2021-2022学年河北省邯郸市馆陶县中考试题猜想数学试卷含解析
展开
这是一份2021-2022学年河北省邯郸市馆陶县中考试题猜想数学试卷含解析,共22页。试卷主要包含了下列算式的运算结果正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)
1.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为( )
A. B. C. D.
2.若分式的值为0,则x的值为( )
A.-2 B.0 C.2 D.±2
3.如图,已知△ADE是△ABC绕点A逆时针旋转所得,其中点D在射线AC上,设旋转角为α,直线BC与直线DE交于点F,那么下列结论不正确的是( )
A.∠BAC=α B.∠DAE=α C.∠CFD=α D.∠FDC=α
4.等式成立的x的取值范围在数轴上可表示为( )
A. B. C. D.
5.如图,PB切⊙O于点B,PO交⊙O于点E,延长PO交⊙O于点A,连结AB,⊙O的半径OD⊥AB于点C,BP=6,∠P=30°,则CD的长度是( )
A. B. C. D.2
6.下列算式的运算结果正确的是( )
A.m3•m2=m6 B.m5÷m3=m2(m≠0)
C.(m﹣2)3=m﹣5 D.m4﹣m2=m2
7.如图,左、右并排的两棵树AB和CD,小树的高AB=6m,大树的高CD=9m,小明估计自己眼睛距地面EF=1.5m,当他站在F点时恰好看到大树顶端C点.已知此时他与小树的距离BF=2m,则两棵树之间的距离BD是( )
A.1m B.m C.3m D.m
8.小明解方程的过程如下,他的解答过程中从第( )步开始出现错误.
解:去分母,得1﹣(x﹣2)=1①
去括号,得1﹣x+2=1②
合并同类项,得﹣x+3=1③
移项,得﹣x=﹣2④
系数化为1,得x=2⑤
A.① B.② C.③ D.④
9.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为( )
A.36 B.12 C.6 D.3
10.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为( ).
A.60 ° B.75° C.85° D.90°
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,C为半圆内一点,O为圆心,直径AB长为1 cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为_________cm1.
12.当x=_________时,分式的值为零.
13.若点与点关于原点对称,则______.
14.若一个多边形的内角和是900º,则这个多边形是 边形.
15.规定:,如:,若,则=__.
16.把直线y=-x+3向上平移m个单位后,与直线y=2x+4的交点在第一象限,则m的取值范围是_________________.
三、解答题(共8题,共72分)
17.(8分)某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为W元.
(1)该农户想要每天获得150元得销售利润,销售价应定为每千克多少元?
(2)如果物价部门规定这种农产品的销售价不高于每千克28元,销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?
18.(8分)在△ABC中,∠ACB=45°.点D(与点B、C不重合)为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
(1)如果AB=AC.如图①,且点D在线段BC上运动.试判断线段CF与BD之间的位置关系,并证明你的结论.
(2)如果AB≠AC,如图②,且点D在线段BC上运动.(1)中结论是否成立,为什么?
(3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC=4,BC=3,CD=x,求线段CP的长.(用含x的式子表示)
19.(8分)已知AC,EC分别为四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=1.
(1)如图①,当四边形ABCD和EFCG均为正方形时,连接BF.
i)求证:△CAE∽△CBF;
ii)若BE=1,AE=2,求CE的长;
(2)如图②,当四边形ABCD和EFCG均为矩形,且时,若BE=1,AE=2,CE=3,求k的值;
(3)如图③,当四边形ABCD和EFCG均为菱形,且∠DAB=∠GEF=45°时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)
20.(8分)已知:如图,在平面直角坐标系xOy中,抛物线的图像与x轴交于点A(3,0),与y轴交于点B,顶点C在直线上,将抛物线沿射线 AC的方向平移,
当顶点C恰好落在y轴上的点D处时,点B落在点E处.
(1)求这个抛物线的解析式;
(2)求平移过程中线段BC所扫过的面积;
(3)已知点F在x轴上,点G在坐标平面内,且以点 C、E、F、G 为顶点的四边形是矩形,求点F的坐标.
21.(8分)(1)如图1,半径为2的圆O内有一点P,切OP=1,弦AB过点P,则弦AB长度的最大值为__________;最小值为 ___________.
