终身会员
搜索
    上传资料 赚现金

    2021-2022学年湖北省恩施土家族苗族自治州宣恩县重点中学中考数学对点突破模拟试卷含解析

    立即下载
    加入资料篮
    2021-2022学年湖北省恩施土家族苗族自治州宣恩县重点中学中考数学对点突破模拟试卷含解析第1页
    2021-2022学年湖北省恩施土家族苗族自治州宣恩县重点中学中考数学对点突破模拟试卷含解析第2页
    2021-2022学年湖北省恩施土家族苗族自治州宣恩县重点中学中考数学对点突破模拟试卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2021-2022学年湖北省恩施土家族苗族自治州宣恩县重点中学中考数学对点突破模拟试卷含解析

    展开

    这是一份2021-2022学年湖北省恩施土家族苗族自治州宣恩县重点中学中考数学对点突破模拟试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。


    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.在如图所示的计算程序中,y与x之间的函数关系所对应的图象应为( )

    A. B. C. D.
    2.某校八年级两个班,各选派10名学生参加学校举行的“古诗词”大赛,各参赛选手成绩的数据分析如表所示,则以下判断错误的是( )
    班级
    平均数
    中位数
    众数
    方差
    八(1)班
    94
    93
    94
    12
    八(2)班
    95
    95.5
    93
    8.4
    A.八(2)班的总分高于八(1)班
    B.八(2)班的成绩比八(1)班稳定
    C.两个班的最高分在八(2)班
    D.八(2)班的成绩集中在中上游
    3.如图所示的正方体的展开图是(  )

    A. B. C. D.
    4.如图,3个形状大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角为60°,A、B、C都在格点上,点D在过A、B、C三点的圆弧上,若也在格点上,且∠AED=∠ACD,则∠AEC 度数为 ( )

    A.75° B.60° C.45° D.30°
    5.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC,则线段 AC 的长为( )

    A.4 B.4 C.6 D.4
    6.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是(  )

    A.10π B.15π C.20π D.30π
    7.如图,在平行四边形ABCD中,AC与BD相交于O,且AO=BD=4,AD=3,则△BOC的周长为(  )

    A.9 B.10 C.12 D.14
    8.扇形的半径为30cm,圆心角为120°,用它做成一个圆锥的侧面,则圆锥底面半径为( )

    A.10cm B.20cm C.10πcm D.20πcm
    9.如图,四边形ABCD内接于⊙O,点I是△ABC的内心,∠AIC=124°,点E在AD的延长线上,则∠CDE的度数为(  )

    A.56° B.62° C.68° D.78°
    10.如图,A、B、C、D四个点均在⊙O上,∠AOD=50°,AO∥DC,则∠B的度数为(  )

    A.50° B.55° C.60° D.65°
    二、填空题(共7小题,每小题3分,满分21分)
    11.在矩形ABCD中,对角线AC、BD相交于点O,∠AOB=60°,AC=6cm,则AB的长是_____.
    12.如图,正方形ABCD边长为1,以AB为直径作半圆,点P是CD 中点,BP与半圆交于点Q,连结DQ.给出如下结论:①DQ=1;②;③S△PDQ=;④cos∠ADQ=.其中正确结论是_________.(填写序号)

    13.如图是利用直尺和三角板过已知直线l外一点P作直线l的平行线的方法,其理由是__________.

    14.已知b是a,c的比例中项,若a=4,c=16,则b=________.
    15.如图,在平面直角坐标系xOy中,点A,P分别在x轴、y轴上,∠APO=30°.先将线段PA沿y轴翻折得到线段PB,再将线段PA绕点P顺时针旋转30°得到线段PC,连接BC.若点A的坐标为(﹣1,0),则线段BC的长为_____.

    16.如图,已知函数y=x+2的图象与函数y=(k≠0)的图象交于A、B两点,连接BO并延长交函数y=(k≠0)的图象于点C,连接AC,若△ABC的面积为1.则k的值为_____.

    17.把多项式3x2-12因式分解的结果是_____________.
    三、解答题(共7小题,满分69分)
    18.(10分)如图,AB、CD是⊙O的直径,DF、BE是弦,且DF=BE,求证:∠D=∠B.

