03解答题(基础题)题知识点分类-江苏省宿迁市五年(2018-2022)中考数学真题分层分类汇编
展开
这是一份03解答题(基础题)题知识点分类-江苏省宿迁市五年(2018-2022)中考数学真题分层分类汇编,共26页。试卷主要包含了﹣1﹣,0+|1﹣|,﹣1+﹣4sin60°,计算,÷,其中a=﹣2,,其中x=﹣2,解方程组,解方程等内容,欢迎下载使用。
03解答题(基础题)题知识点分类-江苏省宿迁市五年(2018-2022)中考数学真题分层分类汇编一.实数的运算(共4小题)1.(2020•宿迁)计算:(﹣2)0+()﹣1﹣.2.(2019•宿迁)计算:()﹣1﹣(π﹣1)0+|1﹣|.3.(2022•宿迁)计算:()﹣1+﹣4sin60°.4.(2021•宿迁)计算:4sin45°.二.分式的化简求值(共2小题)5.(2019•宿迁)先化简,再求值:(1+)÷,其中a=﹣2.6.(2020•宿迁)先化简,再求值:÷(x﹣),其中x=﹣2.三.解二元一次方程组(共1小题)7.(2018•宿迁)解方程组:.四.解分式方程(共1小题)8.(2022•宿迁)解方程:.五.一元一次不等式的应用(共1小题)9.(2022•宿迁)某单位准备购买文化用品,现有甲、乙两家超市进行促销活动,该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖.(1)若该单位需要购买30件这种文化用品,则在甲超市的购物金额为 元;乙超市的购物金额为 元;(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?六.一元一次不等式组的整数解(共1小题)10.(2021•宿迁)解不等式组,并写出满足不等式组的所有整数解.七.一次函数的应用(共1小题)11.(2021•宿迁)一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离s(km)与慢车行驶的时间t(h)之间的关系如图:(1)快车的速度为 km/h,C点的坐标为 .(2)慢车出发多少小时后,两车相距200km.八.二次函数的应用(共1小题)12.(2020•宿迁)某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:销售单价x(元/千克)55606570销售量y(千克)70605040(1)求y(千克)与x(元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?九.平行四边形的性质(共3小题)13.(2021•宿迁)在①AE=CF;②OE=OF;③BE∥DF这三个条件中任选一个补充在下面横线上,并完成证明过程.已知,如图,四边形ABCD是平行四边形,对角线AC、BD相交于点O,点E、F在AC上, (填写序号).求证:BE=DF.14.(2022•宿迁)如图,在▱ABCD中,点E、F分别是边AB、CD的中点.求证:AF=CE.15.(2018•宿迁)如图,在▱ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD交于点G、H.求证:AG=CH.一十.矩形的性质(共1小题)16.(2019•宿迁)如图,矩形ABCD中,AB=4,BC=2,点E、F分别在AB、CD上,且BE=DF=.(1)求证:四边形AECF是菱形;(2)求线段EF的长.一十一.正方形的性质(共1小题)17.(2020•宿迁)如图,在正方形ABCD中,点E,F在AC上,且AF=CE.求证:四边形BEDF是菱形.一十二.圆周角定理(共1小题)18.(2020•宿迁)如图,在△ABC中,D是边BC上一点,以BD为直径的⊙O经过点A,且∠CAD=∠ABC.