图 ①
(2)如图2,△ABC是葛叔叔家的菜地示意图,其中∠ABC=90°,AB=80米,BC=60米,现在他利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔想建的鱼塘是四边形ABCD,且满足∠ADC=60°,你认为葛叔叔的想法能实现吗?若能,求出这个四边形鱼塘面积和周长的最大值;若不能,请说明理由.
图 ②
22.(10分)如图,在平面直角坐标系中,一次函数的图象分别交x轴、y轴于A、B两点,与反比例函数的图象交于C、D两点.已知点C的坐标是(6,-1),D(n,3).求m的值和点D的坐标.求的值.根据图象直接写出:当x为何值时,一次函数的值大于反比例函数的值?
23.(12分)如图,将等边△ABC绕点C顺时针旋转90°得到△EFC,∠ACE的平分线CD交EF于点D,连接AD、AF.求∠CFA度数;求证:AD∥BC.
24.在“双十二”期间,两个超市开展促销活动,活动方式如下:
超市:购物金额打9折后,若超过2000元再优惠300元;
超市:购物金额打8折.
某学校计划购买某品牌的篮球做奖品,该品牌的篮球在两个超市的标价相同,根据商场的活动方式:若一次性付款4200元购买这种篮球,则在商场购买的数量比在商场购买的数量多5个,请求出这种篮球的标价;学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
设大马有x匹,小马有y匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可.
【详解】
解:设大马有x匹,小马有y匹,由题意得:,
故选C.
【点睛】
此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.
2、C
【解析】
由题意可知:,
解得:x=2,
故选C.
3、D
【解析】
利用旋转不变性即可解决问题.
【详解】
∵△DAE是由△BAC旋转得到,
∴∠BAC=∠DAE=α,∠B=∠D,
∵∠ACB=∠DCF,
∴∠CFD=∠BAC=α,
故A,B,C正确,
故选D.
【点睛】
本题考查旋转的性质,解题的关键是熟练掌握旋转不变性解决问题,属于中考常考题型.
4、B
【解析】
根据二次根式有意义的条件即可求出的范围.
【详解】
由题意可知: ,
解得:,
故选:.
【点睛】
考查二次根式的意义,解题的关键是熟练运用二次根式有意义的条件.
5、C
【解析】
连接OB,根据切线的性质与三角函数得到∠POB=60°,OB=OD=2,再根据等腰三角形的性质与三角函数得到OC的长,即可得到CD的长.
【详解】
解:如图,连接OB,
∵PB切⊙O于点B,
∴∠OBP=90°,
∵BP=6,∠P=30°,
∴∠POB=60°,OD=OB=BPtan30°=6×=2,
∵OA=OB,
∴∠OAB=∠OBA=30°,
∵OD⊥AB,
∴∠OCB=90°,
∴∠OBC=30°,
则OC=OB=,
∴CD=.
故选:C.
【点睛】
本题主要考查切线的性质与锐角的三角函数,解此题的关键在于利用切线的性质得到相关线段与角度的值,再根据圆和等腰三角形的性质求解即可.
6、B
【解析】
直接利用同底数幂的除法运算法则以及合并同类项法则、积的乘方运算法则分别化简得出答案.
【详解】
A、m3•m2=m5,故此选项错误;
B、m5÷m3=m2(m≠0),故此选项正确;
C、(m-2)3=m-6,故此选项错误;
D、m4-m2,无法计算,故此选项错误;
故选:B.
【点睛】
此题主要考查了同底数幂的除法运算以及合并同类项法则、积的乘方运算,正确掌握运算法则是解题关键.
7、B
【解析】
由∠AGE=∠CHE=90°,∠AEG=∠CEH可证明△AEG∽△CEH,根据相似三角形对应边成比例求出GH的长即BD的长即可.
【详解】
由题意得:FB=EG=2m,AG=AB﹣BG=6﹣1.5=4.5m,CH=CD﹣DH=9﹣1.5=7.5m,
∵AG⊥EH,CH⊥EH,
∴∠AGE=∠CHE=90°,
∵∠AEG=∠CEH,
∴△AEG∽△CEH,
∴ == ,即 =,
解得:GH=,
则BD=GH=m,
故选:B.