    19.(5分)如图,已知:AD 和 BC 相交于点 O,∠A=∠C,AO=2,BO=4,OC=3,求 OD 的长.

    20.(8分)某运动品牌对第一季度A、B两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图6所示.1月份B款运动鞋的销售量是A款的,则1月份B款运动鞋销售了多少双?第一季度这两款运动鞋的销售单价保持不变,求3月份的总销售额(销售额=销售单价×销售量);结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.

    21.(10分)如图,经过点C(0,﹣4)的抛物线()与x轴相交于A(﹣2,0),B两点.

    (1)a 0, 0(填“>”或“<”);
    (2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;
    (3)在(2)的条件下,连接AC,E是抛物线上一动点,过点E作AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E的坐标;若不存在,请说明理由.
    22.(10分)未成年人思想道德建设越来越受到社会的关注,辽阳青少年研究所随机调查了本市一中学100名学生寒假中花零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观.根据调查数据制成了频
    分组
    频数
    频率
    0.5~50.5
       
    0.1
    50.5~   
    20
    0.2
    100.5~150.5
       
       
       200.5
    30
    0.3
    200.5~250.5
    10
    0.1
    率分布表和频率分布直方图(如图).

    (1)补全频率分布表;
    (2)在频率分布直方图中,长方形ABCD的面积是   ;这次调查的样本容量是   ;
    (3)研究所认为,应对消费150元以上的学生提出勤俭节约的建议.试估计应对该校1000名学生中约多少名学生提出这项建议.
    23.(12分)如图,甲、乙两座建筑物的水平距离为,从甲的顶部处测得乙的顶部处的俯角为,测得底部处的俯角为,求甲、乙建筑物的高度和(结果取整数).参考数据:,.

    24.(14分)某校组织学生去9km外的郊区游玩,一部分学生骑自行车先走,半小时后,其他学生乘公共汽车出发,结果他们同时到达.己知公共汽车的速度是自行车速度的3倍,求自行车的速度和公共汽车的速度分别是多少?



    参考答案

    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    先求出一次函数的关系式,再根据函数图象与坐标轴的交点及函数图象的性质解答即可.
    【详解】
    由题意知,函数关系为一次函数y=-1x+4,由k=-1<0可知,y随x的增大而减小,且当x=0时,y=4,
    当y=0时,x=1.
    故选D.
    【点睛】
    本题考查学生对计算程序及函数性质的理解.根据计算程序可知此计算程序所反映的函数关系为一次函数y=-1x+4,然后根据一次函数的图象的性质求解.
    2、C
    【解析】
    直接利用表格中数据,结合方差的定义以及算术平均数、中位数、众数得出答案.
    【详解】
    A选项:八(2)班的平均分高于八(1)班且人数相同,所以八(2)班的总分高于八(1)班,正确;
    B选项:八(2)班的方差比八(1)班小,所以八(2)班的成绩比八(1)班稳定,正确;
    C选项:两个班的最高分无法判断出现在哪个班,错误;
    D选项:八(2)班的中位数高于八(1)班,所以八(2)班的成绩集中在中上游,正确;
    故选C.
    【点睛】
    考查了方差的定义以及算术平均数、中位数、众数,利用表格获取正确的信息是解题关键.
    3、A
    【解析】
    有些立体图形是由一些平面图形围成的,将它们的表面适当的剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图.根据立体图形表面的图形相对位置可以判断.
    【详解】
    把各个展开图折回立方体,根据三个特殊图案的相对位置关系,可知只有选项A正确.
    故选A
    【点睛】
    本题考核知识点:长方体表面展开图.解题关键点:把展开图折回立方体再观察.
    4、B
    【解析】
    将圆补充完整,利用圆周角定理找出点E的位置,再根据菱形的性质即可得出△CME为等边三角形,进而即可得出∠AEC的值.
    【详解】
    将圆补充完整,找出点E的位置,如图所示.

