2021-2022学年北京四中重点中学中考数学模拟试题含解析
展开
这是一份2021-2022学年北京四中重点中学中考数学模拟试题含解析,共21页。试卷主要包含了定义,下列各式计算正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.某单位组织职工开展植树活动,植树量与人数之间关系如图,下列说法不正确的是( )
A.参加本次植树活动共有30人 B.每人植树量的众数是4棵
C.每人植树量的中位数是5棵 D.每人植树量的平均数是5棵
2. 的相反数是( )
A.﹣ B. C. D.2
3.如图,一圆弧过方格的格点A、B、C,在方格中建立平面直角坐标系,使点A的坐标为(﹣3,2),则该圆弧所在圆心坐标是( )
A.(0,0) B.(﹣2,1) C.(﹣2,﹣1) D.(0,﹣1)
4.如图是一个几何体的三视图,则这个几何体是( )
A. B. C. D.
5.如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为( )
A.30° B.36° C.54° D.72°
6.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“和谐”方程;如果一元二次方程ax2+bx+c=0(a≠0)满足a﹣b+c=0那么我们称这个方程为“美好”方程,如果一个一元二次方程既是“和谐”方程又是“美好”方程,则下列结论正确的是( )
A.方有两个相等的实数根 B.方程有一根等于0
C.方程两根之和等于0 D.方程两根之积等于0
7.如图,直线AB∥CD,AE平分∠CAB,AE与CD相交于点E,∠ACD=40°,则∠DEA=( )
A.40° B.110° C.70° D.140°
8.下列各式计算正确的是( )
A.(b+2a)(2a﹣b)=b2﹣4a2 B.2a3+a3=3a6
C.a3•a=a4 D.(﹣a2b)3=a6b3
9.如图,AB∥CD,FH平分∠BFG,∠EFB=58°,则下列说法错误的是( )
A.∠EGD=58° B.GF=GH C.∠FHG=61° D.FG=FH
10.如图,AD为△ABC的中线,点E为AC边的中点,连接DE,则下列结论中不一定成立的是( )
A.DC=DE B.AB=2DE C.S△CDE=S△ABC D.DE∥AB
11.PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为( )
A.0.25×10﹣5 B.0.25×10﹣6 C.2.5×10﹣5 D.2.5×10﹣6
12.在平面直角坐标系中,点是线段上一点,以原点为位似中心把放大到原来的两倍,则点的对应点的坐标为( )
A. B.或
C. D.或
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.掷一枚材质均匀的骰子,掷得的点数为合数的概率是__________ .
14.已知x1,x2是方程x2+6x+3=0的两实数根,则的值为_____.
15.若一个多边形每个内角为140°,则这个多边形的边数是________.
16.如图,已知一次函数y=ax+b和反比例函数的图象相交于A(﹣2,y1)、B(1,y2)两点,则不等式ax+b<的解集为 __________
17.如图,AB∥CD,∠1=62°,FG平分∠EFD,则∠2= .
18.2017年5月5日我国自主研发的大型飞机C919成功首飞,如图给出了一种机翼的示意图,用含有m、n的式子表示AB的长为______.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)在平面直角坐标系中,已知点A(2,0),点B(0,2),点O(0,0).△AOB绕着O顺时针旋转,得△A′OB′,点A、B旋转后的对应点为A′、B′,记旋转角为α.
(I)如图1,若α=30°,求点B′的坐标;
(Ⅱ)如图2,若0°<α<90°,设直线AA′和直线BB′交于点P,求证:AA′⊥BB′;
(Ⅲ)若0°<α<360°,求(Ⅱ)中的点P纵坐标的最小值(直接写出结果即可).
20.(6分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字2,3、1.
(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为 ;
(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).
21.(6分)如图,已知一次函数的图象与反比例函数的图象交于A,B两点,点A的横坐标是2,点B的纵坐标是-2。
(1)求一次函数的解析式;
(2)求的面积。
22.(8分)计算:
23.(8分)铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:求y与x之间的函数关系式;商贸公司要想获利2090元,则这种干果每千克应降价多少元?该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?
24.(10分)如图,两座建筑物的水平距离BC为40m,从D点测得A点的仰角为30°,B点的俯角为10°,求建筑物AB的高度(结果保留小数点后一位).
