+x+3=3,则C(0,3),而A(﹣1,0),B(,0),∴AC==,BC==
    AE•BC=OC•AB,∴AE==.
    在Rt△ACE中,sin∠ACE===,∴∠ACE=45°,即∠ACB=45°;
    (3)作BH⊥CD于H,如图2,设H(m,n).
    ∵tan∠DCB=tan∠ACO,∴∠HCB=∠ACO,∴Rt△BCH∽Rt△ACO,∴==,即==,∴BH=,CH=,∴(m﹣)2+n2=()2=,①
    m2+(n﹣3)2=()2=,②
    ②﹣①得m=2n+,③,把③代入①得:(2n+﹣)2+n2=,整理得:80n2﹣48n﹣9=0,解得:n1=﹣,n2=.
    当n=﹣时,m=2n+=,此时H(,﹣),易得直线CD的解析式为y=﹣7x+3,解方程组得:或,此时D点坐标为(4,﹣25);
    当n=时,m=2n+=,此时H(),易得直线CD的解析式为y=﹣x+3,解方程组得:或,此时D点坐标为(1,2).
    综上所述:D点坐标为(1,2)或(4,﹣25).

    【点睛】
    本题是二次函数综合题.熟练掌握二次函数图象上点的坐标特征、二次函数的性质和相似三角形的判定的性质;会利用待定系数法求函数解析式,把求两函数交点问题转化为解方程组的问题;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.
    23、∠DAC=20°.
    【解析】
    根据角平分线的定义可得∠ABC=2∠ABE,再根据直角三角形两锐角互余求出∠BAD,然后根据∠DAC=∠BAC﹣∠BAD计算即可得解.
    【详解】
    ∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°.
    ∵AD是BC边上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.
    【点睛】
    本题考查了三角形的内角和定理,角平分线的定义,准确识图理清图中各角度之间的关系是解题的关键.
    24、,4.
    【解析】
    先括号内通分,然后计算除法,最后代入化简即可.
    【详解】
    原式= .
    当时,原式=4.
    【点睛】
    此题考查分式的化简求值,解题关键在于掌握运算法则.

    相关试卷

    江苏省无锡市澄西片达标名校2021-2022学年中考数学模拟精编试卷含解析: 这是一份江苏省无锡市澄西片达标名校2021-2022学年中考数学模拟精编试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,不等式组的解集是等内容,欢迎下载使用。

    江苏省泰兴市实验达标名校2021-2022学年中考数学模拟精编试卷含解析: 这是一份江苏省泰兴市实验达标名校2021-2022学年中考数学模拟精编试卷含解析,共18页。试卷主要包含了计算的结果是,4的平方根是等内容,欢迎下载使用。

    江苏省南京市鼓楼区重点达标名校2021-2022学年中考数学模拟精编试卷含解析: 这是一份江苏省南京市鼓楼区重点达标名校2021-2022学年中考数学模拟精编试卷含解析,共21页。试卷主要包含了下列说法中,正确的是等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map