2021-2022学年广西壮族自治区南宁市马山县重点中学中考数学适应性模拟试题含解析
展开
这是一份2021-2022学年广西壮族自治区南宁市马山县重点中学中考数学适应性模拟试题含解析,共23页。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.已知二次函数y=x2﹣4x+m的图象与x轴交于A、B两点,且点A的坐标为(1,0),则线段AB的长为( )
A.1B.2C.3D.4
2.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为( )
A.20B.24C.28D.30
3.如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为( )
A.45°B.60°C.70°D.90°
4.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于( )
A.4B.6C.2D.8
5.等腰三角形的一个外角是100°,则它的顶角的度数为( )
A.80°B.80°或50°C.20°D.80°或20°
6.若分式 有意义,则x的取值范围是
A.x>1B.x<1C.x≠1D.x≠0
7.设x1,x2是一元二次方程x2﹣2x﹣5=0的两根,则x12+x22的值为( )
A.6B.8C.14D.16
8.在下列网格中,小正方形的边长为1,点A、B、O都在格点上,则的正弦值是
A.B.C.D.
9.在同一直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为( )
A.1 B.m C.m2 D.
10.某校体育节有13名同学参加女子百米赛跑,它们预赛的成绩各不相同,取前6名参加决赛.小颖已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这13名同学成绩的( )
A.方差 B.极差 C.中位数 D.平均数
二、填空题(本大题共6个小题,每小题3分,共18分)
11.一个凸多边形的内角和与外角和相等,它是______边形.
12.如图,四边形是矩形,四边形是正方形,点在轴的负半轴上,点在轴的正半轴上,点在上,点在反比例函数(为常数,)的图像上,正方形的面积为4,且,则值为________.
13.我国倡导的“一带一路”建设将促进我国与世界各国的互利合作,“一带一路”地区覆盖总人口约为4400000000人,将数据4400000000用科学记数法表示为______.
14.分解因:=______________________.
15.如图1,AB是半圆O的直径,正方形OPNM的对角线ON与AB垂直且相等,Q是OP的中点.一只机器甲虫从点A出发匀速爬行,它先沿直径爬到点B,再沿半圆爬回到点A,一台微型记录仪记录了甲虫的爬行过程.设甲虫爬行的时间为t,甲虫与微型记录仪之间的距离为y,表示y与t的函数关系的图象如图2所示,那么微型记录仪可能位于图1中的( )
A.点M B.点N C.点P D.点Q
16.如图,PC是⊙O的直径,PA切⊙O于点P,AO交⊙O于点B;连接BC,若,则______.
三、解答题(共8题,共72分)
17.(8分)小李在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考,请你帮他完成如下问题:
他认为该定理有逆定理:“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立.即如图①,在中,是边上的中线,若,求证:.如图②,已知矩形,如果在矩形外存在一点,使得,求证:.(可以直接用第(1)问的结论)在第(2)问的条件下,如果恰好是等边三角形,请求出此时矩形的两条邻边与的数量关系.
18.(8分)如图,矩形ABCD中,AB=4,BC=6,E是BC边的中点,点P在线段AD上,过P作PF⊥AE于F,设PA=x.
(1)求证:△PFA∽△ABE;
(2)当点P在线段AD上运动时,设PA=x,是否存在实数x,使得以点P,F,E为顶点的三角形也与△ABE相似?若存在,请求出x的值;若不存在,请说明理由;
(3)探究:当以D为圆心,DP为半径的⊙D与线段AE只有一个公共点时,请直接写出x满足的条件: .
19.(8分)2018年大唐芙蓉园新春灯会以“鼓舞中华”为主题,既有新年韵味,又结合“一带一路”展示了丝绸之路上古今文化经贸繁荣的盛况。小丽的爸爸买了两张门票,她和各个两人都想去观看,可是爸爸只能带一人去,于是读九年级的哥哥提议用他们3人吃饭的彩色筷子做游戏(筷子除颜色不同,其余均相同),其中小丽的筷子颜色是红色,哥哥的是银色,爸爸的是白色,将3人的3双款子全部放在 一个不透明的筷篓里摇匀,小丽随机从筷篓里取出一根,记下颜色放回,然后哥哥同样从筷篓里取出一根,若两人取出的筷子颜色相同则小丽去,若不同,则哥哥去。
(1)求小丽随机取出一根筷子是红色的概率;
(2)请用列表或画树状图的方法求出小随爸爸去看新春灯会的概率。
20.(8分)如图1,四边形ABCD中,,,点P为DC上一点,且,分别过点A和点C作直线BP的垂线,垂足为点E和点F.