参考数据sin10°≈0.17,cos10°≈0.98,tan10°≈0.18,取1.1.
25.(10分)如图,二次函数y=﹣+mx+4﹣m的图象与x轴交于A、B两点(A在B的左侧),与),轴交于点C.抛物线的对称轴是直线x=﹣2,D是抛物线的顶点.
(1)求二次函数的表达式;
(2)当﹣<x<1时,请求出y的取值范围;
(3)连接AD,线段OC上有一点E,点E关于直线x=﹣2的对称点E'恰好在线段AD上,求点E的坐标.
26.(12分)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°.求∠DAC的度数.
27.(12分)如图,已知点A,B的坐标分别为(0,0)、(2,0),将△ABC绕C点按顺时针方向旋转90°得到△A1B1C.
(1)画出△A1B1C;
(2)A的对应点为A1,写出点A1的坐标;
(3)求出B旋转到B1的路线长.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
试题解析:A、∵4+10+8+6+2=30(人),
∴参加本次植树活动共有30人,结论A正确;
B、∵10>8>6>4>2,
∴每人植树量的众数是4棵,结论B正确;
C、∵共有30个数,第15、16个数为5,
∴每人植树量的中位数是5棵,结论C正确;
D、∵(3×4+4×10+5×8+6×6+7×2)÷30≈4.73(棵),
∴每人植树量的平均数约是4.73棵,结论D不正确.
故选D.
考点:1.条形统计图;2.加权平均数;3.中位数;4.众数.
2、A
【解析】
分析:
根据相反数的定义结合实数的性质进行分析判断即可.
详解:
的相反数是.
故选A.
点睛:熟记相反数的定义:“只有符号不同的两个数(实数)互为相反数”是正确解答这类题的关键.
3、C
【解析】
如图:分别作AC与AB的垂直平分线,相交于点O,
则点O即是该圆弧所在圆的圆心.
∵点A的坐标为(﹣3,2),
∴点O的坐标为(﹣2,﹣1).
故选C.
4、B
【解析】
试题分析:结合三个视图发现,应该是由一个正方体在一个角上挖去一个小正方体,且小正方体的位置应该在右上角,故选B.
考点:由三视图判断几何体.
5、B
【解析】
在等腰三角形△ABE中,求出∠A的度数即可解决问题.
【详解】
解:在正五边形ABCDE中,∠A=×(5-2)×180=108°
又知△ABE是等腰三角形,
∴AB=AE,
∴∠ABE=(180°-108°)=36°.
故选B.
【点睛】
本题主要考查多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题,比较简单.
6、C
【解析】
试题分析:根据已知得出方程ax2+bx+c=0(a≠0)有两个根x=1和x=﹣1,再判断即可.
解:∵把x=1代入方程ax2+bx+c=0得出:a+b+c=0,
把x=﹣1代入方程ax2+bx+c=0得出a﹣b+c=0,
∴方程ax2+bx+c=0(a≠0)有两个根x=1和x=﹣1,
∴1+(﹣1)=0,
即只有选项C正确;选项A、B、D都错误;
故选C.
7、B
【解析】
先由平行线性质得出∠ACD与∠BAC互补,并根据已知∠ACD=40°计算出∠BAC的度数,再根据角平分线性质求出∠BAE的度数,进而得到∠DEA的度数.
【详解】
∵AB∥CD,
∴∠ACD+∠BAC=180°,
∵∠ACD=40°,
∴∠BAC=180°﹣40°=140°,
∵AE平分∠CAB,
∴∠BAE=∠BAC=×140°=70°,
∴∠DEA=180°﹣∠BAE=110°,
故选B.
【点睛】
本题考查了平行线的性质和角平分线的定义,解题的关键是熟练掌握两直线平行,同旁内角互补.
8、C
【解析】
各项计算得到结果,即可作出判断.
解:A、原式=4a2﹣b2,不符合题意;
B、原式=3a3,不符合题意;
C、原式=a4,符合题意;
D、原式=﹣a6b3,不符合题意,
故选C.
9、D
【解析】
根据平行线的性质以及角平分线的定义,即可得到正确的结论.
【详解】
解:
,故A选项正确;
又
故B选项正确;
平分
,
,故C选项正确;
,故选项错误;
故选.
