2021-2022学年河北省邯郸市馆陶县魏僧寨中学中考适应性考试数学试题含解析
展开2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,以正方形ABCD的边CD为边向正方形ABCD外作等边△CDE,AC与BE交于点F,则∠AFE的度数是( )
A.135° B.120° C.60° D.45°
2.如图,与∠1是内错角的是( )
A.∠2 B.∠3
C.∠4 D.∠5
3.下列图案中,既是中心对称图形,又是轴对称图形的是( )
A. B. C. D.
4.如图,在正三角形ABC中,D,E,F分别是BC,AC,AB上的点,DE⊥AC,EF⊥AB,FD⊥BC,则△DEF的面积与△ABC的面积之比等于( )
A.1∶3 B.2∶3 C.∶2 D.∶3
5.山西有着悠久的历史,远在100 多万年前就有古人类生息在这块土地上.春秋时期,山西大部分为晋国领地,故山西简称为“晋”,战国初韩、赵、魏三分晋,山西又有“三晋”之称,下面四个以“晋”字为原型的Logo 图案中,是轴对称图形的共有( )
A. B. C. D.
6.如图,在矩形ABCD中,AB=5,BC=7,点E为BC上一动点,把△ABE沿AE折叠,当点B的对应点B′落在∠ADC的角平分线上时,则点B′到BC的距离为( )
A.1或2 B.2或3 C.3或4 D.4或5
7.下面的图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
8.如图,在△ABC中,D、E分别是边AB、AC的中点,若BC=6,则DE的长为( )
A.2 B.3 C.4 D.6
9.如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是( )
A. B. C. D.
10.如图,矩形ABCD中,AB=3,AD=,将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,此时恰好四边形AEHB为菱形,连接CH交FG于点M,则HM=( )
A. B.1 C. D.
11.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为( )
A.3a+2b B.3a+4b C.6a+2b D.6a+4b
12.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=(x>0)的图象上,若AB=2,则k的值为( )
A.4 B.2 C.2 D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是 .
14.计算(2a)3的结果等于__.
15.桌上摆着一个由若干个相同正方体组成的几何体,其主视图和左视图如图所示,这个几何体最多可以由___________个这样的正方体组成.
16.已知点A(x1,y1),B(x2,y2)在直线y=kx+b上,且直线经过第一、三、四象限,当x1<x2时,y1与y2的大小关系为______________.
17.关于x的一元二次方程ax2﹣x﹣=0有实数根,则a的取值范围为________.
18.如图,在边长为1的小正方形网格中,点A、B、C、D都在这些小正方形的顶点上,AB、CD相交于点O,则tan∠AOD=________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)从一幢建筑大楼的两个观察点A,B观察地面的花坛(点C),测得俯角分别为15°和60°,如图,直线AB与地面垂直,AB=50米,试求出点B到点C的距离.(结果保留根号)
20.(6分)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC,AB于点E,F.
(1)若∠B=30°,求证:以A,O,D,E为顶点的四边形是菱形;
(2)填空:若AC=6,AB=10,连接AD,则⊙O的半径为 ,AD的长为 .
21.(6分)如图,经过点C(0,﹣4)的抛物线()与x轴相交于A(﹣2,0),B两点.
(1)a 0, 0(填“>”或“<”);
(2)若该抛物线关于直线x=2对称,求抛物线的函数表达式;
(3)在(2)的条件下,连接AC,E是抛物线上一动点,过点E作AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点E的坐标;若不存在,请说明理由.
22.(8分)如图,∠MON的边OM上有两点A、B在∠MON的内部求作一点P,使得点P到∠MON的两边的距离相等,且△PAB的周长最小.(保留作图痕迹,不写作法)
23.(8分)如图,在△ABC中,CD⊥AB于点D,tanA=2cos∠BCD,
(1)求证:BC=2AD;
(2)若cosB=,AB=10,求CD的长.
24.(10分)为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:
(1)本次接受随机抽样调查的中学生人数为_______,图①中m的值是_____ ;
(2)求本次调查获取的样本数据的平均数、众数和中位数;
(3)根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.
25.(10分)如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(﹣2,0),B(0,1).
(1)求点C的坐标;
(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B'、C'正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B'C'的解析式.