    ∵弧AD所对的圆周角为∠ACD、∠AEC,
    ∴图中所标点E符合题意.
    ∵四边形∠CMEN为菱形,且∠CME=60°,
    ∴△CME为等边三角形,
    ∴∠AEC=60°.
    故选B.
    【点睛】
    本题考查了菱形的性质、等边三角形的判定依据圆周角定理,根据圆周角定理结合图形找出点E的位置是解题的关键.
    5、B
    【解析】
    由已知条件可得,可得出,可求出AC的长.
    【详解】
    解:由题意得:∠B=∠DAC,∠ACB=∠ACD,所以,根据“相似三角形对应边成比例”,得,又AD 是中线,BC=8,得DC=4,代入可得AC=,
    故选B.
    【点睛】
    本题主要考查相似三角形的判定与性质.灵活运用相似的性质可得出解答.
    6、B
    【解析】
    由三视图可知此几何体为圆锥,∴圆锥的底面半径为3,母线长为5,
    ∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长,
    ∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr=2π×3=6π,
    ∴圆锥的侧面积=lr=×6π×5=15π,故选B
    7、A
    【解析】
    利用平行四边形的性质即可解决问题.
    【详解】
    ∵四边形ABCD是平行四边形,
    ∴AD=BC=3,OD=OB==2,OA=OC=4,
    ∴△OBC的周长=3+2+4=9,
    故选:A.
    【点睛】
    题考查了平行四边形的性质和三角形周长的计算,平行四边形的性质有:平行四边形对边平行且相等;平行四边形对角相等,邻角互补;平行四边形对角线互相平分.
    8、A
    【解析】
    试题解析:扇形的弧长为:=20πcm,
    ∴圆锥底面半径为20π÷2π=10cm,
    故选A.
    考点:圆锥的计算.
    9、C
    【解析】
    分析:由点I是△ABC的内心知∠BAC=2∠IAC、∠ACB=2∠ICA,从而求得∠B=180°﹣(∠BAC+∠ACB)=180°﹣2(180°﹣∠AIC),再利用圆内接四边形的外角等于内对角可得答案.
    详解:∵点I是△ABC的内心,
    ∴∠BAC=2∠IAC、∠ACB=2∠ICA,
    ∵∠AIC=124°,
    ∴∠B=180°﹣(∠BAC+∠ACB)
    =180°﹣2(∠IAC+∠ICA)
    =180°﹣2(180°﹣∠AIC)
    =68°,
    又四边形ABCD内接于⊙O,
    ∴∠CDE=∠B=68°,
    故选C.
    点睛:本题主要考查三角形的内切圆与内心,解题的关键是掌握三角形的内心的性质及圆内接四边形的性质.
    10、D
    【解析】
    试题分析:连接OC,根据平行可得:∠ODC=∠AOD=50°,则∠DOC=80°,则∠AOC=130°,根据同弧所对的圆周角等于圆心角度数的一半可得:∠B=130°÷2=65°.
    考点:圆的基本性质

    二、填空题(共7小题,每小题3分,满分21分)
    11、3cm.
    【解析】
    根据矩形的对角线相等且互相平分可得OA=OB=OD=OC,由∠AOB=60°,判断出△AOB是等边三角形,根据等边三角形的性质求出AB即可.
    【详解】
    解:∵四边形ABCD是矩形,AC=6cm
    ∴OA=OC=OB=OD=3cm,
    ∵∠AOB=60°,
    ∴△AOB是等边三角形,
    ∴AB=OA=3cm,
    故答案为:3cm
    【点睛】
    本题主要考查矩形的性质和等边三角形的判定和性质,解本题的关键是掌握矩形的对角线相等且互相平分.
    12、①②④
    【解析】
    ①连接OQ,OD,如图1.易证四边形DOBP是平行四边形,从而可得DO∥BP.结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,则有DQ=DA=1;
    ②连接AQ,如图4,根据勾股定理可求出BP.易证Rt△AQB∽Rt△BCP,运用相似三角形的性质可求出BQ,从而求出PQ的值,就可得到的值;
    ③过点Q作QH⊥DC于H,如图4.易证△PHQ∽△PCB,运用相似三角形的性质可求出QH,从而可求出S△DPQ的值;
    ④过点Q作QN⊥AD于N,如图3.易得DP∥NQ∥AB,根据平行线分线段成比例可得,把AN=1-DN代入,即可求出DN,然后在Rt△DNQ中运用三角函数的定义,就可求出cos∠ADQ的值.
    【详解】
    解:①连接OQ,OD,如图1.

