搜索
    上传资料 赚现金
    英语朗读宝

    2021-2022学年宁波市江东区中考试题猜想数学试卷含解析

    2021-2022学年宁波市江东区中考试题猜想数学试卷含解析第1页
    2021-2022学年宁波市江东区中考试题猜想数学试卷含解析第2页
    2021-2022学年宁波市江东区中考试题猜想数学试卷含解析第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年宁波市江东区中考试题猜想数学试卷含解析

    展开

    这是一份2021-2022学年宁波市江东区中考试题猜想数学试卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁,若a+|a|=0,则等于,函数y=中自变量x的取值范围是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是(  )

    A.在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”
    B.从一副扑克牌中任意抽取一张,这张牌是“红色的”
    C.掷一枚质地均匀的硬币,落地时结果是“正面朝上”
    D.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6
    2.如图的几何体是由一个正方体切去一个小正方体形成的,它的主视图是(  )

    A. B. C. D.
    3.如图图形中,既是中心对称图形又是轴对称图形的是(  )
    A. B. C. D.
    4.点A(m﹣4,1﹣2m)在第四象限,则m的取值范围是 (  )
    A.m> B.m>4
    C.m<4 D.<m<4
    5.已知抛物线y=ax2+bx+c与x轴交于点A和点B,顶点为P,若△ABP组成的三角形恰为等腰直角三角形,则b2﹣4ac的值为(  )
    A.1 B.4 C.8 D.12
    6.如图,PA,PB分别与⊙O相切于A,B两点,若∠C=65°,则∠P的度数为(   )

    A.65° B.130° C.50° D.100°
    7.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字个数的统计结果如下表:
    班级
    参加人数
    平均数
    中位数
    方差

    55
    135
    149
    191

    55
    135
    151
    110
    某同学分析上表后得出如下结论:
    ①甲、乙两班学生的平均成绩相同;
    ②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);
    ③甲班成绩的波动比乙班大.
    上述结论中,正确的是(  )
    A.①② B.②③ C.①③ D.①②③
    8.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且−2≤x≤1时,y的最大值为9,则a的值为
    A.1或−2 B.−或
    C. D.1
    9.若a+|a|=0,则等于(  )
    A.2﹣2a B.2a﹣2 C.﹣2 D.2
    10.函数y=中自变量x的取值范围是( )
    A.x≥-1且x≠1 B.x≥-1 C.x≠1 D.-1≤x<1
    11.已知关于x的方程x2﹣4x+c+1=0有两个相等的实数根,则常数c的值为(   )
    A.﹣1 B.0 C.1 D.3
    12.两个同心圆中大圆的弦AB与小圆相切于点C,AB=8,则形成的圆环的面积是( )

    A.无法求出 B.8 C.8 D.16
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.计算:(π﹣3)0﹣2-1=_____.
    14.已知关于x的不等式组只有四个整数解,则实数a的取值范是______.
    15.已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表所示:
    x

    ﹣5
    ﹣4
    ﹣3
    ﹣2
    ﹣1

    y

    ﹣8
    ﹣3
    0
    1
    0

    当y<﹣3时,x的取值范围是_____.
    16.如图,已知抛物线与坐标轴分别交于A,B,C三点,在抛物线上找到一点D,使得∠DCB=∠ACO,则D点坐标为____________________.

    17.当时,直线与抛物线有交点,则a的取值范围是_______.
    18.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC=5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图2所示的“数学风车”,若△BCD的周长是30,则这个风车的外围周长是_____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,C是⊙O上一点,点P在直径AB的延长线上,⊙O的半径为3,PB=2,PC=1.
    (1)求证:PC是⊙O的切线.
    (2)求tan∠CAB的值.

    20.(6分)如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°.

    (1)OC的长为  ;
    (2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ=  ;
    (3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t(秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标.
    21.(6分)如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.
    (1)求证:BF=CD;
    (2)连接BE,若BE⊥AF,∠BFA=60°,BE=,求平行四边形ABCD的周长.

    22.(8分)如图,在△ABC中,以AB为直径的⊙O交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,且DH是⊙O的切线,连接DE交AB于点F.
    (1)求证:DC=DE;
    (2)若AE=1,,求⊙O的半径.

    23.(8分)如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).
    (1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;
    (2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;
    (3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.

    24.(10分)2017年10月31日,在广州举行的世界城市日全球主场活动开幕式上,住建部公布许昌成为“国家生态园林城市”在2018年植树节到来之际,许昌某中学购买了甲、乙两种树木用于绿化校园.若购买7棵甲种树和4棵乙种树需510元;购买3棵甲种树和5棵乙种树需350元.
    (1)求甲种树和乙种树的单价;
    (2)按学校规划,准备购买甲、乙两种树共200棵,且甲种树的数量不少于乙种树的数量的,请设计出最省钱的购买方案,并说明理由.
    25.(10分)如图,四边形ABCD是平行四边形,点E在BC上,点F在AD上,BE=DF,求证:AE=CF.

    26.(12分)如图,在平面直角坐标系中,已知OA=6厘米,OB=8厘米.点P从点B开始沿BA边向终点A以1厘米/秒的速度移动;点Q从点A开始沿AO边向终点O以1厘米/秒的速度移动.若P、Q同时出发运动时间为t(s).
    (1)t为何值时,△APQ与△AOB相似?
    (2)当 t为何值时,△APQ的面积为8cm2?