(3)若把上一问中的反比例函数记为y1,点B′,C′所在的直线记为y2,请直接写出在第一象限内当y1<y2时x的取值范围.
26.(12分)如图,抛物线经过点A(﹣2,0),点B(0,4).
(1)求这条抛物线的表达式;
(2)P是抛物线对称轴上的点,联结AB、PB,如果∠PBO=∠BAO,求点P的坐标;
(3)将抛物线沿y轴向下平移m个单位,所得新抛物线与y轴交于点D,过点D作DE∥x轴交新抛物线于点E,射线EO交新抛物线于点F,如果EO=2OF,求m的值.
27.(12分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.求每件甲种、乙种玩具的进价分别是多少元?商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
易得△ABF与△ADF全等,∠AFD=∠AFB,因此只要求出∠AFB的度数即可.
【详解】
∵四边形ABCD是正方形,
∴AB=AD,∠BAF=∠DAF,
∴△ABF≌△ADF,
∴∠AFD=∠AFB,
∵CB=CE,
∴∠CBE=∠CEB,
∵∠BCE=∠BCD+∠DCE=90°+60°=150°,
∴∠CBE=15°,
∵∠ACB=45°,
∴∠AFB=∠ACB+∠CBE=60°.
∴∠AFE=120°.
故选B.
【点睛】
此题考查正方形的性质,熟练掌握正方形及等边三角形的性质,会运用其性质进行一些简单的转化.
2、B
【解析】
由内错角定义选B.
3、B
【解析】
根据轴对称图形与中心对称图形的概念解答.
【详解】
A.不是轴对称图形,是中心对称图形;
B.是轴对称图形,是中心对称图形;
C.不是轴对称图形,也不是中心对称图形;
D.是轴对称图形,不是中心对称图形.
故选B.
【点睛】
本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
4、A
【解析】
∵DE⊥AC,EF⊥AB,FD⊥BC,
∴∠C+∠EDC=90°,∠FDE+∠EDC=90°,
∴∠C=∠FDE,
同理可得:∠B=∠DFE,∠A=DEF,
∴△DEF∽△CAB,
∴△DEF与△ABC的面积之比= ,
又∵△ABC为正三角形,
∴∠B=∠C=∠A=60°
∴△EFD是等边三角形,
∴EF=DE=DF,
又∵DE⊥AC,EF⊥AB,FD⊥BC,
∴△AEF≌△CDE≌△BFD,
∴BF=AE=CD,AF=BD=EC,
在Rt△DEC中,
DE=DC×sin∠C=DC,EC=cos∠C×DC=DC,
又∵DC+BD=BC=AC=DC,
∴,
∴△DEF与△ABC的面积之比等于:
故选A.
点晴:本题主要通过证出两个三角形是相似三角形,再利用相似三角形的性质:相似三角形的面积之比等于对应边之比的平方,进而将求面积比的问题转化为求边之比的问题,并通过含30度角的直角三角形三边间的关系(锐角三角形函数)即可得出对应边之比,进而得到面积比.
5、D
【解析】
根据轴对称图形的概念求解.
【详解】
A、不是轴对称图形,故此选项错误;
B、不是轴对称图形,故此选项错误;
C、不是轴对称图形,故此选项错误;
D、是轴对称图形,故此选项正确.
故选D.
【点睛】
此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.
6、A
【解析】
连接B′D,过点B′作B′M⊥AD于M.设DM=B′M=x,则AM=7-x,根据等腰直角三角形的性质和折叠的性质得到:(7-x)2=25-x2,通过解方程求得x的值,易得点B′到BC的距离.
【详解】
解:如图,连接B′D,过点B′作B′M⊥AD于M,
∵点B的对应点B′落在∠ADC的角平分线上,
∴设DM=B′M=x,则AM=7﹣x,
又由折叠的性质知AB=AB′=5,
∴在直角△AMB′中,由勾股定理得到:,
即,
解得x=3或x=4,
则点B′到BC的距离为2或1.
故选A.
【点睛】
本题考查的是翻折变换的性质,掌握翻折变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.
7、B
【解析】试题解析:A. 是轴对称图形但不是中心对称图形
B.既是轴对称图形又是中心对称图形;
C.是中心对称图形,但不是轴对称图形;
D.是轴对称图形不是中心对称图形;
故选B.
