


2022届【中考猜想】江苏省南京市中考数学模拟预测题含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.估算的运算结果应在( )
A.2到3之间 B.3到4之间
C.4到5之间 D.5到6之间
2.三角形的两边长分别为3和6,第三边的长是方程x2﹣6x+8=0的一个根,则这个三角形的周长是( )
A.9 B.11 C.13 D.11或13
3.sin60°的值为( )
A. B. C. D.
4.如图,A,B是半径为1的⊙O上两点,且OA⊥OB.点P从A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束. 设运动时间为x,弦BP的长度为y,那么下面图象中可能表示y与x的函数关系的是
A.① B.④ C.②或④ D.①或③
5.计算(﹣ab2)3的结果是( )
A.﹣3ab2 B.a3b6 C.﹣a3b5 D.﹣a3b6
6.如图,共有12个大不相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分.现从其余的小正方形中任取一个涂上阴影,则能构成这个正方体的表面展开图的概率是( )
A. B. C. D.
7.如图,在△ABC中,点D在AB边上,DE∥BC,与边AC交于点E,连结BE,记△ADE,△BCE的面积分别为S1,S2,( )
A.若2AD>AB,则3S1>2S2 B.若2AD>AB,则3S1<2S2
C.若2AD<AB,则3S1>2S2 D.若2AD<AB,则3S1<2S2
8.如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6米,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是()
A.米2 B.米2 C.米2 D.米2
9.如图,点A,B,C在⊙O上,∠ACB=30°,⊙O的半径为6,则的长等于( )
A.π B.2π C.3π D.4π
10.如图,某同学不小心把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带( )
A.带③去 B.带②去 C.带①去 D.带①②去
二、填空题(共7小题,每小题3分,满分21分)
11.已知扇形AOB的半径OA=4,圆心角为90°,则扇形AOB的面积为_________.
12.若顺次连接四边形ABCD四边中点所得的四边形是矩形,则原四边形的对角线AC、BD所满足的条件是_____.
13.如图,▱ABCD中,M、N是BD的三等分点,连接CM并延长交AB于点E,连接EN并延长交CD于点F,以下结论:
①E为AB的中点;
②FC=4DF;
③S△ECF=;
④当CE⊥BD时,△DFN是等腰三角形.
其中一定正确的是_____.
14.如图,将边长为3的正六边形铁丝框ABCDEF变形为以点A为圆心,AB为半径的扇形(忽略铁丝的粗细).则所得扇形AFB(阴影部分)的面积为_____.
15.若二次函数y=-x2-4x+k的最大值是9,则k=______.
16.比较大小:_____.(填“<“,“=“,“>“)
17.有一组数据:2,3,5,5,x,它们的平均数是10,则这组数据的众数是 .
三、解答题(共7小题,满分69分)
18.(10分)如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D(4,).
(1)求抛物线的表达式.
(2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同时点Q由点B出发,沿BC边以1cm/s的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2).
①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;
②当S取时,在抛物线上是否存在点R,使得以点P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.
(3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.
19.(5分)如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°.求证:△ACB≌△BDA;若∠ABC=36°,求∠CAO度数.
20.(8分)庐阳春风体育运动品商店从厂家购进甲,乙两种T恤共400件,其每件的售价与进货量(件)之间的关系及成本如下表所示:
T恤
每件的售价/元
每件的成本/元
甲
50
乙
60
(1)当甲种T恤进货250件时,求两种T恤全部售完的利润是多少元;若所有的T恤都能售完,求该商店获得的总利润(元)与乙种T恤的进货量(件)之间的函数关系式;在(2)的条件下,已知两种T恤进货量都不低于100件,且所进的T恤全部售完,该商店如何安排进货才能使获得的利润最大?
21.(10分)徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高铁B前往北京.已知A车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?
22.(10分)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.
23.(12分)如图,某反比例函数图象的一支经过点A(2,3)和点B(点B在点A的右侧),作BC⊥y轴,垂足为点C,连结AB,AC.求该反比例函数的解析式;若△ABC的面积为6,求直线AB的表达式.
24.(14分)某超市对今年“元旦”期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:
该超市“元旦”期间共销售 个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是 度;补全条形统计图;如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
解:= ,∵2<<3,∴在5到6之间.
故选D.
【点睛】
此题主要考查了估算无理数的大小,正确进行计算是解题关键.
2、C
【解析】
试题分析:先求出方程x2-6x+8=0的解,再根据三角形的三边关系求解即可.
解方程x2-6x+8=0得x=2或x=4
当x=2时,三边长为2、3、6,而2+3<6,此时无法构成三角形
当x=4时,三边长为4、3、6,此时可以构成三角形,周长=4+3+6=13
故选C.