【点睛】
本题考查了相似三角形的应用,解题的关键是从实际问题中抽象出相似三角形.
8、A
【解析】
根据解分式方程的方法可以判断哪一步是错误的,从而可以解答本题.
【详解】
=1,
去分母,得1-(x-2)=x,故①错误,
故选A.
【点睛】
本题考查解分式方程,解答本题的关键是明确解分式方程的方法.
9、D
【解析】
设△OAC和△BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图象可得出点B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义以及点B的坐标即可得出结论.
解:设△OAC和△BAD的直角边长分别为a、b,
则点B的坐标为(a+b,a﹣b).
∵点B在反比例函数的第一象限图象上,
∴(a+b)×(a﹣b)=a2﹣b2=1.
∴S△OAC﹣S△BAD=a2﹣b2=(a2﹣b2)=×1=2.
故选D.
点睛:本题主要考查了反比例函数系数k的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a2﹣b2的值.解决该题型题目时,要设出等腰直角三角形的直角边并表示出面积,再用其表示出反比例函数上点的坐标是关键.
10、C
【解析】
试题分析:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.
如图,设AD⊥BC于点F.则∠AFB=90°,
∴在Rt△ABF中,∠B=90°-∠BAD=25°,
∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,
即∠BAC的度数为85°.故选C.
考点: 旋转的性质.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、
【解析】
根据直角三角形的性质求出OC、BC,根据扇形面积公式计算即可.
【详解】
解:∵∠BOC=60°,∠BCO=90°,
∴∠OBC=30°,
∴OC=OB=1
则边BC扫过区域的面积为:
故答案为.
【点睛】
考核知识点:扇形面积计算.熟记公式是关键.
12、2
【解析】
根据若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1计算
即可.
【详解】
解:依题意得:2﹣x=1且2x+2≠1.
解得x=2,
故答案为2.
【点睛】
本题考查的是分式为1的条件和一元二次方程的解法,掌握若分式的值为零,需同时具备两个条件:(1)分子为1;(2)分母不为1是解题的关键.
13、1
【解析】
∵点P(m,﹣2)与点Q(3,n)关于原点对称,
∴m=﹣3,n=2,
则(m+n)2018=(﹣3+2)2018=1,
故答案为1.
14、七
【解析】
根据多边形的内角和公式,列式求解即可.
【详解】
设这个多边形是边形,根据题意得,
,
解得.
故答案为.
【点睛】
本题主要考查了多边形的内角和公式,熟记公式是解题的关键.
15、1或-1
【解析】
根据a⊗b=(a+b)b,列出关于x的方程(2+x)x=1,解方程即可.
【详解】
依题意得:(2+x)x=1,
整理,得 x2+2x=1,
所以 (x+1)2=4,
所以x+1=±2,
所以x=1或x=-1.
故答案是:1或-1.
【点睛】
用配方法解一元二次方程的步骤:
①把原方程化为ax2+bx+c=0(a≠0)的形式;
②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;
③方程两边同时加上一次项系数一半的平方;
④把左边配成一个完全平方式,右边化为一个常数;
⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.
16、m>1
【解析】
试题分析:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,求出直线y=-x+3+m与直线y=2x+4的交点,再由此点在第一象限可得出m的取值范围.
试题解析:直线y=-x+3向上平移m个单位后可得:y=-x+3+m,
联立两直线解析式得:,
解得:,
即交点坐标为(,),
∵交点在第一象限,
∴,
解得:m>1.
考点:一次函数图象与几何变换.
三、解答题(共8题,共72分)
17、(1)该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;(2)192元.
【解析】
(1)直接利用每件利润×销量=总利润进而得出等式求出答案;
(2)直接利用每件利润×销量=总利润进而得出函数关系式,利用二次函数增减性求出答案.
【详解】
(1)根据题意得:(x﹣20)(﹣2x+1)=150,
解得:x1=25,x2=35,
答:该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;
(2)由题意得:W=(x﹣20)(﹣2x+1)=﹣2(x﹣30)2+200,
∵a=﹣2,
∴抛物线开口向下,当x<30时,y随x的增大而增大,
又由于这种农产品的销售价不高于每千克28元
∴当x=28时,W最大=﹣2×(28﹣30)2+200=192(元).
∴销售价定为每千克28元时,每天的销售利润最大,最大利润是192元.