8、B
【解析】
根据三角形的中位线等于第三边的一半进行计算即可.
【详解】
∵D、E分别是△ABC边AB、AC的中点,
∴DE是△ABC的中位线,
∵BC=6,
∴DE=BC=1.
故选B.
【点睛】
本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.
9、B
【解析】
解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;
当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;
当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;
当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;
当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;
故选B.
10、D
【解析】
由旋转的性质得到AB=BE,根据菱形的性质得到AE=AB,推出△ABE是等边三角形,得到AB=3,AD=,根据三角函数的定义得到∠BAC=30°,求得AC⊥BE,推出C在对角线AH上,得到A,C,H共线,于是得到结论.
【详解】
如图,连接AC交BE于点O,
∵将矩形ABCD绕点B按顺时针方向旋转后得到矩形EBGF,
∴AB=BE,
∵四边形AEHB为菱形,
∴AE=AB,
∴AB=AE=BE,
∴△ABE是等边三角形,
∵AB=3,AD=,
∴tan∠CAB=,
∴∠BAC=30°,
∴AC⊥BE,
∴C在对角线AH上,
∴A,C,H共线,
∴AO=OH=AB=,
∵OC=BC=,
∵∠COB=∠OBG=∠G=90°,
∴四边形OBGM是矩形,
∴OM=BG=BC=,
∴HM=OH﹣OM=,
故选D.
【点睛】
本题考查了旋转的性质,菱形的性质,等边三角形的判定与性质,解直角三角形的应用等,熟练掌握和灵活运用相关的知识是解题的关键.
11、A
【解析】
根据这块矩形较长的边长=边长为3a的正方形的边长-边长为2b的小正方形的边长+边长为2b的小正方形的边长的2倍代入数据即可.
【详解】
依题意有:3a﹣2b+2b×2=3a﹣2b+4b=3a+2b.
故这块矩形较长的边长为3a+2b.故选A.
【点睛】
本题主要考查矩形、正方形和整式的运算,熟读题目,理解题意,清楚题中的等量关系是解答本题的关键.
12、A
【解析】
【分析】作BD⊥AC于D,如图,先利用等腰直角三角形的性质得到AC=AB=2,BD=AD=CD=,再利用AC⊥x轴得到C(,2),然后根据反比例函数图象上点的坐标特征计算k的值.
【详解】作BD⊥AC于D,如图,
∵△ABC为等腰直角三角形,
∴AC=AB=2,
∴BD=AD=CD=,
∵AC⊥x轴,
∴C(,2),
把C(,2)代入y=得k=×2=4,
故选A.
【点睛】本题考查了等腰直角三角形的性质以及反比例函数图象上点的坐标特征,熟知反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k是解题的关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、.
【解析】
试题分析:画树状图为:
共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率=.故答案为.
考点:列表法与树状图法.
14、8
【解析】
试题分析:根据幂的乘方与积的乘方运算法则进行计算即可
考点:(1)、幂的乘方;(2)、积的乘方
15、1
【解析】
主视图、左视图是分别从物体正面、左面看,所得到的图形.
【详解】
易得第一层最多有9个正方体,第二层最多有4个正方体,所以此几何体共有1个正方体.
故答案为1.
16、y1
直接利用一次函数的性质分析得出答案.
【详解】
解:∵直线经过第一、三、四象限,
∴y随x的增大而增大,
∵x1<x1,
∴y1与y1的大小关系为:y1<y1.
故答案为:y1
此题主要考查了一次函数图象上点的坐标特征,正确掌握一次函数增减性是解题关键.
17、a≥﹣1且a≠1
【解析】
利用一元二次方程的定义和判别式的意义得到≠1且△=(﹣1)2﹣4a•(﹣)≥1,然后求出两个不等式的公共部分即可.
【详解】
根据题意得a≠1且△=(﹣1)2﹣4a•(﹣)≥1,解得:a≥﹣1且a≠1.
故答案为a≥﹣1且a≠1.
【点睛】
本题考查了根的判别式:一元二次方程ax2+bx+c=1(a≠1)的根与△=b2﹣4ac有如下关系:当△>1时,方程有两个不相等的两个实数根;当△=1时,方程有两个相等的两个实数根;当△<1时,方程无实数根.