    27.(12分)计算:|﹣|+(π﹣2017)0﹣2sin30°+3﹣1.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.
    【详解】
    根据图中信息,某种结果出现的频率约为0.16,
    在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”的概率为≈0.67>0.16,故A选项不符合题意,
    从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为≈0.48>0.16,故B选项不符合题意,
    掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是=0.5>0.16,故C选项不符合题意,
    掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率是≈0.16,故D选项符合题意,
    故选D.
    【点睛】
    本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.
    2、D
    【解析】
    试题分析:根据三视图的法则可知B为俯视图,D为主视图,主视图为一个正方形.
    3、A
    【解析】
    A. 是轴对称图形,是中心对称图形,故本选项正确;
    B. 是中心对称图,不是轴对称图形,故本选项错误;
    C. 不是中心对称图,是轴对称图形,故本选项错误;
    D. 不是轴对称图形,是中心对称图形,故本选项错误。
    故选A.
    4、B
    【解析】
    根据第四象限内点的横坐标是正数,纵坐标是负数列出不等式组,然后求解即可.
    【详解】
    解:∵点A(m-1,1-2m)在第四象限,

    解不等式①得,m>1,
    解不等式②得,m>
    所以,不等式组的解集是m>1,
    即m的取值范围是m>1.
    故选B.
    【点睛】
    本题考查各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
    5、B
    【解析】
    设抛物线与x轴的两交点A、B坐标分别为(x1,0),(x2,0),利用二次函数的性质得到P(-,),利用x1、x2为方程ax2+bx+c=0的两根得到x1+x2=-,x1•x2=,则利用完全平方公式变形得到AB=|x1-x2|= ,接着根据等腰直角三角形的性质得到||=•,然后进行化简可得到b2-1ac的值.
    【详解】
    设抛物线与x轴的两交点A、B坐标分别为(x1,0),(x2,0),顶点P的坐标为(-,),
    则x1、x2为方程ax2+bx+c=0的两根,
    ∴x1+x2=-,x1•x2=,
    ∴AB=|x1-x2|====,
    ∵△ABP组成的三角形恰为等腰直角三角形,
    ∴||=•,
    =,
    ∴b2-1ac=1.
    故选B.
    【点睛】
    本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质和等腰直角三角形的性质.
    6、C
    【解析】
    试题分析:∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选C.
    考点:切线的性质.
    7、D
    【解析】
    分析:根据平均数、中位数、方差的定义即可判断;
    详解:由表格可知,甲、乙两班学生的成绩平均成绩相同;
    根据中位数可以确定,乙班优秀的人数多于甲班优秀的人数;
    根据方差可知,甲班成绩的波动比乙班大.
    故①②③正确,
    故选D.
    点睛:本题考查平均数、中位数、方差等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    8、D
    【解析】
    先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由-2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.
    【详解】
    ∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),
    ∴对称轴是直线x=-=-1,
    ∵当x≥2时,y随x的增大而增大,
    ∴a>0,
    ∵-2≤x≤1时,y的最大值为9,
    ∴x=1时,y=a+2a+3a2+3=9,
    ∴3a2+3a-6=0,
    ∴a=1,或a=-2(不合题意舍去).
    故选D.
    【点睛】
    本题考查了二次函数的性质,二次函数y=ax2+bx+c(a≠0)的顶点坐标是(-,),对称轴直线x=-,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<-时,y随x的增大而减小;x>-时,y随x的增大而增大;x=-时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<-时,y随x的增大而增大;x>-时,y随x的增大而减小;x=-时,y取得最大值,即顶点是抛物线的最高点.
    9、A
    【解析】
    直接利用二次根式的性质化简得出答案.
    【详解】
    ∵a+|a|=0,
    ∴|a|=-a,
    则a≤0,
    故原式=2-a-a=2-2a.
    故选A.
    【点睛】
    此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.
    10、A
    【解析】
    分析:根据分式的分母不为0;偶次根式被开方数大于或等于0;当一个式子中同时出现这两点时,应该是取让两个条件都满足的公共部分.
    详解:根据题意得到:,
    解得x≥-1且x≠1,
    故选A.
    点睛:本题考查了函数自变量的取值范围问题,判断一个式子是否有意义,应考虑分母上若有字母,字母的取值不能使分母为零,二次根号下字母的取值应使被开方数为非负数.易错易混点:学生易对二次根式的非负性和分母不等于0混淆.
    11、D
    【解析】
    分析:由于方程x2﹣4x+c+1=0有两个相等的实数根,所以∆ =b2﹣4ac=0,可得关于c的一元一次方程,然后解方程求出c的值.
    详解:由题意得,
    (-4)2-4(c+1)=0,
    c=3.
    故选D.
    点睛:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆ =b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆−4,
    解得:x

    相关试卷

    重庆市中学2021-2022学年中考试题猜想数学试卷含解析:

    这是一份重庆市中学2021-2022学年中考试题猜想数学试卷含解析,共20页。

    浙江省宁波市明望中学2021-2022学年中考试题猜想数学试卷含解析:

    这是一份浙江省宁波市明望中学2021-2022学年中考试题猜想数学试卷含解析,共21页。

    黄山市~2021-2022学年中考试题猜想数学试卷含解析:

    这是一份黄山市~2021-2022学年中考试题猜想数学试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,这个数是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map