证明:∽;
若,求的值;
如图2,若,设的平分线AG交直线BP于当,时,求线段AG的长.
21.(8分)如图,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M 称为碟顶.
由定义知,取AB中点N,连结MN,MN与AB的关系是_____.抛物线y=对应的准蝶形必经过B(m,m),则m=_____,对应的碟宽AB是_____.抛物线y=ax2﹣4a﹣(a>0)对应的碟宽在x 轴上,且AB=1.
①求抛物线的解析式;
②在此抛物线的对称轴上是否有这样的点P(xp,yp),使得∠APB为锐角,若有,请求出yp的取值范围.若没有,请说明理由.
22.(10分)如图,已知矩形ABCD中,AB=3,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).
(1)若m=5,求当P,E,B三点在同一直线上时对应的t的值.
(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于2,求所有这样的m的取值范围.
23.(12分)为看丰富学生课余文化生活,某中学组织学生进行才艺比赛,每人只能从以下五个项目中选报一项:.书法比赛,.绘画比赛,.乐器比赛,.象棋比赛,.围棋比赛根据学生报名的统计结果,绘制了如下尚不完整的统计图:
图1 各项报名人数扇形统计图:
图2 各项报名人数条形统计图:
根据以上信息解答下列问题:
(1)学生报名总人数为 人;
(2)如图1项目D所在扇形的圆心角等于 ;
(3)请将图2的条形统计图补充完整;
(4)学校准备从书法比赛一等奖获得者甲、乙、丙、丁四名同学中任意选取两名同学去参加全市的书法比赛,求恰好选中甲、乙两名同学的概率.
24.已知,平面直角坐标系中的点A(a,1),t=ab﹣a2﹣b2(a,b是实数)
(1)若关于x的反比例函数y=过点A,求t的取值范围.
(2)若关于x的一次函数y=bx过点A,求t的取值范围.
(3)若关于x的二次函数y=x2+bx+b2过点A,求t的取值范围.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、B
【解析】
先将点A(1,0)代入y=x2﹣4x+m,求出m的值,将点A(1,0)代入y=x2﹣4x+m,得到x1+x2=4,x1•x2=3,即可解答
【详解】
将点A(1,0)代入y=x2﹣4x+m,
得到m=3,
所以y=x2﹣4x+3,与x轴交于两点,
设A(x1,y1),b(x2,y2)
∴x2﹣4x+3=0有两个不等的实数根,
∴x1+x2=4,x1•x2=3,
∴AB=|x1﹣x2|= =2;
故选B.
【点睛】
此题考查抛物线与坐标轴的交点,解题关键在于将已知点代入.
2、D
【解析】
试题解析:根据题意得=30%,解得n=30,
所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.
故选D.
考点:利用频率估计概率.
3、D
【解析】
已知△ABC绕点A按逆时针方向旋转l20°得到△AB′C′,根据旋转的性质可得∠BAB′=∠CAC′=120°,AB=AB′,根据等腰三角形的性质和三角形的内角和定理可得∠AB′B=(180°-120°)=30°,再由AC′∥BB′,可得∠C′AB′=∠AB′B=30°,所以∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°.故选D.
4、A
【解析】
解:连接OA,OC,过点O作OD⊥AC于点D,
∵∠AOC=2∠B,且∠AOD=∠COD=∠AOC,
∴∠COD=∠B=60°;
在Rt△COD中,OC=4,∠COD=60°,
∴CD=OC=2,
∴AC=2CD=4.
故选A.
【点睛】
本题考查三角形的外接圆;勾股定理;圆周角定理;垂径定理.
5、D
【解析】
根据邻补角的定义求出与外角相邻的内角,再根据等腰三角形的性质分情况解答.
【详解】
∵等腰三角形的一个外角是100°,
∴与这个外角相邻的内角为180°−100°=80°,
当80°为底角时,顶角为180°-160°=20°,
∴该等腰三角形的顶角是80°或20°.
故答案选:D.
【点睛】
本题考查了等腰三角形的性质,解题的关键是熟练的掌握等腰三角形的性质.
6、C
【解析】
分式分母不为0,所以,解得.
故选:C.
7、C
【解析】
根据根与系数的关系得到x1+x2=2,x1•x2=-5,再变形x12+x22得到(x1+x2)2-2x1•x2,然后利用代入计算即可.
【详解】
∵一元二次方程x2-2x-5=0的两根是x1、x2,
∴x1+x2=2,x1•x2=-5,
∴x12+x22=(x1+x2)2-2x1•x2=22-2×(-5)=1.