    易证四边形DOBP是平行四边形,从而可得DO∥BP.
    结合OQ=OB,可证到∠AOD=∠QOD,从而证到△AOD≌△QOD,
    则有DQ=DA=1.
    故①正确;
    ②连接AQ,如图4.

    则有CP=,BP=.
    易证Rt△AQB∽Rt△BCP,
    运用相似三角形的性质可求得BQ=,
    则PQ=,
    ∴.
    故②正确;
    ③过点Q作QH⊥DC于H,如图4.

    易证△PHQ∽△PCB,
    运用相似三角形的性质可求得QH=,
    ∴S△DPQ=DP•QH=××=.
    故③错误;
    ④过点Q作QN⊥AD于N,如图3.

    易得DP∥NQ∥AB,
    根据平行线分线段成比例可得,
    则有,
    解得:DN=.
    由DQ=1,得cos∠ADQ=.
    故④正确.
    综上所述:正确结论是①②④.
    故答案为:①②④.
    【点睛】
    本题主要考查了圆周角定理、平行四边形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、平行线分线段成比例、等腰三角形的性质、平行线的性质、锐角三角函数的定义、勾股定理等知识,综合性比较强,常用相似三角形的性质、勾股定理、三角函数的定义来建立等量关系,应灵活运用.
    13、同位角相等,两直线平行.
    【解析】
    试题解析:利用三角板中两个60°相等,可判定平行
    考点:平行线的判定
    14、±8
    【解析】
    根据比例中项的定义即可求解.
    【详解】
    ∵b是a,c的比例中项,若a=4,c=16,
    ∴b2=ac=4×16=64,
    ∴b=±8,
    故答案为±8
    【点睛】
    此题考查了比例中项的定义,如果作为比例线段的内项是两条相同的线段,即a∶b=b∶c或,那么线段b叫做线段a、c的比例中项.
    15、2
    【解析】
    只要证明△PBC是等腰直角三角形即可解决问题.
    【详解】
    解:∵∠APO=∠BPO=30°,
    ∴∠APB=60°,
    ∵PA=PC=PB,∠APC=30°,
    ∴∠BPC=90°,
    ∴△PBC是等腰直角三角形,
    ∵OA=1,∠APO=30°,
    ∴PA=2OA=2,
    ∴BC=PC=2,
    故答案为2.
    【点睛】
    本题考查翻折变换、坐标与图形的变化、等腰直角三角形的判定和性质等知识,解题的关键是证明△PBC是等腰直角三角形.
    16、3
    【解析】
    连接OA.根据反比例函数的对称性可得OB=OC,那么S△OAB=S△OAC=S△ABC=2.求出直线y=x+2与y轴交点D的坐标.设A(a,a+2),B(b,b+2),则C(-b,-b-2),根据S△OAB=2,得出a-b=2 ①.根据S△OAC=2,得出-a-b=2 ②,①与②联立,求出a、b的值,即可求解.
    【详解】
    如图,连接OA.

    由题意,可得OB=OC,
    ∴S△OAB=S△OAC=S△ABC=2.
    设直线y=x+2与y轴交于点D,则D(0,2),
    设A(a,a+2),B(b,b+2),则C(-b,-b-2),
    ∴S△OAB=×2×(a-b)=2,
    ∴a-b=2  ①.
    过A点作AM⊥x轴于点M,过C点作CN⊥x轴于点N,
    则S△OAM=S△OCN=k,
    ∴S△OAC=S△OAM+S梯形AMNC-S△OCN=S梯形AMNC=2,
    ∴(-b-2+a+2)(-b-a)=2,
    将①代入,得
    ∴-a-b=2  ②,
    ①+②,得-2b=6,b=-3,
    ①-②,得2a=2,a=1,
    ∴A(1,3),
    ∴k=1×3=3.
    故答案为3.
    【点睛】
    本题考查了反比例函数与一次函数的交点问题,反比例函数的性质,反比例函数图象上点的坐标特征,三角形的面积,待定系数法求函数的解析式等知识,综合性较强,难度适中.根据反比例函数的对称性得出OB=OC是解题的突破口.
    17、3(x+2)(x-2)
    【解析】
    因式分解时首先考虑提公因式,再考虑运用公式法;多项式3x2-12因式分解先提公因式3,再利用平方差公式因式分解.
    【详解】
    3x2-12=3()=3.

