2021-2022学年湖南省张家市中考试题猜想数学试卷含解析
展开这是一份2021-2022学年湖南省张家市中考试题猜想数学试卷含解析,共19页。试卷主要包含了下列运算正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图所示,△ABC为等腰直角三角形,∠ACB=90°,AC=BC=2,正方形DEFG边长也为2,且AC与DE在同一直线上,△ABC从C点与D点重合开始,沿直线DE向右平移,直到点A与点E重合为止,设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是( )
A. B.
C. D.
2.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为( )
A.56° B.62° C.68° D.78°
3.化简的结果为( )
A.﹣1 B.1 C. D.
4.某种圆形合金板材的成本y(元)与它的面积(cm2)成正比,设半径为xcm,当x=3时,y=18,那么当半径为6cm时,成本为( )
A.18元 B.36元 C.54元 D.72元
5.下列运算正确的是( )
A.a3•a2=a6 B.(x3)3=x6 C.x5+x5=x10 D.﹣a8÷a4=﹣a4
6.如图,直立于地面上的电线杆 AB,在阳光下落在水平地面和坡面上的影子分别是
BC、CD,测得 BC=6 米,CD=4 米,∠BCD=150°,在 D 处测得电线杆顶端 A 的仰 角为 30°,则电线杆 AB 的高度为( )
A. B. C. D.
7.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于( )之间.
A.B与C B.C与D C.E与F D.A与B
8.如图,数轴上有三个点A、B、C,若点A、B表示的数互为相反数,则图中点C对应的数是( )
A.﹣2 B.0 C.1 D.4
9.对于实数x,我们规定表示不大于x的最大整数,例如,,,若,则x的取值可以是( )
A.40 B.45 C.51 D.56
10.宾馆有50间房供游客居住,当每间房每天定价为180元时,宾馆会住满;当每间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的每间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价比定价180元增加x元,则有( )
A.(x﹣20)(50﹣)=10890 B.x(50﹣)﹣50×20=10890
C.(180+x﹣20)(50﹣)=10890 D.(x+180)(50﹣)﹣50×20=10890
二、填空题(共7小题,每小题3分,满分21分)
11.如图,已知一次函数y=ax+b和反比例函数的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<的解集为 __________
12.若实数a、b在数轴上的位置如图所示,则代数式|b﹣a|+化简为_____.
13.如图,中,∠,,的面积为,为边上一动点(不与,重合),将和分别沿直线,翻折得到和,那么△的面积的最小值为____.
14.如图,在△ABC中,AB=5,AC=4,BC=3,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB、AC于点M、N;②分别以点M、N为圆心,以大于的长为半径作弧,两弧相交于点E;③作射线AE;④以同样的方法作射线BF,AE交BF于点O,连接OC,则OC=________.
15.大连市内与庄河两地之间的距离是160千米,若汽车以平均每小时80千米的速度从大连市内开往庄河,则汽车距庄河的路程y(千米)与行驶的时间x(小时)之间的函数关系式为_____.
16.有五张分别印有等边三角形、正方形、正五边形、矩形、正六边形图案的卡片(这些卡片除图案不同外,其余均相同).现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为_____.
17.如图,四边形ACDF是正方形,和都是直角,且点三点共线,,则阴影部分的面积是__________.
三、解答题(共7小题,满分69分)
18.(10分)如图,点A(m,m+1),B(m+1,2m-3)都在反比例函数的图象上.
(1)求m,k的值;
(2)如果M为x轴上一点,N为y轴上一点, 以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.
19.(5分)如图是小朋友荡秋千的侧面示意图,静止时秋千位于铅垂线BD上,转轴B到地面的距离BD=3m.小亮在荡秋千过程中,当秋千摆动到最高点A时,测得点A到BD的距离AC=2m,点A到地面的距离AE=1.8m;当他从A处摆动到A′处时,有A'B⊥AB.
(1)求A′到BD的距离;
(2)求A′到地面的距离.
20.(8分)现有两个纸箱,每个纸箱内各装有4个材质、大小都相同的乒乓球,其中一个纸箱内4个小球上分别写有1、2、3、4这4个数,另一个纸箱内4个小球上分别写有5、6、7、8这4个数,甲、乙两人商定了一个游戏,规则是:从这两个纸箱中各随机摸出一个小球,然后把两个小球上的数字相乘,若得到的积是2的倍数,则甲得1分,若得到积是3的倍数,则乙得2分.完成一次游戏后,将球分别放回各自的纸箱,摇匀后进行下一次游戏,最后得分高者胜出.。
(1)请你通过列表(或树状图)分别计算乘积是2的倍数和3的倍数的概率;
(2)你认为这个游戏公平吗?为什么?若你认为不公平,请你修改得分规则,使游戏对双方公平.