故选C.
【点睛】
考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=- ,x1•x2= .
8、A
【解析】
由题意根据勾股定理求出OA,进而根据正弦的定义进行分析解答即可.
【详解】
解:由题意得,,,
由勾股定理得,,
.
故选:A.
【点睛】
本题考查的是锐角三角函数的定义,在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.
9、D
【解析】
本题主要考察二次函数与反比例函数的图像和性质.
【详解】
令二次函数中y=m.即x2=m,解得x=或x=令反比例函数中y=m,即=m,解得x=,将x的三个值相加得到ω=+()+=.所以本题选择D.
【点睛】
巧妙借助三点纵坐标相同的条件建立起两个函数之间的联系,从而解答.
10、C
【解析】13个不同的分数按从小到大排序后,中位数及中位数之后的共有7个数,
故只要知道自己的分数和中位数就可以知道是否获奖了.
故选C.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、四
【解析】
任何多边形的外角和是360度,因而这个多边形的内角和是360度.n边形的内角和是(n-2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.
【详解】
解:设边数为n,根据题意,得
(n-2)•180=360,
解得n=4,则它是四边形.
故填:四.
【点睛】
此题主要考查已知多边形的内角和求边数,可以转化为方程的问题来解决.
12、-1
【解析】
试题分析:∵正方形ADEF的面积为4,
∴正方形ADEF的边长为2,
∴BF=2AF=4,AB=AF+BF=2+4=1.
设B点坐标为(t,1),则E点坐标(t-2,2),
∵点B、E在反比例函数y=的图象上,
∴k=1t=2(t-2),
解得t=-1,k=-1.
考点:反比例函数系数k的几何意义.
13、4.4×1
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
4400000000的小数点向左移动9位得到4.4,
所以4400000000用科学记数法可表示为:4.4×1,
故答案为4.4×1.
【点睛】
本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
14、 (x-2y)(x-2y+1)
【解析】
根据所给代数式第一、二、五项一组,第三、四项一组,分组分解后再提公因式即可分解.
【详解】
=x2-4xy+4y2-2y+x
=(x-2y)2+x-2y
=(x-2y)(x-2y+1)
15、D
【解析】
D.
试题分析:应用排他法分析求解:
若微型记录仪位于图1中的点M,AM最小,与图2不符,可排除A.
若微型记录仪位于图1中的点N,由于AN=BM,即甲虫从A到B时是对称的,与图2不符,可排除B.
若微型记录仪位于图1中的点P,由于甲虫从A到OP与圆弧的交点时甲虫与微型记录仪之间的距离y逐渐减小;甲虫从OP与圆弧的交点到A时甲虫与微型记录仪之间的距离y逐渐增大,即y与t的函数关系的图象只有两个趋势,与图2不符,可排除C.
故选D.
考点:1.动点问题的函数图象分析;2.排他法的应用.
16、26°
【解析】
根据圆周角定理得到∠AOP=2∠C=64°,根据切线的性质定理得到∠APO=90°,根据直角三角形两锐角互余计算即可.
【详解】
由圆周角定理得:∠AOP=2∠C=64°.
∵PC是⊙O的直径,PA切⊙O于点P,∴∠APO=90°,∴∠A=90°﹣∠AOP=90°﹣64°=26°.
故答案为:26°.
【点睛】
本题考查了切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.
三、解答题(共8题,共72分)
17、(1)详见解析;(2)详见解析;(3)
【解析】
(1)利用等腰三角形的性质和三角形内角和即可得出结论;
(2)先判断出OE=AC,即可得出OE=BD,即可得出结论;
(3)先判断出△ABE是底角是30°的等腰三角形,即可构造直角三角形即可得出结论.
【详解】
(1)∵AD=BD,
∴∠B=∠BAD,
∵AD=CD,
∴∠C=∠CAD,
在△ABC中,∠B+∠C+∠BAC=180°,
∴∠B+∠C+∠BAD+∠CAD=∠B+∠C+∠B+∠C=180°
∴∠B+∠C=90°,
∴∠BAC=90°,
(2)如图②,连接与,交点为,连接
四边形是矩形
(3)如图3,过点做于点
四边形是矩形
,
是等边三角形
,
由(2)知,
在中,
,
【点睛】
此题是四边形综合题,主要考查了矩形是性质,直角三角形的性质和判定,含30°角的直角三角形的性质,三角形的内角和公式,解(1)的关键是判断出∠B=∠BAD,解(2)的关键是判断出OE=AC,解(3)的关键是判断出△ABE是底角为30°的等腰三角形,进而构造直角三角形.