    三、解答题(共7小题,满分69分)
    18、证明见解析.
    【解析】
    根据在同圆中等弦对的弧相等,AB、CD是⊙O的直径,则,由FD=EB,得,,由等量减去等量仍是等量得:,即,由等弧对的圆周角相等,得∠D=∠B.
    【详解】
    解:方法(一)
    证明:∵AB、CD是⊙O的直径,
    ∴.
    ∵FD=EB,
    ∴.
    ∴.
    即.
    ∴∠D=∠B.
    方法(二)
    证明:如图,连接CF,AE.
    ∵AB、CD是⊙O的直径,
    ∴∠F=∠E=90°(直径所对的圆周角是直角).
    ∵AB=CD,DF=BE,
    ∴Rt△DFC≌Rt△BEA(HL).
    ∴∠D=∠B.

    【点睛】
    本题利用了在同圆中等弦对的弧相等,等弧对的弦,圆周角相等,等量减去等量仍是等量求解.
    19、OD=6.
    【解析】
    (1)根据有两个角相等的三角形相似,直接列出比例式,求出OD的长,即可解决问题.
    【详解】
    在△AOB与△COD中,

    ∴△AOB~△COD,
    ∴,
    ∴,
    ∴OD=6.
    【点睛】
    该题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是准确找出图形中的对应元素,正确列出比例式;对分析问题解决问题的能力提出了一定的要求.
    20、(1)1月份B款运动鞋销售了40双;(2)3月份的总销售额为39000元;(3)详见解析.
    【解析】
    试题分析:(1)用一月份A款的数量乘以,即可得出一月份B款运动鞋销售量;(2)设A,B两款运动鞋的销量单价分别为x元,y元,根据图形中给出的数据,列出二元一次方程组,再进行计算即可;(3)根据条形统计图和折线统计图所给出的数据,提出合理的建议即可.
    试题解析:(1)根据题意,用一月份A款的数量乘以:50×=40(双).即一月份B款运动鞋销售了40双;(2)设A,B两款运动鞋的销量单价分别为x元,y元,根据题意得:,解得:.则三月份的总销售额是:400×65+500×26=39000=3.9(万元);(3)从销售量来看,A款运动鞋销售量逐月增加,比B款运动鞋销量大,建议多进A款运动鞋,少进或不进B款运动鞋.
    考点:1.折线统计图;2.条形统计图.
    21、(1)>,>;(2);(3)E(4,﹣4)或(,4)或(,4).
    【解析】
    (1)由抛物线开口向上,且与x轴有两个交点,即可做出判断;
    (2)根据抛物线的对称轴及A的坐标,确定出B的坐标,将A,B,C三点坐标代入求出a,b,c的值,即可确定出抛物线解析式;
    (3)存在,分两种情况讨论:(i)假设存在点E使得以A,C,E,F为顶点所组成的四边形是平行四边形,过点C作CE∥x轴,交抛物线于点E,过点E作EF∥AC,交x轴于点F,如图1所示;
    (ii)假设在抛物线上还存在点E′,使得以A,C,F′,E′为顶点所组成的四边形是平行四边形,过点E′作E′F′∥AC交x轴于点F′,则四边形ACF′E′即为满足条件的平行四边形,可得AC=E′F′,AC∥E′F′,如图2,过点E′作E′G⊥x轴于点G,分别求出E坐标即可.
    【详解】
    (1)a>0,>0;
    (2)∵直线x=2是对称轴,A(﹣2,0),
    ∴B(6,0),
    ∵点C(0,﹣4),
    将A,B,C的坐标分别代入,解得:,,,
    ∴抛物线的函数表达式为;
    (3)存在,理由为:(i)假设存在点E使得以A,C,E,F为顶点所组成的四边形是平行四边形,过点C作CE∥x轴,交抛物线于点E,过点E作EF∥AC,交x轴于点F,如图1所示,