18、1
【解析】
首先连接BE,由题意易得BF=CF,△ACO∽△BKO,然后由相似三角形的对应边成比例,易得KO:CO=1:3,即可得OF:CF=OF:BF=1:1,在Rt△OBF中,即可求得tan∠BOF的值,继而求得答案.
【详解】
如图,连接BE,
∵四边形BCEK是正方形,
∴KF=CF=CK,BF=BE,CK=BE,BE⊥CK,
∴BF=CF,
根据题意得:AC∥BK,
∴△ACO∽△BKO,
∴KO:CO=BK:AC=1:3,
∴KO:KF=1:1,
∴KO=OF=CF=BF,
在Rt△PBF中,tan∠BOF==1,
∵∠AOD=∠BOF,
∴tan∠AOD=1.
故答案为1
【点睛】
此题考查了相似三角形的判定与性质,三角函数的定义.此题难度适中,解题的关键是准确作出辅助线,注意转化思想与数形结合思想的应用.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、
【解析】
试题分析:根据题意构建图形,结合图形,根据直角三角形的性质可求解.
试题解析:作AD⊥BC于点D,∵∠MBC=60°,
∴∠ABC=30°,
∵AB⊥AN,∴∠BAN=90°,∴∠BAC=105°,
则∠ACB=45°,
在Rt△ADB中,AB=1000,则AD=500,BD=,
在Rt△ADC中,AD=500,CD=500, 则BC=.
答:观察点B到花坛C的距离为米.
考点:解直角三角形
20、 (1) 见解析;(2)
【解析】
(1) 先通过证明△AOE为等边三角形, 得出AE=OD, 再根据“同位角相等, 两直线平行” 证明AE//OD, 从而证得四边形AODE是平行四边形, 再根据 “一组邻边相等的平行四边形为菱形” 即可得证.
(2) 利用在Rt△OBD中,sin∠B==可得出半径长度,在Rt△ODB中BD=,可求得BD的长,由CD=CB﹣BD可得CD的长,在RT△ACD中,AD=,即可求出AD长度.
【详解】
解:(1)证明:
连接OE、ED、OD,
在Rt△ABC中,∵∠B=30°,
∴∠A=60°,
∵OA=OE,∴△AEO是等边三角形,
∴AE=OE=AO
∵OD=OA,
∴AE=OD
∵BC是圆O的切线,OD是半径,
∴∠ODB=90°,又∵∠C=90°
∴AC∥OD,又∵AE=OD
∴四边形AODE是平行四边形,
∵OD=OA
∴四边形AODE是菱形.
(2)
在Rt△ABC中,∵AC=6,AB=10,
∴sin∠B==,BC=8
∵BC是圆O的切线,OD是半径,
∴∠ODB=90°,
在Rt△OBD中,sin∠B==,
∴OB=OD
∵AO+OB=AB=10,
∴OD+OD=10
∴OD=
∴OB=OD=
∴BD=
=5
∴CD=CB﹣BD=3
∴AD=
=
=3.
【点睛】
本题主要考查圆中的计算问题、 菱形以及相似三角形的判定与性质
21、(1)>,>;(2);(3)E(4,﹣4)或(,4)或(,4).
【解析】
(1)由抛物线开口向上,且与x轴有两个交点,即可做出判断;
(2)根据抛物线的对称轴及A的坐标,确定出B的坐标,将A,B,C三点坐标代入求出a,b,c的值,即可确定出抛物线解析式;
(3)存在,分两种情况讨论:(i)假设存在点E使得以A,C,E,F为顶点所组成的四边形是平行四边形,过点C作CE∥x轴,交抛物线于点E,过点E作EF∥AC,交x轴于点F,如图1所示;
(ii)假设在抛物线上还存在点E′,使得以A,C,F′,E′为顶点所组成的四边形是平行四边形,过点E′作E′F′∥AC交x轴于点F′,则四边形ACF′E′即为满足条件的平行四边形,可得AC=E′F′,AC∥E′F′,如图2,过点E′作E′G⊥x轴于点G,分别求出E坐标即可.