(1)请判断直线AC是否是⊙O的切线,并说明理由;(2)若CD=2,CA=4,求弦AB的长.一十三.直线与圆的位置关系(共1小题)19.(2021•宿迁)如图,在Rt△AOB中,∠AOB=90°,以点O为圆心,OA为半径的圆交AB于点C,点D在边OB上,且CD=BD.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)已知tan∠ODC=,AB=40,求⊙O的半径.一十四.解直角三角形的应用(共1小题)20.(2019•宿迁)宿迁市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中AB、CD都与地面l平行,车轮半径为32cm,∠BCD=64°,BC=60cm,坐垫E与点B的距离BE为15cm.(1)求坐垫E到地面的距离;(2)根据经验,当坐垫E到CD的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为80cm,现将坐垫E调整至坐骑舒适高度位置E',求EE′的长.(结果精确到0.1cm,参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)一十五.解直角三角形的应用-仰角俯角问题(共1小题)21.(2022•宿迁)如图,某学习小组在教学楼AB的顶部观测信号塔CD底部的俯角为30°,信号塔顶部的仰角为45°.已知教学楼AB的高度为20m,求信号塔的高度(计算结果保留根号).一十六.解直角三角形的应用-方向角问题(共1小题)22.(2020•宿迁)如图,在一笔直的海岸线上有A,B两个观测站,A在B的正西方向,AB=2km,从观测站A测得船C在北偏东45°的方向,从观测站B测得船C在北偏西30°的方向.求船C离观测站A的距离.一十七.扇形统计图(共1小题)23.(2021•宿迁)某机构为了解宿迁市人口年龄结构情况,对宿迁市的人口数据进行随机抽样分析,绘制了尚不完整的统计图表:人口年龄结构统计表 类别ABCD年龄(t岁)0≤t<1515≤t<6060≤t<65t≥65人数(万人)4.711.6m2.7根据以上信息解答下列问题:(1)本次抽样调查,共调查了 万人;(2)请计算统计表中m的值以及扇形统计图中“C”对应的圆心角度数;(3)宿迁市现有人口约500万人,请根据此次抽查结果,试估计宿迁市现有60岁及以上的人口数量.一十八.条形统计图(共1小题)24.(2022•宿迁)为了解某校九年级学生开展“综合与实践”活动的情况,抽样调查了该校m名九年级学生上学期参加“综合与实践”活动的天数,并根据调查所得的数据绘制了如下尚不完整的两幅统计图.根据图表信息,解答下列问题:(1)m= ,n= ;(2)补全条形统计图;(3)根据抽样调查的结果,请你估计该校九年级2000名学生中上学期参加“综合与实践”活动4天及以上的人数.一十九.列表法与树状图法(共2小题)25.(2022•宿迁)从甲、乙、丙、丁4名学生中选2名学生参加一次乒乓球单打比赛,求下列事件发生的概率.(1)甲一定参加比赛,再从其余3名学生中任意选取1名,恰好选中丙的概率是 ;(2)任意选取2名学生参加比赛,求一定有乙的概率.(用树状图或列表的方法求解).26.(2020•宿迁)将4张印有“梅”“兰”“竹”“菊”字样的卡片(卡片的形状、大小、质地都相同)放在一个不透明的盒子中,将卡片搅匀.(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为 .(2)先从盒子中任意取出1张卡片,记录后放回并搅匀,再从中任意取出1张卡片,求取出的两张卡片中,至少有1张印有“兰”字的概率(请用画树状图或列表等方法求解).