    则四边形ACEF即为满足条件的平行四边形,
    ∵抛物线关于直线x=2对称,
    ∴由抛物线的对称性可知,E点的横坐标为4,
    又∵OC=4,∴E的纵坐标为﹣4,
    ∴存在点E(4,﹣4);
    (ii)假设在抛物线上还存在点E′,使得以A,C,F′,E′为顶点所组成的四边形是平行四边形,
    过点E′作E′F′∥AC交x轴于点F′,则四边形ACF′E′即为满足条件的平行四边形,
    ∴AC=E′F′,AC∥E′F′,如图2,过点E′作E′G⊥x轴于点G,
    ∵AC∥E′F′,
    ∴∠CAO=∠E′F′G,
    又∵∠COA=∠E′GF′=90°,AC=E′F′,
    ∴△CAO≌△E′F′G,
    ∴E′G=CO=4,
    ∴点E′的纵坐标是4,
    ∴,解得:,,
    ∴点E′的坐标为(,4),同理可得点E″的坐标为(,4).

    22、⑴表格中依次填10,100.5,25,0.25,150.5,1;
    ⑵0.25,100;
    ⑶1000×(0.3+0.1+0.05)=450(名).
    【解析】
    (1)由频数直方图知组距是50,分组数列中依次填写100.5,150.5; 0.5-50.5的频数=100×0.1=10,由各组的频率之和等于1可知:100.5-150.5的频率=1-0.1-0.2-0.3-0.1-0.05=0.25,则频数=100×0.25=25,由此填表即可;(2)在频率分布直方图中,长方形ABCD的面积为50×0.25=12.5,这次调查的样本容量是100;(3)先求得消费在150元以上的学生的频率,继而可求得应对该校1000学生中约多少名学生提出该项建议..
    【详解】
    解:填表如下:

    (2)长方形ABCD的面积为0.25,样本容量是100;
    提出这项建议的人数人.
    【点睛】
    本题考查了频数分布表,样本估计总体、样本容量等知识.注意频数分布表中总的频率之和是1.
    23、甲建筑物的高度约为,乙建筑物的高度约为.
    【解析】
    分析:首先分析图形:根据题意构造直角三角形;本题涉及两个直角三角形,应利用其公共边构造关系式,进而可求出答案.
    详解:如图,过点作,垂足为.

    则.
    由题意可知,,,,,.
    可得四边形为矩形.
    ∴,.
    在中,,
    ∴.
    在中,,
    ∴.
    ∴ .
    ∴.
    答:甲建筑物的高度约为,乙建筑物的高度约为.
    点睛:本题考查解直角三角形的应用--仰角俯角问题,首先构造直角三角形,再借助角边关系、三角函数的定义解题,难度一般.
    24、自行车的速度是12km/h,公共汽车的速度是1km/h.
    【解析】
    设自行车的速度为xkm/h,则公共汽车的速度为3xkm/h,根据题意得:,解分式方程即可.
    【详解】
    解:设自行车的速度为xkm/h,则公共汽车的速度为3xkm/h,
    根据题意得:,
    解得:x=12,
    经检验,x=12是原分式方程的解,
    ∴3x=1.
    答:自行车的速度是12km/h,公共汽车的速度是1km/h.
    【点睛】
    本题考核知识点:列分式方程解应用题.解题关键点:找出相等关系,列出方程.

    相关试卷

    赣州市重点中学2021-2022学年中考数学对点突破模拟试卷含解析:

    这是一份赣州市重点中学2021-2022学年中考数学对点突破模拟试卷含解析,共21页。试卷主要包含了答题时请按要求用笔,下列计算中正确的是,的相反数是,已知等内容,欢迎下载使用。

    2021-2022学年湖北省武昌区C组联盟重点中学中考数学对点突破模拟试卷含解析:

    这是一份2021-2022学年湖北省武昌区C组联盟重点中学中考数学对点突破模拟试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列事件是必然事件的是等内容,欢迎下载使用。

    内蒙古伊金霍洛旗重点中学2021-2022学年中考数学对点突破模拟试卷含解析:

    这是一份内蒙古伊金霍洛旗重点中学2021-2022学年中考数学对点突破模拟试卷含解析,共24页。试卷主要包含了若|a|=﹣a,则a为,已知一组数据等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单
        欢迎来到教习网
        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map