


2021-2022学年江苏省南京鼓楼实验中学中考数学模拟预测题含解析
展开
这是一份2021-2022学年江苏省南京鼓楼实验中学中考数学模拟预测题含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。
2021-2022中考数学模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。 一、选择题(共10小题,每小题3分,共30分)1.对于点A(x1,y1),B(x2,y2),定义一种运算:.例如,A(-5,4),B(2,﹣3),.若互不重合的四点C,D,E,F,满足,则C,D,E,F四点【 】A.在同一条直线上 B.在同一条抛物线上C.在同一反比例函数图象上 D.是同一个正方形的四个顶点2.估计﹣2的值应该在( )A.﹣1﹣0之间 B.0﹣1之间 C.1﹣2之间 D.2﹣3之间3.-2的倒数是( )A.-2 B. C. D.24.如图,在平面直角坐标系中Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A′的坐标为( )A.(﹣4,﹣2﹣) B.(﹣4,﹣2+) C.(﹣2,﹣2+) D.(﹣2,﹣2﹣)5.若矩形的长和宽是方程x2-7x+12=0的两根,则矩形的对角线长度为( )A.5 B.7 C.8 D.106.如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是( )A.2 B. C. D.27.如图所示是放置在正方形网格中的一个 ,则的值为( )A. B. C. D.8.对于非零的两个实数、,规定,若,则的值为( )A. B. C. D.9.将一圆形纸片对折后再对折,得到下图,然后沿着图中的虚线剪开,得到两部分,其中一部分展开后的平面图形是( )A. B. C. D.10.如图,直线y=x+3交x轴于A点,将一块等腰直角三角形纸板的直角顶点置于原点O,另两个顶点M、N恰落在直线y=x+3上,若N点在第二象限内,则tan∠AON的值为( )A. B. C. D.二、填空题(本大题共6个小题,每小题3分,共18分)11.2的平方根是_________.12.如图,点 A 是反比例函数 y=﹣(x<0)图象上的点,分别过点 A 向横轴、纵轴作垂线段,与坐标轴恰好围成一个正方形,再以正方形的一组对边为直径作两个半圆,其余部分涂上阴影,则阴影部分的面积为______.13.已知二次函数的图像与轴交点的横坐标是和,且,则________.14.分式有意义时,x的取值范围是_____.15.菱形的两条对角线长分别是方程的两实根,则菱形的面积为______.16.如图,在矩形ABCD中,顺次连接矩形四边的中点得到四边形EFGH.若AB=8,AD=6,则四边形EFGH的周长等于__________.三、解答题(共8题,共72分)17.(8分)如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A:自带白开水;B:瓶装矿泉水;C:碳酸饮料;D:非碳酸饮料.根据统计结果绘制如下两个统计图(如图),根据统计图提供的信息,解答下列问题:(1)请你补全条形统计图;(2)在扇形统计图中,求“碳酸饮料”所在的扇形的圆心角的度数;(3)为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学担任生活监督员,请用列表法或树状图法求出恰好抽到一男一女的概率.18.(8分)在矩形ABCD中,两条对角线相交于O,∠AOB=60°,AB=2,求AD的长.19.(8分)制作一种产品,需先将材料加热达到60℃后,再进行操作,设该材料温度为y(℃)从加热开始计算的时间为x(min).据了解,当该材料加热时,温度y与时间x成一次函数关系:停止加热进行操作时,温度y与时间x成反比例关系(如图).已知在操作加热前的温度为15℃,加热5分钟后温度达到60℃.分别求出将材料加热和停止加热进行操作时,y与x的函数关系式;根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?20.(8分)某调查小组采用简单随机抽样方法,对某市部分中小学生一天中阳光体育运动时间进行了抽样调查,并把所得数据整理后绘制成如下的统计图:(1)该调查小组抽取的样本容量是多少?(2)求样本学生中阳光体育运动时间为1.5小时的人数,并补全占频数分布直方图;(3)请估计该市中小学生一天中阳光体育运动的平均时间.21.