21.(10分)一天,小华和小夏玩掷骰子游戏,他们约定:他们用同一枚质地均匀的骰子各掷一次, 如果两次掷的骰子的点数相同则小华获胜:如果两次掷的骰子的点数的和是6则小夏获胜.
(1)请您列表或画树状图列举出所有可能出现的结果;
(2)请你判断这个游戏对他们是否公平并说明理由.
22.(10分)先化简,再求值:,其中,.
23.(12分)北京时间2019年3月10日0时28分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功将中星卫星发射升空,卫星进入预定轨道.如图,火星从地面处发射,当火箭达到点时,从位于地面雷达站处测得的距离是,仰角为;1秒后火箭到达点,测得的仰角为.(参考数据:sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02)求发射台与雷达站之间的距离;求这枚火箭从到的平均速度是多少(结果精确到0.01)?
24.(14分)为加快城乡对接,建设全域美丽乡村,某地区对A、B两地间的公路进行改建.如图,A、B两地之间有一座山,汽车原来从A地到B地需途径C地沿折线ACB行驶,现开通隧道后,汽车可直接沿直线AB行驶.已知BC=80千米,∠A=45°,∠B=30°.开通隧道前,汽车从A地到B地大约要走多少千米?开通隧道后,汽车从A地到B地大约可以少走多少千米?(结果精确到0.1千米)(参考数据:≈1.41,≈1.73)
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、A
【解析】
此题可分为两段求解,即C从D点运动到E点和A从D点运动到E点,列出面积随动点变化的函数关系式即可.
【详解】
解:设CD的长为与正方形DEFG重合部分图中阴影部分的面积为
当C从D点运动到E点时,即时,.
当A从D点运动到E点时,即时,,
与x之间的函数关系由函数关系式可看出A中的函数图象与所求的分段函数对应.
故选A.
【点睛】
本题考查的动点变化过程中面积的变化关系,重点是列出函数关系式,但需注意自变量的取值范围.
2、C
【解析】
分析:由点I是△ABC的内心知∠BAC=2∠IAC、∠ACB=2∠ICA,从而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圆内接四边形的外角等于内对角可得答案.
详解:∵点I是△ABC的内心,
∴∠BAC=2∠IAC、∠ACB=2∠ICA,
∵∠AIC=124°,
∴∠B=180°﹣(∠BAC+∠ACB)
=180°﹣2(∠IAC+∠ICA)
=180°﹣2(180°﹣∠AIC)
=68°,
又四边形ABCD内接于⊙O,
∴∠CDE=∠B=68°,
故选C.
点睛:本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质.
3、B
【解析】
先把分式进行通分,把异分母分式化为同分母分式,再把分子相加,即可求出答案.
【详解】
解:.
故选B.
4、D
【解析】
设y与x之间的函数关系式为y=kπx2,由待定系数法就可以求出解析式,再求出x=6时y的值即可得.
【详解】
解:根据题意设y=kπx2,
∵当x=3时,y=18,
∴18=kπ•9,
则k=,
∴y=kπx2=•π•x2=2x2,
当x=6时,y=2×36=72,
故选:D.
【点睛】
本题考查了二次函数的应用,解答时求出函数的解析式是关键.
5、D
【解析】
各项计算得到结果,即可作出判断.
【详解】
A、原式=a5,不符合题意;
B、原式=x9,不符合题意;
C、原式=2x5,不符合题意;
D、原式=-a4,符合题意,
故选D.
【点睛】
此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
6、B
【解析】
延长AD交BC的延长线于E,作DF⊥BE于F,
∵∠BCD=150°,
∴∠DCF=30°,又CD=4,
∴DF=2,CF= =2,
由题意得∠E=30°,
∴EF= ,
∴BE=BC+CF+EF=6+4,
∴AB=BE×tanE=(6+4)×=(2+4)米,
即电线杆的高度为(2+4)米.
点睛:本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.