参考答案与试题解析一.实数的运算(共4小题)1.(2020•宿迁)计算:(﹣2)0+()﹣1﹣.【解答】解:(﹣2)0+()﹣1﹣,=1+3﹣3,=1.2.(2019•宿迁)计算:()﹣1﹣(π﹣1)0+|1﹣|.【解答】解:原式=2﹣1+﹣1=.3.(2022•宿迁)计算:()﹣1+﹣4sin60°.【解答】解:原式=2+2﹣4×=2+2﹣2=2.4.(2021•宿迁)计算:4sin45°.【解答】解:原式=1+2﹣4×=1+2﹣2=1.二.分式的化简求值(共2小题)5.(2019•宿迁)先化简,再求值:(1+)÷,其中a=﹣2.【解答】解:原式=×=,当a=﹣2时,原式==﹣.6.(2020•宿迁)先化简,再求值:÷(x﹣),其中x=﹣2.【解答】解:原式=÷(﹣)=÷=•=,当x=﹣2时,原式===.三.解二元一次方程组(共1小题)7.(2018•宿迁)解方程组:.【解答】解:,①×2﹣②得:﹣x=﹣6,解得:x=6,故6+2y=0,解得:y=﹣3,故方程组的解为:.四.解分式方程(共1小题)8.(2022•宿迁)解方程:.【解答】解:=1+,2x=x﹣2+1,x=﹣1,经检验x=﹣1是原方程的解,则原方程的解是x=﹣1.五.一元一次不等式的应用(共1小题)9.(2022•宿迁)某单位准备购买文化用品,现有甲、乙两家超市进行促销活动,该文化用品两家超市的标价均为10元/件,甲超市一次性购买金额不超过400元的不优惠,超过400元的部分按标价的6折售卖;乙超市全部按标价的8折售卖.(1)若该单位需要购买30件这种文化用品,则在甲超市的购物金额为 300 元;乙超市的购物金额为 240 元;(2)假如你是该单位的采购员,你认为选择哪家超市支付的费用较少?【解答】解:(1)∵10×30=300(元),300<400,∴在甲超市的购物金额为300元,在乙超市的购物金额为300×0.8=240(元).故答案为:300;240.(2)设购买x件这种文化用品.当0<x≤40时,在甲超市的购物金额为10x元,在乙超市的购物金额为0.8×10x=8x(元),∵10x>8x,∴选择乙超市支付的费用较少;当x>40时,在甲超市的购物金额为400+0.6(10x﹣400)=(6x+160)(元),在乙超市的购物金额为0.8×10x=8x(元),若6x+160>8x,则x<80;若6x+160=8x,则x=80;若6x+160<8x,则x>80.综上,当购买数量不足80件时,选择乙超市支付的费用较少;当购买数量为80件时,选择两超市支付的费用相同;当购买数量超过80件时,选择甲超市支付的费用较少.六.一元一次不等式组的整数解(共1小题)10.(2021•宿迁)解不等式组,并写出满足不等式组的所有整数解.【解答】解:解不等式x﹣1<0,得:x<1,解不等式≥x﹣1,得:x≥﹣,则不等式组的解集为﹣≤x<1,∴不等式组的整数解为﹣1、0.七.一次函数的应用(共1小题)11.(2021•宿迁)一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,两车在途中相遇时,快车恰巧出现故障,慢车继续驶往甲地,快车维修好后按原速继续行驶乙地,两车到达各地终点后停止,两车之间的距离s(km)与慢车行驶的时间t(h)之间的关系如图:(1)快车的速度为 100 km/h,C点的坐标为 (8,480) .(2)慢车出发多少小时后,两车相距200km.【解答】解:(1)由图象可知:慢车的速度为:60÷(4﹣3)=60(km/h),∵两车3小时相遇,此时慢车走的路程为:60×3=180(km),∴快车的速度为:(480﹣180)÷3=300÷3=100(km/h),通过图象和快车、慢车两车速度可知快车比慢车先到达终点,∴慢车到达终点时所用时间为:480÷60=8(h),∴C点坐标为:(8,480),故答案为:100,(8,480);(2)设慢车出发t小时后两车相距200km,①相遇前两车相距200km,则:60t+100t+200=480,解得:t=,②相遇后两车相距200km,则:60t+100(t﹣1)﹣480=200,解得:t=,∴慢车出发h或h时两车相距200km,答:慢车出发h或h时两车相距200km.八.二次函数的应用(共1小题)12.