18、(1)证明见解析;(2)3或.(3)或0<
【解析】
(1)根据矩形的性质,结合已知条件可以证明两个角对应相等,从而证明三角形相似;
(2)由于对应关系不确定,所以应针对不同的对应关系分情况考虑:当 时,则得到四边形为矩形,从而求得的值;当时,再结合(1)中的结论,得到等腰.再根据等腰三角形的三线合一得到是的中点,运用勾股定理和相似三角形的性质进行求解.
(3)此题首先应针对点的位置分为两种大情况:①与AE相切,② 与线段只有一个公共点,不一定必须相切,只要保证和线段只有一个公共点即可.故求得相切时的情况和相交,但其中一个交点在线段外的情况即是的取值范围.
【详解】
(1)证明:∵矩形ABCD,
∴AD∥BC.
∴∠PAF=∠AEB.
又∵PF⊥AE,
∴△PFA∽△ABE.
(2)情况1,当△EFP∽△ABE,且∠PEF=∠EAB时,
则有PE∥AB
∴四边形ABEP为矩形,
∴PA=EB=3,即x=3.
情况2,当△PFE∽△ABE,且∠PEF=∠AEB时,
∵∠PAF=∠AEB,
∴∠PEF=∠PAF.
∴PE=PA.
∵PF⊥AE,
∴点F为AE的中点,
即
∴满足条件的x的值为3或
(3) 或
【点睛】
两组角对应相等,两三角形相似.
19、(1);(2).
【解析】
(1)直接利用概率公式计算;
(2)画树状图展示所有36种等可能的结果数,再找出两人取出的筷子颜色相同的结果数,然后根据概率公式求解.
【详解】
(1)小丽随机取出一根筷子是红色的概率==;
(2)画树状图为:
共有36种等可能的结果数,其中两人取出的筷子颜色相同的结果数为12,
所以小丽随爸爸去看新春灯会的概率==.
【点睛】
本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.
20、(1)证明见解析;(2);(3).
【解析】
由余角的性质可得,即可证∽;
由相似三角形的性质可得,由等腰三角形的性质可得,即可求的值;
由题意可证∽,可得,可求,由等腰三角形的性质可得AE平分,可证,可得是等腰直角三角形,即可求AG的长.
【详解】
证明:,
又,
又,
∽
∽,
又,,
如图,延长AD与BG的延长线交于H点
,
∽
∴
,由可知≌
,
,
代入上式可得,
∽,
,,
∴
,,
平分
又平分,
,
是等腰直角三角形.
∴.
【点睛】
本题考查的知识点是全等三角形的判定和性质,相似三角形的判定和性质,解题关键是添加恰当辅助线构造相似三角形.
21、(1)MN与AB的关系是:MN⊥AB,MN=AB,(2)2,4;(2)①y=x2﹣2;②在此抛物线的对称轴上有这样的点P,使得∠APB 为锐角,yp的取值范围是yp<﹣2或yp>2.
【解析】
(1)直接利用等腰直角三角形的性质分析得出答案;
(2)利用已知点为B(m,m),代入抛物线解析式进而得出m的值,即可得出AB的值;
(2)①根据题意得出抛物线必过(2,0),进而代入求出答案;
②根据y=x2﹣2的对称轴上P(0,2),P(0,﹣2)时,∠APB 为直角,进而得出答案.
【详解】
(1)MN与AB的关系是:MN⊥AB,MN=AB,
如图1,∵△AMB是等腰直角三角形,且N为AB的中点,
∴MN⊥AB,MN=AB,
故答案为MN⊥AB,MN=AB;
(2)∵抛物线y=对应的准蝶形必经过B(m,m),
∴m=m2,
解得:m=2或m=0(不合题意舍去),
当m=2则,2=x2,
解得:x=±2,
则AB=2+2=4;
故答案为2,4;
(2)①由已知,抛物线对称轴为:y轴,
∵抛物线y=ax2﹣4a﹣(a>0)对应的碟宽在x 轴上,且AB=1.
∴抛物线必过(2,0),代入y=ax2﹣4a﹣(a>0),
得,9a﹣4a﹣=0,
解得:a=,
∴抛物线的解析式是:y=x2﹣2;
②由①知,如图2,y=x2﹣2的对称轴上P(0,2),P(0,﹣2)时,∠APB 为直角,
∴在此抛物线的对称轴上有这样的点P,使得∠APB 为锐角,yp的取值范围是yp<﹣2或yp>2.