考点:解一元二次方程,三角形的三边关系
点评:解题的关键是熟记三角形的三边关系:任两边之和大于第三边,任两边之差小于第三边.
3、B
【解析】
解:sin60°=.故选B.
4、D
【解析】
分两种情形讨论当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,由此即可解决问题.
【详解】
解:当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①.
故选D.
5、D
【解析】
根据积的乘方与幂的乘方计算可得.
【详解】
解:(﹣ab2)3=﹣a3b6,
故选D.
【点睛】
本题主要考查幂的乘方与积的乘方,解题的关键是掌握积的乘方与幂的乘方的运算
法则.
6、D
【解析】
由正方体表面展开图的形状可知,此正方体还缺一个上盖,故应在图中四块相连的空白正方形中选一块,再根据概率公式解答即可.
【详解】
因为共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,所以剩下7个小正方形.
在其余的7个小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的小正方形有4个,因此先从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是.
故选D.
【点睛】
本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比,掌握概率公式是本题的关键.
7、D
【解析】
根据题意判定△ADE∽△ABC,由相似三角形的面积之比等于相似比的平方解答.
【详解】
∵如图,在△ABC中,DE∥BC,
∴△ADE∽△ABC,
∴,
∴若1AD>AB,即时,,
此时3S1>S1+S△BDE,而S1+S△BDE<1S1.但是不能确定3S1与1S1的大小,
故选项A不符合题意,选项B不符合题意.
若1AD<AB,即时,,
此时3S1<S1+S△BDE<1S1,
故选项C不符合题意,选项D符合题意.
故选D.
【点睛】
考查了相似三角形的判定与性质,三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.
8、C
【解析】
连接OD,
∵弧AB的半径OA长是6米,C是OA的中点,∴OC=OA=×6=1.
∵∠AOB=90°,CD∥OB,∴CD⊥OA.
在Rt△OCD中,∵OD=6,OC=1,∴.
又∵,∴∠DOC=60°.
∴(米2).
故选C.
9、B
【解析】
根据圆周角得出∠AOB=60°,进而利用弧长公式解答即可.
【详解】
解:∵∠ACB=30°,
∴∠AOB=60°,
∴的长==2π,
故选B.
【点睛】
此题考查弧长的计算,关键是根据圆周角得出∠AOB=60°.
10、A
【解析】
第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.
【详解】
③中含原三角形的两角及夹边,根据ASA公理,能够唯一确定三角形.其它两个不行.
故选:A.
【点睛】
此题主要考查全等三角形的运用,熟练掌握,即可解题.
二、填空题(共7小题,每小题3分,满分21分)
11、4π
【解析】
根据扇形的面积公式可得:扇形AOB的面积为,故答案为4π.
12、AC⊥BD
【解析】
根据题意画出相应的图形,如图所示,由四边形EFGH为矩形,根据矩形的四个角为直角得到∠FEH=90°,又EF为三角形ABD的中位线,根据中位线定理得到EF与DB平行,根据两直线平行,同旁内角互补得到∠EMO=90°,同理根据三角形中位线定理得到EH与AC平行,再根据两直线平行,同旁内角互补得到∠AOD=90°,根据垂直定义得到AC与BD垂直.
【详解】
∵四边形EFGH是矩形,
∴∠FEH=90°,
又∵点E、F、分别是AD、AB、各边的中点,
∴EF是三角形ABD的中位线,
∴EF∥BD,
∴∠FEH=∠OMH=90°,
又∵点E、H分别是AD、CD各边的中点,
∴EH是三角形ACD的中位线,
∴EH∥AC,
∴∠OMH=∠COB=90°,
即AC⊥BD.
故答案为:AC⊥BD.
【点睛】
此题考查了矩形的性质,三角形的中位线定理,以及平行线的性质.根据题意画出图形并熟练掌握矩形性质及三角形中位线定理是解题关键.
13、①③④
【解析】
由M、N是BD的三等分点,得到DN=NM=BM,根据平行四边形的性质得到AB=CD,AB∥CD,推出△BEM∽△CDM,根据相似三角形的性质得到,于是得到BE=AB,故①正确;根据相似三角形的性质得到=,求得DF=BE,于是得到DF=AB=CD,求得CF=3DF,故②错误;根据已知条件得到S△BEM=S△EMN=S△CBE,求得=,于是得到S△ECF=,故③正确;根据线段垂直平分线的性质得到EB=EN,根据等腰三角形的性质得到∠ENB=∠EBN,等量代换得到∠CDN=∠DNF,求得△DFN是等腰三角形,故④正确.