【点睛】
此题主要考查了一元二次方程的应用以及二次函数的应用,正确应用二次函数增减性是解题关键.
18、(1)CF与BD位置关系是垂直,理由见解析;(2)AB≠AC时,CF⊥BD的结论成立,理由见解析;(3)见解析
【解析】
(1)由∠ACB=15°,AB=AC,得∠ABD=∠ACB=15°;可得∠BAC=90°,由正方形ADEF,可得∠DAF=90°,AD=AF,∠DAF=∠DAC+∠CAF;∠BAC=∠BAD+∠DAC;得∠CAF=∠BAD.可证△DAB≌△FAC(SAS),得∠ACF=∠ABD=15°,得∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
(2)过点A作AG⊥AC交BC于点G,可得出AC=AG,易证:△GAD≌△CAF,所以∠ACF=∠AGD=15°,∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
(3)若正方形ADEF的边DE所在直线与线段CF所在直线相交于点P,设AC=1 ,BC=3,CD=x,求线段CP的长.考虑点D的位置,分两种情况去解答.①点D在线段BC上运动,已知∠BCA=15°,可求出AQ=CQ=1.即DQ=1-x,易证△AQD∽△DCP,再根据相似三角形的性质求解问题.②点D在线段BC延长线上运动时,由∠BCA=15°,可求出AQ=CQ=1,则DQ=1+x.过A作AQ⊥BC交CB延长线于点Q,则△AGD∽△ACF,得CF⊥BD,由△AQD∽△DCP,得再根据相似三角形的性质求解问题.
【详解】
(1)CF与BD位置关系是垂直;
证明如下:
∵AB=AC,∠ACB=15°,
∴∠ABC=15°.
由正方形ADEF得AD=AF,
∵∠DAF=∠BAC=90°,
∴∠DAB=∠FAC,
∴△DAB≌△FAC(SAS),
∴∠ACF=∠ABD.
∴∠BCF=∠ACB+∠ACF=90°.
即CF⊥BD.
(2)AB≠AC时,CF⊥BD的结论成立.
理由是:
过点A作GA⊥AC交BC于点G,
∵∠ACB=15°,
∴∠AGD=15°,
∴AC=AG,
同理可证:△GAD≌△CAF
∴∠ACF=∠AGD=15°,∠BCF=∠ACB+∠ACF=90°,
即CF⊥BD.
(3)过点A作AQ⊥BC交CB的延长线于点Q,
①点D在线段BC上运动时,
∵∠BCA=15°,可求出AQ=CQ=1.
∴DQ=1﹣x,△AQD∽△DCP,
∴,
∴,
∴.
②点D在线段BC延长线上运动时,
∵∠BCA=15°,
∴AQ=CQ=1,
∴DQ=1+x.
过A作AQ⊥BC,
∴∠Q=∠FAD=90°,
∵∠C′AF=∠C′CD=90°,∠AC′F=∠CC′D,
∴∠ADQ=∠AFC′,
则△AQD∽△AC′F.
∴CF⊥BD,
∴△AQD∽△DCP,
∴,
∴,
∴.
【点睛】
综合性题型,解题关键是灵活运用所学全等、相似、正方形等知识点.
19、(1)i)证明见试题解析;ii);(2);(3).
【解析】
(1)i)由∠ACE+∠ECB=45°,∠ BCF+∠ECB=45°,得到∠ACE=∠BCF,又由于,故△CAE∽△CBF;
ii)由,得到BF=,再由△CAE∽△CBF,得到∠CAE=∠CBF,进一步可得到∠EBF=1°,从而有,解得;
(2)连接BF,同理可得:∠EBF=1°,由,得到,,故,从而,得到,代入解方程即可;
(3)连接BF,同理可得:∠EBF=1°,过C作CH⊥AB延长线于H,可得:
,,
故,
从而有.
【详解】
解:(1)i)∵∠ACE+∠ECB=45°,∠ BCF+∠ECB=45°,∴∠ACE=∠BCF,又∵,∴△CAE∽△CBF;
ii)∵,∴BF=,∵△CAE∽△CBF,∴∠CAE=∠CBF,又∵∠CAE+∠CBE=1°,∴∠CBF+∠CBE=1°,即∠EBF=1°,∴,解得;
(2)连接BF,同理可得:∠EBF=1°,∵,∴,,∴,∴,,∴,∴,解得;
(3)连接BF,同理可得:∠EBF=1°,过C作CH⊥AB延长线于H,可得:
,,
∴,
∴.