【详解】
(1)a>0,>0;
(2)∵直线x=2是对称轴,A(﹣2,0),
∴B(6,0),
∵点C(0,﹣4),
将A,B,C的坐标分别代入,解得:,,,
∴抛物线的函数表达式为;
(3)存在,理由为:(i)假设存在点E使得以A,C,E,F为顶点所组成的四边形是平行四边形,过点C作CE∥x轴,交抛物线于点E,过点E作EF∥AC,交x轴于点F,如图1所示,
则四边形ACEF即为满足条件的平行四边形,
∵抛物线关于直线x=2对称,
∴由抛物线的对称性可知,E点的横坐标为4,
又∵OC=4,∴E的纵坐标为﹣4,
∴存在点E(4,﹣4);
(ii)假设在抛物线上还存在点E′,使得以A,C,F′,E′为顶点所组成的四边形是平行四边形,
过点E′作E′F′∥AC交x轴于点F′,则四边形ACF′E′即为满足条件的平行四边形,
∴AC=E′F′,AC∥E′F′,如图2,过点E′作E′G⊥x轴于点G,
∵AC∥E′F′,
∴∠CAO=∠E′F′G,
又∵∠COA=∠E′GF′=90°,AC=E′F′,
∴△CAO≌△E′F′G,
∴E′G=CO=4,
∴点E′的纵坐标是4,
∴,解得:,,
∴点E′的坐标为(,4),同理可得点E″的坐标为(,4).
22、详见解析
【解析】
作∠MON的角平分线OT,在ON上截取OA′,使得OA′=OA,连接BA′交OT于点P,点P即为所求.
【详解】
解:如图,点P即为所求.
【点睛】
本题主要考查作图-复杂作图,利用了角平分线的性质,难点在于利用轴对称求最短路线的问题.
23、(1)证明见解析;(2)CD=2.
【解析】
(1)根据三角函数的概念可知tanA=,cos∠BCD=,根据tanA=2cos∠BCD即可得结论;(2)由∠B的余弦值和(1)的结论即可求得BD,利用勾股定理求得CD即可.
【详解】
(1)∵tanA=,cos∠BCD=,tanA=2cos∠BCD,
∴=2·,
∴BC=2AD.
(2)∵cosB==,BC=2AD,
∴=.
∵AB=10,∴AD=×10=4,BD=10-4=6,
∴BC=8,∴CD==2.
【点睛】
本题考查了直角三角形中的有关问题,主要考查了勾股定理,三角函数的有关计算.熟练掌握三角函数的概念是解题关键.
24、(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)160000人;
【解析】
(1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m值.
(2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数; 中位数是将一组数据按大小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此求解即可.
(3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h的人数” 的概率乘以全校总人数求解即可.
【详解】
(1)本次接受随机抽样调查的中学生人数为60÷24%=250人,
m=100﹣(24+48+8+8)=12,
故答案为250、12;
(2)平均数为=1.38(h),
众数为1.5h,中位数为=1.5h;
(3)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000×=160000人.
【点睛】
本题主要考查数据的收集、 处理以及统计图表.
25、(1)C(﹣3,2);(2)y1=, y2=﹣x+3; (3)3<x<1.
【解析】
分析:
(1)过点C作CN⊥x轴于点N,由已知条件证Rt△CAN≌Rt△AOB即可得到AN=BO=1,CN=AO=2,NO=NA+AO=3结合点C在第二象限即可得到点C的坐标;
(2)设△ABC向右平移了c个单位,则结合(1)可得点C′,B′的坐标分别为(﹣3+c,2)、(c,1),再设反比例函数的解析式为y1=,将点C′,B′的坐标代入所设解析式即可求得c的值,由此即可得到点C′,B′的坐标,这样用待定系数法即可求得两个函数的解析式了;
(3)结合(2)中所得点C′,B′的坐标和图象即可得到本题所求答案.
详解:
(1)作CN⊥x轴于点N,
∴∠CAN=∠CAB=∠AOB=90°,
∴∠CAN+∠CAN=90°,∠CAN+∠OAB=90°,
∴∠CAN=∠OAB,
∵A(﹣2,0)B(0,1),
∴OB=1,AO=2,
在Rt△CAN和Rt△AOB,
∵ ,
∴Rt△CAN≌Rt△AOB(AAS),
∴AN=BO=1,CN=AO=2,NO=NA+AO=3,
又∵点C在第二象限,
∴C(﹣3,2);
(2)设△ABC沿x轴的正方向平移c个单位,则C′(﹣3+c,2),则B′(c,1),
设这个反比例函数的解析式为:y1=,
又点C′和B′在该比例函数图象上,把点C′和B′的坐标分别代入y1=,得﹣1+2c=c,
解得c=1,即反比例函数解析式为y1=,
此时C′(3,2),B′(1,1),设直线B′C′的解析式y2=mx+n,
∵ ,
∴ ,
∴直线C′B′的解析式为y2=﹣x+3;
(3)由图象可知反比例函数y1和此时的直线B′C′的交点为C′(3,2),B′(1,1),
∴若y1<y2时,则3<x<1.