(2020•宿迁)某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:销售单价x(元/千克)55606570销售量y(千克)70605040(1)求y(千克)与x(元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?【解答】解:(1)设y与x之间的函数表达式为y=kx+b(k≠0),将表中数据(55,70)、(60,60)代入得:,解得:.∴y与x之间的函数表达式为y=﹣2x+180.(2)由题意得:(x﹣50)(﹣2x+180)=600,整理得:x2﹣140x+4800=0,解得x1=60,x2=80.答:为保证某天获得600元的销售利润,则该天的销售单价应定为60元/千克或80元/千克.(3)设当天的销售利润为w元,则:w=(x﹣50)(﹣2x+180)=﹣2(x﹣70)2+800,∵﹣2<0,∴当x=70时,w最大值=800.答:当销售单价定为70元/千克时,才能使当天的销售利润最大,最大利润是800元.九.平行四边形的性质(共3小题)13.(2021•宿迁)在①AE=CF;②OE=OF;③BE∥DF这三个条件中任选一个补充在下面横线上,并完成证明过程.已知,如图,四边形ABCD是平行四边形,对角线AC、BD相交于点O,点E、F在AC上, ② (填写序号).求证:BE=DF.【解答】解:选②,如图,连接BF,DE,∵四边形ABCD是平行四边形,∴BO=DO,∵OE=OF,∴四边形BEDF为平行四边形,∴BE=DF.故选择:②(答案不唯一).14.(2022•宿迁)如图,在▱ABCD中,点E、F分别是边AB、CD的中点.求证:AF=CE.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∵点E、F分别是边AB、CD的中点,∴AE=BE=CF=DF,∴四边形AECF是平行四边形,∴AF=CE.15.(2018•宿迁)如图,在▱ABCD中,点E、F分别在边CB、AD的延长线上,且BE=DF,EF分别与AB、CD交于点G、H.求证:AG=CH.【解答】证明:∵四边形ABCD是平行四边形,∴AD=BC,∠A=∠C,AD∥BC,∴∠E=∠F,∵BE=DF,∴AF=EC,在△AGF和△CHE中,∴△AGF≌△CHE(ASA),∴AG=CH.一十.矩形的性质(共1小题)16.(2019•宿迁)如图,矩形ABCD中,AB=4,BC=2,点E、F分别在AB、CD上,且BE=DF=.(1)求证:四边形AECF是菱形;(2)求线段EF的长.【解答】(1)证明:∵在矩形ABCD中,AB=4,BC=2,∴CD=AB=4,AD=BC=2,CD∥AB,∠D=∠B=90°,∵BE=DF=,∴CF=AE=4﹣=,∴AF=CE==,∴AF=CF=CE=AE=,∴四边形AECF是菱形;(2)解:过F作FH⊥AB于H,则四边形AHFD是矩形,∴AH=DF=,FH=AD=2,∴EH=﹣=1,∴EF===.一十一.正方形的性质(共1小题)17.(2020•宿迁)如图,在正方形ABCD中,点E,F在AC上,且AF=CE.求证:四边形BEDF是菱形.【解答】证明:∵四边形ABCD是正方形,∴AB=AD=CD=BC,∠DAE=∠BAE=∠BCF=∠DCF=45°,在△ABE和△ADE中,,∴△ABE≌△ADE(SAS),∴BE=DE,同理可得△BFC≌△DFC,所以BF=DF,在△ABE和△CBF中,,∴△ABE≌△CBF(SAS),∴BE=BF,∴BE=BF=DE=DF,∴四边形BEDF是菱形.方法二、连接BD交AC于O,∵四边形ABCD是正方形,∴BO=DO,AO=CO,AC⊥BD,∵AF=CE,∴EO=FO,∴四边形DEBF是平行四边形,又∵AC⊥BD,∴平行四边形DEBF是菱形.一十二.圆周角定理(共1小题)18.(2020•宿迁)如图,在△ABC中,D是边BC上一点,以BD为直径的⊙O经过点A,且∠CAD=∠ABC.(1)请判断直线AC是否是⊙O的切线,并说明理由;(2)若CD=2,CA=4,求弦AB的长.