【详解】
解:∵M、N是BD的三等分点,
∴DN=NM=BM,
∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴△BEM∽△CDM,
∴,
∴BE=CD,
∴BE=AB,故①正确;
∵AB∥CD,
∴△DFN∽△BEN,
∴=,
∴DF=BE,
∴DF=AB=CD,
∴CF=3DF,故②错误;
∵BM=MN,CM=2EM,
∴△BEM=S△EMN=S△CBE,
∵BE=CD,CF=CD,
∴=,
∴S△EFC=S△CBE=S△MNE,
∴S△ECF=,故③正确;
∵BM=NM,EM⊥BD,
∴EB=EN,
∴∠ENB=∠EBN,
∵CD∥AB,
∴∠ABN=∠CDB,
∵∠DNF=∠BNE,
∴∠CDN=∠DNF,
∴△DFN是等腰三角形,故④正确;
故答案为①③④.
【点睛】
考点:相似三角形的判定与性质;全等三角形的判定与性质;平行四边形的性质.
14、1
【解析】
解:∵正六边形ABCDEF的边长为3,
∴AB=BC=CD=DE=EF=FA=3,
∴弧BAF的长=3×6﹣3﹣3═12,
∴扇形AFB(阴影部分)的面积=×12×3=1.
故答案为1.
【点睛】
本题考查正多边形和圆;扇形面积的计算.
15、5
【解析】y=−(x−2)2+4+k,
∵二次函数y=−x2−4x+k的最大值是9,
∴4+k=9,解得:k=5,
故答案为:5.
16、<
【解析】
先比较它们的平方,进而可比较与的大小.
【详解】
()2=80,()2=100,
∵80<100,
∴<.
故答案为:<.
【点睛】
本题考查了实数的大小比较,带二次根号的实数,在比较它们的大小时,通常先比较它们的平方的大小.
17、1
【解析】
根据平均数为10求出x的值,再由众数的定义可得出答案.
解:由题意得,(2+3+1+1+x)=10,
解得:x=31,
这组数据中1出现的次数最多,则这组数据的众数为1.
故答案为1.
三、解答题(共7小题,满分69分)
18、(1)抛物线的解析式为:;
(2)①S与运动时间t之间的函数关系式是S=5t2﹣8t+4,t的取值范围是0≤t≤1;
②存在.R点的坐标是(3,﹣);
(3)M的坐标为(1,﹣).
【解析】
试题分析:(1)设抛物线的解析式是y=ax2+bx+c,求出A、B、D的坐标代入即可;
(2)①由勾股定理即可求出;②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形,求出P、Q的坐标,再分为两种种情况:A、B、C即可根据平行四边形的性质求出R的坐标;
(3)A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M,求出直线BD的解析式,把抛物线的对称轴x=1代入即可求出M的坐标.
试题解析:(1)设抛物线的解析式是y=ax2+bx+c,
∵正方形的边长2,
∴B的坐标(2,﹣2)A点的坐标是(0,﹣2),
把A(0,﹣2),B(2,﹣2),D(4,﹣)代入得:,
解得a=,b=﹣,c=﹣2,
∴抛物线的解析式为:,
答:抛物线的解析式为:;
(2)①由图象知:PB=2﹣2t,BQ=t,
∴S=PQ2=PB2+BQ2,
=(2﹣2t)2+t2,
即S=5t2﹣8t+4(0≤t≤1).
答:S与运动时间t之间的函数关系式是S=5t2﹣8t+4,t的取值范围是0≤t≤1;
②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形.
∵S=5t2﹣8t+4(0≤t≤1),
∴当S=时,5t2﹣8t+4=,得20t2﹣32t+11=0,
解得t=,t=(不合题意,舍去),
此时点P的坐标为(1,﹣2),Q点的坐标为(2,﹣),
若R点存在,分情况讨论:
(i)假设R在BQ的右边,如图所示,这时QR=PB,RQ∥PB,
则R的横坐标为3,R的纵坐标为﹣,
即R(3,﹣),
代入,左右两边相等,
∴这时存在R(3,﹣)满足题意;
(ii)假设R在QB的左边时,这时PR=QB,PR∥QB,
则R(1,﹣)代入,,
左右不相等,∴R不在抛物线上.(1分)
综上所述,存点一点R(3,﹣)满足题意.
答:存在,R点的坐标是(3,﹣);
(3)如图,M′B=M′A,
∵A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M,
理由是:∵MA=MB,若M不为L与DB的交点,则三点B、M、D构成三角形,
∴|MB|﹣|MD|<|DB|,
即M到D、A的距离之差为|DB|时,差值最大,
设直线BD的解析式是y=kx+b,把B、D的坐标代入得:,
解得:k=,b=﹣,
∴y=x﹣,
抛物线的对称轴是x=1,
把x=1代入得:y=﹣
∴M的坐标为(1,﹣);
答:M的坐标为(1,﹣).
考点:二次函数综合题.