7、A
【解析】
试题分析:在计算器上依次按键转化为算式为﹣=-1.414…;计算可得结果介于﹣2与﹣1之间.
故选A.
考点:1、计算器—数的开方;2、实数与数轴
8、C
【解析】
【分析】首先确定原点位置,进而可得C点对应的数.
【详解】∵点A、B表示的数互为相反数,AB=6
∴原点在线段AB的中点处,点B对应的数为3,点A对应的数为-3,
又∵BC=2,点C在点B的左边,
∴点C对应的数是1,
故选C.
【点睛】本题主要考查了数轴,关键是正确确定原点位置.
9、C
【解析】
解:根据定义,得
∴
解得:.
故选C.
10、C
【解析】
设房价比定价180元増加x元,根据利润=房价的净利润×入住的房同数可得.
【详解】
解:设房价比定价180元增加x元,
根据题意,得(180+x﹣20)(50﹣)=1.
故选:C.
【点睛】
此题考查一元二次方程的应用问题,主要在于找到等量关系求解.
二、填空题(共7小题,每小题3分,满分21分)
11、﹣2<x<0或x>1
【解析】
根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.
【详解】
观察函数图象,发现:当﹣2<x<0或x>1时,一次函数图象在反比例函数图象的下方,
∴不等式ax+b<的解集是﹣2<x<0或x>1.
【点睛】
本题主要考查一次函数图象与反比例函数图象,数形结合思想是关键.
12、2a﹣b.
【解析】
直接利用数轴上a,b的位置进而得出b﹣a<0,a>0,再化简得出答案.
【详解】
解:由数轴可得:
b﹣a<0,a>0,
则|b﹣a|+
=a﹣b+a
=2a﹣b.
故答案为2a﹣b.
【点睛】
此题主要考查了二次根式的性质与化简,正确得出各项符号是解题关键.
13、4.
【解析】
过E作EG⊥AF,交FA的延长线于G,由折叠可得∠EAG=30°,而当AD⊥BC时,AD最短,依据BC=7,△ABC的面积为14,即可得到当AD⊥BC时,AD=4=AE=AF,进而得到△AEF的面积最小值为:AF×EG=×4×2=4.
【详解】
解:如图,过E作EG⊥AF,交FA的延长线于G,
由折叠可得,AF=AE=AD,∠BAE=∠BAD,∠DAC=∠FAC,
∵∠BAC=75°,
∴∠EAF=150°,
∴∠EAG=30°,
∴EG=AE=AD,
当AD⊥BC时,AD最短,
∵BC=7,△ABC的面积为14,
∴当AD⊥BC时,
,
即:,
∴.
∴△AEF的面积最小值为:
AF×EG=×4×2=4,
故答案为:4.
【点睛】
本题主要考查了折叠问题,解题的关键是利用对应边和对应角相等.
14、.
【解析】
直接利用勾股定理的逆定理结合三角形内心的性质进而得出答案.
【详解】
过点O作OD⊥BC,OG⊥AC,垂足分别为D,G,
由题意可得:O是△ACB的内心,
∵AB=5,AC=4,BC=3,
∴BC2+AC2=AB2,
∴△ABC是直角三角形,
∴∠ACB=90°,
∴四边形OGCD是正方形,
∴DO=OG==1,
∴CO=.
故答案为.
【点睛】
此题主要考查了基本作图以及三角形的内心,正确得出OD的长是解题关键.
15、y=160﹣80x(0≤x≤2)
【解析】
根据汽车距庄河的路程y(千米)=原来两地的距离﹣汽车行驶的距离,解答即可.
【详解】
解:∵汽车的速度是平均每小时80千米,
∴它行驶x小时走过的路程是80x,
∴汽车距庄河的路程y=160﹣80x(0≤x≤2),故答案为:y=160﹣80x(0≤x≤2).
【点睛】
本题考查了根据实际问题确定一次函数的解析式,找到所求量的等量关系是解题的关键.
16、
【解析】
判断出即是中心对称,又是轴对称图形的个数,然后结合概率计算公式,计算,即可.
【详解】
解:等边三角形、正方形、正五边形、矩形、正六边形图案中既是中心对称图形,又是轴对称图形是:正方形、矩形、正六边形共3种,
故从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为:.
故答案为.
【点睛】
考查中心对称图形和轴对称图形的判定,考查概率计算公式,难度中等.