【点睛】
本题考查相似三角形的判定与性质;正方形的性质;矩形的性质;菱形的性质.
20、(1)抛物线的解析式为;(2)12; (1)满足条件的点有F1(,0),F2(,0),F1(,0),F4(,0).
【解析】
分析:(1)根据对称轴方程求得b=﹣4a,将点A的坐标代入函数解析式求得9a+1b+1=0,联立方程组,求得系数的值即可;
(2)抛物线在平移的过程中,线段BC所扫过的面积为平行四边形BCDE的面积,根据二次函数图象上点的坐标特征和三角形的面积得到:∴.
(1)联结CE.分类讨论:(i)当CE为矩形的一边时,过点C作CF1⊥CE,交x轴于点F1,设点F1(a,0).在Rt△OCF1中,利用勾股定理求得a的值;
(ii)当CE为矩形的对角线时,以点O为圆心,OC长为半径画弧分别交x轴于点F1、F4,利用圆的性质解答.
详解:(1)∵顶点C在直线x=2上,∴,∴b=﹣4a.
将A(1,0)代入y=ax2+bx+1,得:9a+1b+1=0,解得:a=1,b=﹣4,
∴抛物线的解析式为y=x2﹣4x+1.
(2)过点C作CM⊥x轴,CN⊥y轴,垂足分别为M、N.
∵y=x2﹣4x+1═(x﹣2)2﹣1,∴C(2,﹣1).
∵CM=MA=1,∴∠MAC=45°,∴∠ODA=45°,∴OD=OA=1.
∵抛物线y=x2﹣4x+1与y轴交于点B,∴B(0,1),∴BD=2.
∵抛物线在平移的过程中,线段BC所扫过的面积为平行四边形BCDE的面积,∴.
(1)联结CE.
∵四边形BCDE是平行四边形,∴点O是对角线CE与BD的交点,即 .
(i)当CE为矩形的一边时,过点C作CF1⊥CE,交x轴于点F1,设点F1(a,0).在Rt△OCF1中,,即 a2=(a﹣2)2+5,解得: ,∴点.
同理,得点;
(ii)当CE为矩形的对角线时,以点O为圆心,OC长为半径画弧分别交x轴于点F1、F4,可得: ,得点、.
综上所述:满足条件的点有),.
点睛:本题考查了待定系数法求二次函数的解析式,二次函数图象上点的坐标特征,平行四边形的面积公式,正确的理解题意是解题的关键.
21、(1)弦AB长度的最大值为4,最小值为2;(2)面积最大值为(2500+2400)平方米,周长最大值为340米.
【解析】
(1)当AB是过P点的直径时,AB最长;当AB⊥OP时,AB最短,分别求出即可.(2)如图在△ABC的一侧以AC为边做等边三角形AEC,再做△AEC的外接圆,则满足∠ADC=60°的点D在优弧AEC上(点D不与A、C重合),当D与E重合时,S△ADC最大值=S△AEC,由S△ABC为定值,故此时四边形ABCD的面积最大,再根据勾股定理和等边三角形的性质求出此时的面积与周长即可.
【详解】
(1)(1)当AB是过P点的直径时,AB最长=2×2=4;
当AB⊥OP时,AB最短, AP=
∴AB=2
(2)如图,在△ABC的一侧以AC为边做等边三角形AEC,
再做△AEC的外接圆,
当D与E重合时,S△ADC最大
故此时四边形ABCD的面积最大,
∵∠ABC=90°,AB=80,BC=60
∴AC=
∴周长为AB+BC+CD+AE=80+60+100+100=340(米)
S△ADC=
S△ABC=
∴四边形ABCD面积最大值为(2500+2400)平方米.
【点睛】
此题主要考查圆的综合利用,解题的关键是熟知圆的性质定理与垂径定理.
22、(1)m=-6,点D的坐标为(-2,3);(2);(3)当或时,一次函数的值大于反比例函数的值.