19、(1)证明见解析(2)18°
【解析】
(1)根据HL证明Rt△ABC≌Rt△BAD即可;(2)利用全等三角形的性质及直角三角形两锐角互余的性质求解即可.
【详解】
(1)证明:∵∠D=∠C=90°,
∴△ABC和△BAD都是Rt△,
在Rt△ABC和Rt△BAD中,
,
∴Rt△ABC≌Rt△BAD(HL);
(2)∵Rt△ABC≌Rt△BAD,
∴∠ABC=∠BAD=36°,
∵∠C=90°,
∴∠BAC=54°,
∴∠CAO=∠CAB﹣∠BAD=18°.
【点睛】
本题考查了全等三角形的判定与性质,判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,“HL”.
20、(1)10750;(2);(3)最大利润为10750元.
【解析】
(1)根据“利润=销售总额-总成本”结合两种T恤的销售数量代入相关代数式进行求解即可;
(2)根据题意,分两种情况进行讨论:①0
【详解】
(1)∵甲种T恤进货250件
∴乙种T恤进货量为:400-250=150件
故由题意得,;
(2)①
②;
故.
(3)由题意,,①,,
②,
综上,最大利润为10750元.
【点睛】
本题考查了二次函数的应用,找出题中的等量关系以及根据题意确定二次函数的解析式是解题的关键.
21、A车行驶的时间为3.1小时,B车行驶的时间为2.1小时.
【解析】
设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,根据题意得:﹣=80,解分式方程即可,注意验根.
【详解】
解:设B车行驶的时间为t小时,则A车行驶的时间为1.4t小时,
根据题意得:﹣=80,
解得:t=2.1,
经检验,t=2.1是原分式方程的解,且符合题意,
∴1.4t=3.1.
答:A车行驶的时间为3.1小时,B车行驶的时间为2.1小时.
【点睛】
本题考核知识点:列分式方程解应用题.解题关键点:根据题意找出数量关系,列出方程.
22、详见解析.
【解析】
试题分析:利用SSS证明△ABC≌△DEF,根据全等三角形的性质可得∠B=∠DEF,再由平行线的判定即可得AB∥DE.
试题解析:证明:由BE=CF可得BC=EF,
又AB=DE,AC=DF,
故△ABC≌△DEF(SSS),
则∠B=∠DEF,
∴AB∥DE.
考点:全等三角形的判定与性质.
23、(1)y;(2)yx+1.
【解析】
(1)把A的坐标代入反比例函数的解析式即可求得;
(2)作AD⊥BC于D,则D(2,b),即可利用a表示出AD的长,然后利用三角形的面积公式即可得到一个关于b的方程,求得b的值,进而求得a的值,根据待定系数法,可得答案.
【详解】
(1)由题意得:k=xy=2×3=6,
∴反比例函数的解析式为y;
(2)设B点坐标为(a,b),如图,作AD⊥BC于D,则D(2,b),
∵反比例函数y的图象经过点B(a,b),
∴b,
∴AD=3,
∴S△ABCBC•ADa(3)=6,
解得a=6,
∴b1,
∴B(6,1),
设AB的解析式为y=kx+b,将A(2,3),B(6,1)代入函数解析式,得
,解得:,
所以直线AB的解析式为yx+1.
【点睛】
本题考查了利用待定系数法求反比例函数以及一次函数解析式,熟练掌握待定系数法以及正确表示出BC,AD的长是解题的关键.
24、(1)2400,60;(2)见解析;(3)500
【解析】
整体分析:
(1)由C品牌1200个占总数的50%可得鸡蛋的数量,用A品牌占总数的百分比乘以360°即可;(2)计算出B品牌的数量;(3)用B品牌与总数的比乘以1500.
解:(1)共销售绿色鸡蛋:1200÷50%=2400个,
A品牌所占的圆心角:×360°=60°;
故答案为2400,60;
(2)B品牌鸡蛋的数量为:2400﹣400﹣1200=800个,
补全统计图如图:
(3)分店销售的B种品牌的绿色鸡蛋为:×1500=500个.
2024年江苏省南京市中考数学模拟押题预测试卷: 这是一份2024年江苏省南京市中考数学模拟押题预测试卷,文件包含2024年江苏省南京市中考数学模拟押题预测仿真试卷docx、参考答案docx等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。
江苏省南京市六校2022年中考数学模拟预测题含解析: 这是一份江苏省南京市六校2022年中考数学模拟预测题含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,若M,已知,,且,则的值为等内容,欢迎下载使用。
江苏省南京市金陵中学2022年中考数学模拟预测题含解析: 这是一份江苏省南京市金陵中学2022年中考数学模拟预测题含解析,共19页。试卷主要包含了下列运算结果正确的是,6的绝对值是,tan45º的值为,下列判断正确的是等内容,欢迎下载使用。