(8分)如图,AC是的直径,点B是内一点,且,连结BO并延长线交于点D,过点C作的切线CE,且BC平分.求证:;若的直径长8,,求BE的长.22.(10分)某高校学生会在某天午餐后,随机调查了部分同学就餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有名;(2)补全条形统计图;(3)计算在扇形统计图中剩大量饭菜所对应扇形圆心角的度数;(4)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供200人用一餐.据此估算,该校20000名学生一餐浪费的食物可供多少人食用一餐?23.(12分)先化简,再求值:,其中x=﹣1.24.某中学为了考察九年级学生的中考体育测试成绩(满分30分),随机抽查了40名学生的成绩(单位:分),得到如下的统计图①和图②.请根据相关信息,解答下列问题:(1)图中m的值为_______________.(2)求这40个样本数据的平均数、众数和中位数:(3)根据样本数据,估计该中学九年级2000名学生中,体育测试成绩得满分的大约有多少名学生。
参考答案 一、选择题(共10小题,每小题3分,共30分)1、A。【解析】∵对于点A(x1,y1),B(x2,y2),,∴如果设C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6),那么,。又∵,∴。∴。令,则C(x3,y3),D(x4,y4),E(x5,y5),F(x6,y6)都在直线上,∴互不重合的四点C,D,E,F在同一条直线上。故选A。2、A【解析】
直接利用已知无理数得出的取值范围,进而得出答案.【详解】解:∵1<<2,∴1-2<﹣2<2-2,∴-1<﹣2<0即-2在-1和0之间.故选A.【点睛】此题主要考查了估算无理数大小,正确得出的取值范围是解题关键.3、B【解析】
根据倒数的定义求解.【详解】-2的倒数是-故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握4、D【解析】解:作AD⊥BC,并作出把Rt△ABC先绕B点顺时针旋转180°后所得△A1BC1,如图所示.∵AC=2,∠ABC=10°,∴BC=4,∴AB=2,∴AD===,∴BD===1.∵点B坐标为(1,0),∴A点的坐标为(4,).∵BD=1,∴BD1=1,∴D1坐标为(﹣2,0),∴A1坐标为(﹣2,﹣).∵再向下平移2个单位,∴A′的坐标为(﹣2,﹣﹣2).故选D.点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键.5、A【解析】解:设矩形的长和宽分别为a、b,则a+b=7,ab=12,所以矩形的对角线长====1.故选A.6、C【解析】
由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.【详解】解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE=CP=1,∴PE=,∴OP=2PE=2,∵PD⊥OA,点M是OP的中点,∴DM=OP=.故选C.考点:角平分线的性质;含30度角的直角三角形;直角三角形斜边上的中线;勾股定理.7、D【解析】
首先过点A向CB引垂线,与CB交于D,表示出BD、AD的长,根据正切的计算公式可算出答案.【详解】解:过点A向CB引垂线,与CB交于D,△ABD是直角三角形, ∵BD=4,AD=2,∴tan∠ABC= 故选:D.【点睛】此题主要考查了锐角三角函数的定义,关键是掌握正切:锐角A的对边a与邻边b的比叫做∠A的正切,记作tanA.8、D【解析】试题分析:因为规定,所以,所以x=,经检验x=是分式方程的解,故选D.考点:1.新运算;2.分式方程.9、C【解析】
严格按照图中的方法亲自动手操作一下,即可很直观地呈现出来.【详解】根据题意知,剪去的纸片一定是一个四边形,且对角线互相垂直.故选C.【点睛】本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.10、A【解析】