【点睛】
此题主要考查了二次函数综合以及等腰直角三角形的性质,正确应用等腰直角三角形的性质是解题关键.
22、 (1) 1;(1) ≤m<.
【解析】
(1)在Rt△ABP中利用勾股定理即可解决问题;
(1)分两种情形求出AD的值即可解决问题:①如图1中,当点P与A重合时,点E在BC的下方,点E到BC的距离为1.②如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为1.
【详解】
解:(1):(1)如图1中,设PD=t.则PA=5-t.
∵P、B、E共线,
∴∠BPC=∠DPC,
∵AD∥BC,
∴∠DPC=∠PCB,
∴∠BPC=∠PCB,
∴BP=BC=5,
在Rt△ABP中,∵AB1+AP1=PB1,
∴31+(5-t)1=51,
∴t=1或9(舍弃),
∴t=1时,B、E、P共线.
(1)如图1中,当点P与A重合时,点E在BC的下方,点E到BC的距离为1.
作EQ⊥BC于Q,EM⊥DC于M.则EQ=1,CE=DC=3
易证四边形EMCQ是矩形,
∴CM=EQ=1,∠M=90°,
∴EM=,
∵∠DAC=∠EDM,∠ADC=∠M,
∴△ADC∽△DME,
∴
∴
∴AD=,
如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为1.
作EQ⊥BC于Q,延长QE交AD于M.则EQ=1,CE=DC=3
在Rt△ECQ中,QC=DM=,
由△DME∽△CDA,
∴
∴,
∴AD=,
综上所述,在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于1,这样的m的取值范围≤m<.
【点睛】
本题考查四边形综合问题,根据题意作出图形,熟练运用勾股定理和相似三角形的性质是本题的关键.
23、(1)200;(2)54°;(3)见解析;(4)
【解析】
(1)根据A的人数及所占的百分比即可求出总人数;
(2)用D的人数除以总人数再乘360°即可得出答案;
(3)用总人数减去A,B,D,E的人数即为C对应的人数,然后即可把条形统计图补充完整;
(4)用树状图列出所有的情况,找出恰好选中甲、乙两名同学的情况数,利用概率公式求解即可.
【详解】
解:(1)学生报名总人数为(人),
故答案为:200;
(2)项目所在扇形的圆心角等于,
故答案为:54°;
(3)项目的人数为,
补全图形如下:
(4)画树状图得:
所有出现的等可能性结果共有12种,其中满足条件的结果有2种.
恰好选中甲、乙两名同学的概率为.
【点睛】
本题主要考查扇形统计图与条形统计图的结合,能够从图表中获取有用信息,掌握概率公式是解题的关键.
24、(1)t≤﹣;(2)t≤3;(3)t≤1.
【解析】
(1)把点A的坐标代入反比例函数解析式求得a的值;然后利用二次函数的最值的求法得到t的取值范围.
(2)把点A的坐标代入一次函数解析式求得a=;然后利用二次函数的最值的求法得到t的取值范围.
(3)把点A的坐标代入二次函数解析式求得以a2+b2=1-ab;然后利用非负数的性质得到t的取值范围.
【详解】
解:(1)把A(a,1)代入y=得到:1=,
解得a=1,
则t=ab﹣a2﹣b2=b﹣1﹣b2=﹣(b﹣)2﹣.
因为抛物线t=﹣(b﹣)2﹣的开口方向向下,且顶点坐标是(,﹣),
所以t的取值范围为:t≤﹣;
(2)把A(a,1)代入y=bx得到:1=ab,
所以a=,
则t=ab﹣a2﹣b2=﹣(a2+b2)+1=﹣(b+)2+3≤3,
故t的取值范围为:t≤3;
(3)把A(a,1)代入y=x2+bx+b2得到:1=a2+ab+b2,
所以ab=1﹣(a2+b2),
则t=ab﹣a2﹣b2=1﹣2(a2+b2)≤1,
故t的取值范围为:t≤1.
【点睛】
本题考查了反比例函数、一次函数以及二次函数的性质.代入求值时,注意配方法的应用.
相关试卷
这是一份广西壮族自治区南宁市马山县重点中学2023年中考数学模拟精编试卷含解析,共19页。
这是一份黄冈市重点中学2021-2022学年中考数学适应性模拟试题含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,下列计算正确的是等内容,欢迎下载使用。
这是一份广西南宁市马山县重点中学2022年中考数学押题试卷含解析,共20页。试卷主要包含了考生要认真填写考场号和座位序号等内容,欢迎下载使用。