【解答】解:(1)直线AC是⊙O的切线,理由如下:如图,连接OA, ∵BD为⊙O的直径,∴∠BAD=90°=∠OAB+∠OAD,∵OA=OB,∴∠OAB=∠ABC,又∵∠CAD=∠ABC,∴∠OAB=∠CAD=∠ABC,∴∠OAD+∠CAD=90°=∠OAC,∴AC⊥OA,又∵OA是半径,∴直线AC是⊙O的切线;(2)方法一、过点A作AE⊥BD于E,∵OC2=AC2+AO2,∴(OA+2)2=16+OA2,∴OA=3,∴OC=5,BC=8,∵S△OAC=×OA×AC=×OC×AE,∴AE==,∴OE===,∴BE=BO+OE=,∴AB===.方法二、∵∠CAD=∠ABC,∠C=∠C,∴△ACD∽△BCA,∴=,∴,∴BC=8,AB=2AD,∴BD=6,∵AB2+AD2=BD2,∴5AD2=36,∴AD=,∴AB=2AD=.一十三.直线与圆的位置关系(共1小题)19.(2021•宿迁)如图,在Rt△AOB中,∠AOB=90°,以点O为圆心,OA为半径的圆交AB于点C,点D在边OB上,且CD=BD.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)已知tan∠ODC=,AB=40,求⊙O的半径.【解答】解:(1)直线CD与⊙O相切,理由如下:如图,连接OC,∵OA=OC,CD=BD,∴∠A=∠ACO,∠B=∠DCB,∵∠AOB=90°,∴∠A+∠B=90°,∴∠ACO+∠DCB=90°,∴∠OCD=90°,∴OC⊥CD,又∵OC为半径,∴CD是⊙O的切线,∴直线CD与⊙O相切;(2)∵tan∠ODC==,∴设CD=7x=DB,OC=24x=OA,∵∠OCD=90°,∴OD===25x,∴OB=32x,∵∠AOB=90°,∴AB2=AO2+OB2,∴1600=576x2+1024x2,∴x=1,∴OA=OC=24,∴⊙O的半径为24.一十四.解直角三角形的应用(共1小题)20.(2019•宿迁)宿迁市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中AB、CD都与地面l平行,车轮半径为32cm,∠BCD=64°,BC=60cm,坐垫E与点B的距离BE为15cm.(1)求坐垫E到地面的距离;(2)根据经验,当坐垫E到CD的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为80cm,现将坐垫E调整至坐骑舒适高度位置E',求EE′的长.(结果精确到0.1cm,参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)【解答】解:(1)如图1,过点E作EM⊥CD于点M,由题意知∠BCM=64°、EC=BC+BE=60+15=75cm,∴EM=ECsin∠BCM=75sin64°≈67.5(cm),则单车车座E到地面的高度为67.5+32≈99.5(cm); (2)如图2所示,过点E′作E′H⊥CD于点H,由题意知E′H=80×0.8=64,则E′C==≈71.1(cm),∴EE′=CE﹣CE′=75﹣71.1=3.9(cm).一十五.解直角三角形的应用-仰角俯角问题(共1小题)21.(2022•宿迁)如图,某学习小组在教学楼AB的顶部观测信号塔CD底部的俯角为30°,信号塔顶部的仰角为45°.已知教学楼AB的高度为20m,求信号塔的高度(计算结果保留根号).【解答】解:过点A作AE⊥CD,垂足为E, 由题意得:AB=DE=20m,在Rt△ADE中,∠EAD=30°,∴AE===20(m),在Rt△AEC中,∠CAE=45°,∴CE=AE•tan45°=20×1=20(m),∴CD=CE+DE=(20+20)m,∴信号塔的高度为(20+20)m.一十六.解直角三角形的应用-方向角问题(共1小题)22.(2020•宿迁)如图,在一笔直的海岸线上有A,B两个观测站,A在B的正西方向,AB=2km,从观测站A测得船C在北偏东45°的方向,从观测站B测得船C在北偏西30°的方向.求船C离观测站A的距离.【解答】解:如图,过点C作CD⊥AB于点D,则∠CAD=∠ACD=45°,∴AD=CD,设AD=x,则AC=x,∴BD=AB﹣AD=2﹣x,∵∠CBD=60°,在Rt△BCD中,∵tan∠CBD=,∴=,解得x=3﹣.