过O作OC⊥AB于C,过N作ND⊥OA于D,设N的坐标是(x,x+3),得出DN=x+3,OD=-x,求出OA=4,OB=3,由勾股定理求出AB=5,由三角形的面积公式得出AO×OB=AB×OC,代入求出OC,根据sin45°=,求出ON,在Rt△NDO中,由勾股定理得出(x+3)2+(-x)2=()2,求出N的坐标,得出ND、OD,代入tan∠AON=求出即可.【详解】过O作OC⊥AB于C,过N作ND⊥OA于D,∵N在直线y=x+3上,∴设N的坐标是(x,x+3),则DN=x+3,OD=-x,y=x+3,当x=0时,y=3,当y=0时,x=-4,∴A(-4,0),B(0,3),即OA=4,OB=3,在△AOB中,由勾股定理得:AB=5,∵在△AOB中,由三角形的面积公式得:AO×OB=AB×OC,∴3×4=5OC,OC=,∵在Rt△NOM中,OM=ON,∠MON=90°,∴∠MNO=45°,∴sin45°=,∴ON=,在Rt△NDO中,由勾股定理得:ND2+DO2=ON2,即(x+3)2+(-x)2=()2,解得:x1=-,x2=,∵N在第二象限,∴x只能是-,x+3=,即ND=,OD=,tan∠AON=.故选A.【点睛】本题考查了一次函数图象上点的坐标特征,勾股定理,三角形的面积,解直角三角形等知识点的运用,主要考查学生运用这些性质进行计算的能力,题目比较典型,综合性比较强. 二、填空题(本大题共6个小题,每小题3分,共18分)11、【解析】
直接根据平方根的定义求解即可(需注意一个正数有两个平方根).【详解】解:2的平方根是故答案为.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12、4﹣π【解析】
由题意可以假设A(-m,m),则-m2=-4,求出点A坐标即可解决问题.【详解】由题意可以假设A(-m,m),则-m2=-4,∴m=≠±2,∴m=2,∴S阴=S正方形-S圆=4-π,故答案为4-π.【点睛】本题考查反比例函数图象上的点的特征、正方形的性质、圆的面积公式等知识,解题的关键是灵活运用所学知识解决问题13、-12【解析】
令y=0,得方程,和即为方程的两根,利用根与系数的关系求得和,利用完全平方式并结合即可求得k的值.【详解】解:∵二次函数的图像与轴交点的横坐标是和,令y=0,得方程,则和即为方程的两根,∴,,∵,两边平方得:,∴,即,解得:,故答案为:.【点睛】本题考查了一元二次方程与二次函数的关系,函数与x轴的交点的横坐标就是方程的根,解题的关键是利用根与系数的关系,整体代入求解.14、x<1【解析】
要使代数式有意义时,必有1﹣x>2,可解得x的范围.【详解】根据题意得:1﹣x>2,解得:x<1.故答案为x<1.【点睛】考查了分式和二次根式有意义的条件.二次根式有意义,被开方数为非负数,分式有意义,分母不为2.15、2【解析】
解:x2﹣14x+41=0,则有(x-6)(x-1)=0解得:x=6或x=1.所以菱形的面积为:(6×1)÷2=2.菱形的面积为:2.故答案为2.点睛:本题考查菱形的性质.菱形的对角线互相垂直,以及对角线互相垂直的四边形的面积的特点和根与系数的关系.16、20.【解析】分析:连接AC,BD,根据勾股定理求出BD,根据三角形中位线定理,菱形的判定定理得到四边形EHGF为菱形,根据菱形的性质计算.解答:连接AC,BD在Rt△ABD中,BD= ∵四边形ABCD是矩形,∴AC=BD=10, ∵E、H分别是AB、AD的中点,∴EH∥BD,EF=BD=5,同理,FG∥BD,FG=BD=5,GH∥AC,GH=AC=5, ∴四边形EHGF为菱形,∴四边形EFGH的周长=5×4=20,故答案为20.点睛:本题考查了中点四边形,掌握三角形的中位线定理、菱形的判定定理是解答本题的关键. 三、解答题(共8题,共72分)17、(1)详见解析;(2)72°;(3)【解析】
(1)由B类型的人数及其百分比求得总人数,在用总人数减去其余各组人数得出C类型人数,即可补全条形图;(2)用360°乘以C类别人数所占比例即可得;(3)用列表法或画树状图法列出所有等可能结果,从中确定恰好抽到一男一女的结果数,根据概率公式求解可得.【详解】解:(1)∵ 抽 查的总人数为:(人)∴ 类人数为:(人)补全条形统计图如下:(2)“碳酸饮料”所在的扇形的圆心角度数为:(3)设男生为、,女生为、、,画树状图得:∴恰好抽到一男一女的情况共有12 种,分别是∴ (恰好抽到一男一女).【点睛】本题考查的是条形统计图和扇形统计图的综合运用以及概率的求法,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18、【解析】试题分析:由矩形的对角线相等且互相平分可得:OA=OB=OD,再由∠AOB=60°可得△AOB是等边三角形,从而得到OB=OA=2,则BD=4,最后在Rt△ABD中,由勾股定理可解得AD的长.试题解析:∵四边形ABCD是矩形,∴OA=OB=OD,∠BAD=90°,∵∠AOB=60°,∴△AOB是等边三角形,∴OB=OA=2, ∴BD=2OB=4,在Rt△ABD中∴AD===.19、(1);(2)20分钟.【解析】