【解析】
(1)将点C的坐标(6,-1)代入即可求出m,再把D(n,3)代入反比例函数解析式求出n即可.
(2)根据C(6,-1)、D(-2,3)得出直线CD的解析式,再求出直线CD与x轴和y轴的交点即可,得出OA、OB的长,再根据锐角三角函数的定义即可求得;
(3)根据函数的图象和交点坐标即可求得.
【详解】
⑴把C(6,-1)代入,得.
则反比例函数的解析式为,
把代入,得,
∴点D的坐标为(-2,3).
⑵将C(6,-1)、D(-2,3)代入,得
,解得.
∴一次函数的解析式为,
∴点B的坐标为(0,2),点A的坐标为(4,0).
∴,
在在中,
∴.
⑶根据函数图象可知,当或时,一次函数的值大于反比例函数的值
【点睛】
此题考查了反比例函数与一次函数的交点问题.其知识点有解直角三角形,待定系数法求解析式,此题难度适中,注意掌握数形结合思想与方程思想的应用.
23、(1)75°(2)见解析
【解析】
(1)由等边三角形的性质可得∠ACB=60°,BC=AC,由旋转的性质可得CF=BC,∠BCF=90°,由等腰三角形的性质可求解;
(2)由“SAS”可证△ECD≌△ACD,可得∠DAC=∠E=60°=∠ACB,即可证AD∥BC.
【详解】
解:(1)∵△ABC是等边三角形
∴∠ACB=60°,BC=AC
∵等边△ABC绕点C顺时针旋转90°得到△EFC
∴CF=BC,∠BCF=90°,AC=CE
∴CF=AC
∵∠BCF=90°,∠ACB=60°
∴∠ACF=∠BCF﹣∠ACB=30°
∴∠CFA=(180°﹣∠ACF)=75°
(2)∵△ABC和△EFC是等边三角形
∴∠ACB=60°,∠E=60°
∵CD平分∠ACE
∴∠ACD=∠ECD
∵∠ACD=∠ECD,CD=CD,CA=CE,
∴△ECD≌△ACD(SAS)
∴∠DAC=∠E=60°
∴∠DAC=∠ACB
∴AD∥BC
【点睛】
本题考查了旋转的性质,等边三角形的性质,等腰三角形的性质,平行线的判定,熟练运用旋转的性质是本题关键.
24、(1)这种篮球的标价为每个50元;(2)见解析
【解析】
(1)设这种篮球的标价为每个x元,根据题意可知在B超市可买篮球个,在A超市可买篮球个,根据在B商场比在A商场多买5个列方程进行求解即可;
(2)分情况,单独在A超市买100个、单独在B超市买100个、两家超市共买100个进行讨论即可得.
【详解】
(1)设这种篮球的标价为每个x元,
依题意,得,
解得:x=50,
经检验:x=50是原方程的解,且符合题意,
答:这种篮球的标价为每个50元;
(2)购买100个篮球,最少的费用为3850元,
单独在A超市一次买100个,则需要费用:100×50×0.9-300=4200元,
在A超市分两次购买,每次各买50个,则需要费用:2(50×50×0.9-300)=3900元,
单独在B超市购买:100×50×0.8=4000元,
在A、B两个超市共买100个,
根据A超市的方案可知在A超市一次购买:=44,即购买45个时花费最小,为45×50×0.9-300=1725元,两次购买,每次各买45个,需要1725×2=3450元,其余10个在B超市购买,需要10×50×0.8=400元,这样一共需要3450+400=3850元,
综上可知最少费用的购买方案:在A超市分两次购买,每次购买45个篮球,费用共为3450元;在B超市购买10个,费用400元,两超市购买100个篮球总费用3850元.
【点睛】
本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.
相关试卷
这是一份2024年河北省邯郸市馆陶县中考二模数学试题(含解析),共28页。试卷主要包含了若,则等内容,欢迎下载使用。
这是一份2021-2022学年河北省邯郸市馆陶县七年级(上)期末数学试卷(含解析),共14页。
这是一份河北省邯郸市馆陶县魏僧寨中学2021-2022学年中考数学模拟预测题含解析,共16页。试卷主要包含了考生必须保证答题卡的整洁,的值等于,下列计算结果为a6的是等内容,欢迎下载使用。