经检验,x=3﹣是原方程的根.∴AC=x=(3﹣)=(3﹣)km.答:船C离观测站A的距离为(3﹣)km.一十七.扇形统计图(共1小题)23.(2021•宿迁)某机构为了解宿迁市人口年龄结构情况,对宿迁市的人口数据进行随机抽样分析,绘制了尚不完整的统计图表:人口年龄结构统计表 类别ABCD年龄(t岁)0≤t<1515≤t<6060≤t<65t≥65人数(万人)4.711.6m2.7根据以上信息解答下列问题:(1)本次抽样调查,共调查了 20 万人;(2)请计算统计表中m的值以及扇形统计图中“C”对应的圆心角度数;(3)宿迁市现有人口约500万人,请根据此次抽查结果,试估计宿迁市现有60岁及以上的人口数量.【解答】解:(1)本次抽样调查,共调查的人数是:11.6÷58%=20(万人),故答案为:20;(2)“C”的人数有:20﹣4.7﹣11.6﹣2.7=1(万人),∴m=1,扇形统计图中“C”对应的圆心角度数为×360°=18°.答:统计表中m的值是1,扇形统计图中“C”对应的圆心角度数为18°;(3)500×=92.5(万人).答:估计宿迁市现有60岁及以上的人口数量约92.5万人.一十八.条形统计图(共1小题)24.(2022•宿迁)为了解某校九年级学生开展“综合与实践”活动的情况,抽样调查了该校m名九年级学生上学期参加“综合与实践”活动的天数,并根据调查所得的数据绘制了如下尚不完整的两幅统计图.根据图表信息,解答下列问题:(1)m= 200 ,n= 30 ;(2)补全条形统计图;(3)根据抽样调查的结果,请你估计该校九年级2000名学生中上学期参加“综合与实践”活动4天及以上的人数.【解答】解:(1)n%=1﹣(15%+5%+25%+25%)=30%,∴n=30,m=10÷5%=200;故答案为:200,30;(2)参加“综合与实践”活动天数为3天的学生人数为200×15%=30(名),补全条形图如下:(3)估计该校九年级2000名学生中上学期参加“综合与实践”活动4天及以上的人数为2000×(1﹣5%﹣15%)=1600(名).一十九.列表法与树状图法(共2小题)25.(2022•宿迁)从甲、乙、丙、丁4名学生中选2名学生参加一次乒乓球单打比赛,求下列事件发生的概率.(1)甲一定参加比赛,再从其余3名学生中任意选取1名,恰好选中丙的概率是 ;(2)任意选取2名学生参加比赛,求一定有乙的概率.(用树状图或列表的方法求解).【解答】解:(1)由题意可得,甲一定参加比赛,再从其余3名学生中任意选取1名,有3种可能性,其中选中丙的有1种可能性,故恰好选中丙的概率是,故答案为:;(2)树状图如下:由上可得,一共有12种可能性,其中一定有乙的可能性有6种,故一定有乙的概率是=.26.(2020•宿迁)将4张印有“梅”“兰”“竹”“菊”字样的卡片(卡片的形状、大小、质地都相同)放在一个不透明的盒子中,将卡片搅匀.(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为 .(2)先从盒子中任意取出1张卡片,记录后放回并搅匀,再从中任意取出1张卡片,求取出的两张卡片中,至少有1张印有“兰”字的概率(请用画树状图或列表等方法求解).【解答】解:(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为,故答案为:;(2)画树状图如下:由树状图知,共有16种等可能结果,其中至少有1张印有“兰”字的有7种结果,∴至少有1张印有“兰”字的概率为.
相关试卷
这是一份江苏省宿迁市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类,共19页。试卷主要包含了﹣1+﹣4sin60°,计算,解方程,之间的关系如图等内容,欢迎下载使用。
这是一份江苏省苏州市5年(2018-2022)中考数学真题分类汇编-07解答题(基础题)知识点分类,共23页。试卷主要包含了计算,先化简,再求值,解不等式组,问题1等内容,欢迎下载使用。
这是一份江苏省泰州市五年(2018-2022)中考数学真题分层分类汇编:03解答题(基础题)知识点分类,共18页。试卷主要包含了×;,计算,分解因式,﹣1﹣sin60°;,的函数关系等内容,欢迎下载使用。