17、8
【解析】
【分析】证明△AEC≌△FBA,根据全等三角形对应边相等可得EC=AB=4,然后再利用三角形面积公式进行求解即可.
【详解】∵四边形ACDF是正方形,
∴AC=FA,∠CAF=90°,
∴∠CAE+∠FAB=90°,
∵∠CEA=90°,∴∠CAE+∠ACE=90°,
∴∠ACE=∠FAB,
又∵∠AEC=∠FBA=90°,
∴△AEC≌△FBA,
∴CE=AB=4,
∴S阴影==8,
故答案为8.
【点睛】本题考查了正方形的性质、全等三角形的判定与性质,三角形面积等,求出CE=AB是解题的关键.
三、解答题(共7小题,满分69分)
18、(1)m=3,k=12;(2)或
【解析】
【分析】(1)把A(m,m+1),B(m+3,m-1)代入反比例函数y=,得k=m(m+1)=(m+3)(m-1),再求解;(2)用待定系数法求一次函数解析式;(3)过点A作AM⊥x轴于点M,过点B作BN⊥y轴于点N,两线交于点P.根据平行四边形判定和勾股定理可求出M,N的坐标.
【详解】
解:(1)∵点A(m,m+1),B(m+3,m-1)都在反比例函数y=的图像上,
∴k=xy,
∴k=m(m+1)=(m+3)(m-1),
∴m2+m=m2+2m-3,解得m=3,
∴k=3×(3+1)=12.
(2)∵m=3,
∴A(3,4),B(6,2).
设直线AB的函数表达式为y=k′x+b(k′≠0),
则
解得
∴直线AB的函数表达式为y=-x+6.
(3)M(3,0),N(0,2)或M(-3,0),N(0,-2).
解答过程如下:过点A作AM⊥x轴于点M,过点B作BN⊥y轴于点N,两线交于点P.
∵由(1)知:A(3,4),B(6,2),
∴AP=PM=2,BP=PN=3,
∴四边形ANMB是平行四边形,此时M(3,0),N(0,2).当M′(-3,0),N′(0,-2)时,根据勾股定理能求出AM′=BN′,AB=M′N′,即四边形AM′N′B是平行四边形.故M(3,0),N(0,2)或M(-3,0),N(0,-2).
【点睛】本题考核知识点:反比例函数综合. 解题关键点:熟记反比例函数的性质.
19、(1)A'到BD的距离是1.2m;(2)A'到地面的距离是1m.
【解析】
(1)如图2,作A'F⊥BD,垂足为F.根据同角的余角相等证得∠2=∠3;再利用AAS证明△ACB≌△BFA',根据全等三角形的性质即可得A'F=BC,根据BC=BD﹣CD求得BC的长,即可得A'F的长,从而求得A'到BD的距离;(2)作A'H⊥DE,垂足为H,可证得A'H=FD,根据A'H=BD﹣BF求得A'H的长,从而求得A'到地面的距离.
【详解】
(1)如图2,作A'F⊥BD,垂足为F.
∵AC⊥BD,
∴∠ACB=∠A'FB=90°;
在Rt△A'FB中,∠1+∠3=90°;
又∵A'B⊥AB,∴∠1+∠2=90°,
∴∠2=∠3;
在△ACB和△BFA'中,
,
∴△ACB≌△BFA'(AAS);
∴A'F=BC,
∵AC∥DE且CD⊥AC,AE⊥DE,
∴CD=AE=1.8;
∴BC=BD﹣CD=3﹣1.8=1.2,
∴A'F=1.2,即A'到BD的距离是1.2m.
(2)由(1)知:△ACB≌△BFA',
∴BF=AC=2m,
作A'H⊥DE,垂足为H.
∵A'F∥DE,
∴A'H=FD,
∴A'H=BD﹣BF=3﹣2=1,即A'到地面的距离是1m.
【点睛】
本题考查了全等三角形的判定与性质的应用,作出辅助线,证明△ACB≌△BFA'是解决问题的关键.
20、(1)
(2)游戏不公平,修改得分规则为:把两个小球上的数字相乘,若得到的积是2的倍数,则甲得7分,若得到的积是3的倍数,则乙得12分
【解析】
试题分析:(1)列表如下:
共有16种情况,且每种情况出现的可能性相同,其中,乘积是2的倍数的有12种,乘积是3的倍数的有7种.