点睛:本题是一道综合考查“全等三角形”、“一次函数”、“反比例函数”和“平移的性质”的综合题,解题的关键是:(1)通过作如图所示的辅助线,构造出全等三角形Rt△CAN和Rt△AOB;(2)利用平移的性质结合点B、C的坐标表达出点C′和B′的坐标,由点C′和B′都在反比例函数的图象上列出方程,解方程可得点C′和B′的坐标,从而使问题得到解决.
26、(1);(2)P(1,); (3)3或5.
【解析】
(1)将点A、B代入抛物线,用待定系数法求出解析式.
(2)对称轴为直线x=1,过点P作PG⊥y轴,垂足为G, 由∠PBO=∠BAO,得tan∠PBO=tan∠BAO,即,可求出P的坐标.
(3)新抛物线的表达式为,由题意可得DE=2,过点F作FH⊥y轴,垂足为H,∵DE∥FH,EO=2OF,∴,∴FH=1.然后分情况讨论点D在y轴的正半轴上和在y轴的负半轴上,可求得m的值为3或5.
【详解】
解:(1)∵抛物线经过点A(﹣2,0),点B(0,4)
∴,解得,
∴抛物线解析式为,
(2),
∴对称轴为直线x=1,过点P作PG⊥y轴,垂足为G,
∵∠PBO=∠BAO,∴tan∠PBO=tan∠BAO,
∴,
∴,
∴,
,
∴P(1,),
(3)设新抛物线的表达式为
则,,DE=2
过点F作FH⊥y轴,垂足为H,∵DE∥FH,EO=2OF
∴,
∴FH=1.
点D在y轴的正半轴上,则,
∴,
∴,
∴m=3,
点D在y轴的负半轴上,则,
∴,
∴,
∴m=5,
∴综上所述m的值为3或5.
【点睛】
本题是二次函数和相似三角形的综合题目,整体难度不大,但是非常巧妙,学会灵活运用是关键.
27、(1)甲,乙两种玩具分别是15元/件,1元/件;(2)共有四种方案.
【解析】
(1)设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,根据已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.
(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,根据甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,可列出不等式组求解.
【详解】
解:设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,
x=15,
经检验x=15是原方程的解.
∴40﹣x=1.
甲,乙两种玩具分别是15元/件,1元/件;
(2)设购进甲种玩具y件,则购进乙种玩具(48﹣y)件,
,
解得20≤y<2.
因为y是整数,甲种玩具的件数少于乙种玩具的件数,
∴y取20,21,22,23,
共有4种方案.
考点:分式方程的应用;一元一次不等式组的应用.
2023-2024学年河北省邯郸市馆陶县魏僧寨中学、房寨中学九年级(下)期中数学试卷(含解析): 这是一份2023-2024学年河北省邯郸市馆陶县魏僧寨中学、房寨中学九年级(下)期中数学试卷(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
河北省邯郸市馆陶县魏僧寨中学房寨中学联考2023-2024学年九年级下学期期中数学试题(原卷版+解析版): 这是一份河北省邯郸市馆陶县魏僧寨中学房寨中学联考2023-2024学年九年级下学期期中数学试题(原卷版+解析版),文件包含河北省邯郸市馆陶县魏僧寨中学房寨中学联考2023-2024学年九年级下学期期中数学试题原卷版docx、河北省邯郸市馆陶县魏僧寨中学房寨中学联考2023-2024学年九年级下学期期中数学试题解析版docx等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。
河北省邯郸市馆陶县魏僧寨中学2023-2024学年数学九上期末教学质量检测试题含答案: 这是一份河北省邯郸市馆陶县魏僧寨中学2023-2024学年数学九上期末教学质量检测试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,方程的解是等内容,欢迎下载使用。