(1)材料加热时,设y=ax+15(a≠0),由题意得60=5a+15,解得a=9,则材料加热时,y与x的函数关系式为y=9x+15(0≤x≤5).停止加热时,设y=(k≠0),由题意得60=,解得k=300,则停止加热进行操作时y与x的函数关系式为y=(x≥5);(2)把y=15代入y=,得x=20,因此从开始加热到停止操作,共经历了20分钟.答:从开始加热到停止操作,共经历了20分钟.20、(4)500;(4)440,作图见试题解析;(4)4.4.【解析】
(4)利用0.5小时的人数除以其所占比例,即可求出样本容量;(4)利用样本容量乘以4.5小时的百分数,即可求出4.5小时的人数,画图即可;(4)计算出该市中小学生一天中阳光体育运动的平均时间即可.【详解】解:(4)由题意可得:0.5小时的人数为:400人,所占比例为:40%,∴本次调查共抽样了500名学生; (4)4.5小时的人数为:500×4.4=440(人),如图所示:(4)根据题意得:=4.4,即该市中小学生一天中阳光体育运动的平均时间为4.4小时.考点:4.频数(率)分布直方图;4.扇形统计图;4.加权平均数.21、(1)证明见解析;(2).【解析】
先利用等腰三角形的性质得到,利用切线的性质得,则CE∥BD,然后证明得到BE=CE;作于F,如图,在Rt△OBC中利用正弦定义得到BC=5,所以,然后在Rt△BEF中通过解直角三角形可求出BE的长.【详解】证明:,,,是的切线,,,.平分,,,;解:作于F,如图, 的直径长8,.,,,,在中,设,则,,即,解得,.故答案为(1)证明见解析;(2) .【点睛】本题考查切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系简记作:见切点,连半径,见垂直也考查了解直角三角形.22、(1)1000 (2)200 (3)54° (4)4000人【解析】试题分析:(1)根据没有剩饭的人数是400人,所占的百分比是40%,据此即可求得调查的总人数;(2)利用(1)中求得结果减去其它组的人数即可求得剩少量饭的人数,从而补全直方图;(3)利用360°乘以对应的比例即可求解;(4)利用20000除以调查的总人数,然后乘以200即可求解.试题解析:(1)被调查的同学的人数是400÷40%=1000(名);(2)剩少量的人数是1000-400-250-150=200(名),;(3)在扇形统计图中剩大量饭菜所对应扇形圆心角的度数是:360°×=54°;(4)×200=4000(人).答:校20000名学生一餐浪费的食物可供4000人食用一餐.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23、.【解析】试题分析:试题解析:原式===当x=时,原式=.考点:分式的化简求值.24、(1)25;(2)平均数:28.15,所以众数是28,中位数为28,(3)体育测试成绩得满分的大约有300名学生.【解析】
(1)根据统计图中的数据可以求得m的值;
(2)根据条形统计图中的数据可以计算出平均数,得到众数和中位数;
(3)根据样本中得满分所占的百分比,可以求得该中学九年级2000名学生中,体育测试成绩得满分的大约有多少名学生.【详解】解:(1),∴m的值为25;(2)平均数:,因为在这组样本数据中,28出现了12次,出现的次数最多,所以众数是28;因为将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是28,所以这组样本数据的中位数为28;(3)×2000=300(名)∴估计该中学九年级2000名学生中,体育测试成绩得满分的大约有300名学生.【点睛】本题考查条形统计图、用样本估计总体、加权平均数、中位数、众数,解答本题的关键是明确它们各自的计算方法.
相关试卷
这是一份江苏省南京市金陵中学2022年中考数学模拟预测题含解析,共19页。试卷主要包含了下列运算结果正确的是,6的绝对值是,tan45º的值为,下列判断正确的是等内容,欢迎下载使用。
这是一份江苏省南京鼓楼区29中学集团校2021-2022学年中考数学模拟预测试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是,下列实数中,有理数是等内容,欢迎下载使用。
这是一份2022届【中考猜想】江苏省南京市中考数学模拟预测题含解析,共19页。试卷主要包含了考生要认真填写考场号和座位序号,计算等内容,欢迎下载使用。