∴P(两数乘积是2的倍数)
P(两数乘积是3的倍数)
(2)游戏不公平,修改得分规则为:把两个小球上的数字相乘,若得到的积是2的倍数,则甲得7分,若得到的积是3的倍数,则乙得12分
考点:概率的计算
点评:题目难度不大,考查基本概率的计算,属于基础题。本题主要是第二问有点难度,对游戏规则的确定,需要一概率为基础。
21、(1)36(2)不公平
【解析】
(1)根据题意列表即可;
(2)根据根据表格可以求得得分情况,比较其大小,即可得出结论.
【详解】
(1)列表得:
(1,6)
(2,6)
(3,6)
(4,6)
(5,6)
(6,6)
(1,5)
(2,5)
(3,5)
(4,5)
(5,5)
(6,5)
(1,4)
(2,4)
(3,4)
(4,4)
(5,4)
(6,4)
(1,3)
(2,3)
(3,3)
(4,3)
(5,3)
(6,3)
(1,2)
(2,2)
(3,2)
(4,2)
(5,2)
(6,2)
(1,1)
(2,1)
(3,1)
(4,1)
(5,1)
(6,1)
∴一共有36种等可能的结果,
(2)这个游戏对他们不公平,
理由:由上表可知,所有可能的结果有36种,并且它们出现的可能性相等,
而P(两次掷的骰子的点数相同)
P(两次掷的骰子的点数的和是6)=
∴不公平.
【点睛】
本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等
就公平,否则就不公平.
22、9
【解析】
根据完全平方公式、平方差公式、单项式乘多项式可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题.
【详解】
当,时,
原式
【点睛】
本题考查整式的化简求值,解答本题的关键是明确整式化简求值的方法.
23、 (Ⅰ)发射台与雷达站之间的距离约为;(Ⅱ)这枚火箭从到的平均速度大约是.
【解析】
(Ⅰ)在Rt△ACD中,根据锐角三角函数的定义,利用∠ADC的余弦值解直角三角形即可;(Ⅱ)在Rt△BCD和Rt△ACD中,利用∠BDC的正切值求出BC的长,利用∠ADC的正弦值求出AC的长,进而可得AB的长,即可得答案.
【详解】
(Ⅰ)在中,,≈0.74,
∴.
答:发射台与雷达站之间的距离约为.
(Ⅱ)在中,,
∴.
∵在中,,
∴.
∴.
答:这枚火箭从到的平均速度大约是.
【点睛】
本题考查解直角三角形的应用,熟练掌握锐角三角函数的定义是解题关键.
24、(1)开通隧道前,汽车从A地到B地大约要走136.4千米;(2)汽车从A地到B地比原来少走的路程为27.2千米
【解析】
(1)过点C作AB的垂线CD,垂足为D,在直角△ACD中,解直角三角形求出CD,进而解答即可;
(2)在直角△CBD中,解直角三角形求出BD,再求出AD,进而求出汽车从A地到B地比原来少走多少路程.
【详解】
解:(1)过点C作AB的垂线CD,垂足为D,
∵AB⊥CD,sin30°=,BC=80千米,
∴CD=BC•sin30°=80×(千米),
AC=(千米),
AC+BC=80+40≈40×1.41+80=136.4(千米),
答:开通隧道前,汽车从A地到B地大约要走136.4千米;
(2)∵cos30°=,BC=80(千米),
∴BD=BC•cos30°=80×(千米),
∵tan45°=,CD=40(千米),
∴AD=(千米),
∴AB=AD+BD=40+40≈40+40×1.73=109.2(千米),
∴汽车从A地到B地比原来少走多少路程为:AC+BC﹣AB=136.4﹣109.2=27.2(千米).
答:汽车从A地到B地比原来少走的路程为27.2千米.
【点睛】
本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
相关试卷
这是一份湖南省衡阳市耒阳市2021-2022学年中考试题猜想数学试卷含解析,共23页。试卷主要包含了下列各数中比﹣1小的数是,-10-4的结果是等内容,欢迎下载使用。
这是一份2022年湖南省张家界五道水镇中学中考试题猜想数学试卷含解析,共21页。试卷主要包含了如果,那么代数式的值为,的相反数是等内容,欢迎下载使用。
这是一份2021-2022学年宁波市江东区中考试题猜想数学试卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁,若a+|a|=0,则等于,函数y=中自变量x的取值范围是等内容,欢迎下载使用。