【点睛】
本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等.
10、A
【解析】
根据三角形中位线定理判断即可.
【详解】
∵AD为△ABC的中线,点E为AC边的中点,
∴DC=BC,DE=AB,
∵BC不一定等于AB,
∴DC不一定等于DE,A不一定成立;
∴AB=2DE,B一定成立;
S△CDE=S△ABC,C一定成立;
DE∥AB,D一定成立;
故选A.
【点睛】
本题考查的是三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.
11、D
【解析】
根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).
【详解】
解: 0.0000025第一个有效数字前有6个0(含小数点前的1个0),从而.
故选D.
12、B
【解析】
分析:根据位似变换的性质计算即可.
详解:点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,
则点P的对应点的坐标为(m×2,n×2)或(m×(-2),n×(-2)),即(2m,2n)或(-2m,-2n),
故选B.
点睛:本题考查的是位似变换、坐标与图形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
分析:根据概率的求法,找准两点:
①全部情况的总数;
②符合条件的情况数目;二者的比值就是其发生的概率.
详解:掷一枚质地均匀的骰子,掷得的点数可能是1、2、3、4、5、6中的任意一个数,共有六种可能,其中4、6是合数,所以概率为=.
故答案为.
点睛:本题主要考查概率的求法,用到的知识点为:概率=所求情况数与总情况数之比.
14、1.
【解析】
试题分析:∵,是方程的两实数根,∴由韦达定理,知,,∴===1,即的值是1.故答案为1.
考点:根与系数的关系.
15、九
【解析】
根据多边形的内角和定理:180°•(n-2)进行求解即可.
【详解】
由题意可得:180°×(n−2)=140°×n,
解得n=9,
故多边形是九边形.
故答案为9.
【点睛】
本题考查了多边形的内角和定理,解题的关键是熟练的掌握多边形的内角和定理.
16、﹣2<x<0或x>1
【解析】
根据一次函数图象与反比例函数图象的上下位置关系结合交点坐标,即可得出不等式的解集.
【详解】
观察函数图象,发现:当﹣2<x<0或x>1时,一次函数图象在反比例函数图象的下方,
∴不等式ax+b<的解集是﹣2<x<0或x>1.
【点睛】
本题主要考查一次函数图象与反比例函数图象,数形结合思想是关键.
17、31°.
【解析】
试题分析:由AB∥CD,根据平行线的性质得∠1=∠EFD=62°,然后根据角平分线的定义即可得到∠2的度数.
∵AB∥CD,
∴∠1=∠EFD=62°,
∵FG平分∠EFD,
∴∠2=∠EFD=×62°=31°.
故答案是31°.
考点:平行线的性质.
18、
【解析】
过点C作CE⊥CF延长BA交CE于点E,先求得DF的长,可得到AE的长,最后可求得AB的长.
【详解】
解:延长BA交CE于点E,设CF⊥BF于点F,如图所示.
在Rt△BDF中,BF=n,∠DBF=30°,
∴.
在Rt△ACE中,∠AEC=90°,∠ACE=45°,
∴AE=CE=BF=n,
∴.
故答案为:.
【点睛】
此题考查解直角三角形的应用,解题的关键在于做辅助线.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)B'的坐标为(,3);(1)见解析 ;(3)﹣1.
【解析】
(1)设A'B'与x轴交于点H,由OA=1,OB=1,∠AOB=90°推出∠ABO=∠B'=30°,
由∠BOB'=α=30°推出BO∥A'B',由OB'=OB=1推出OH=OB'=,B'H=3即可得出;
(1)证明∠BPA'=90即可;
(3)作AB的中点M(1,),连接MP,由∠APB=90°,推出点P的轨迹为以点M为圆心,以MP=AB=1为半径的圆,除去点(1,),所以当PM⊥x轴时,点P纵坐标的最小值为﹣1.
【详解】
(Ⅰ)如图1,设A'B'与x轴交于点H,
∵OA=1,OB=1,∠AOB=90°,
∴∠ABO=∠B'=30°,
∵∠BOB'=α=30°,
∴BO∥A'B',
∵OB'=OB=1,
∴OH=OB'=,B'H=3,
∴点B'的坐标为(,3);
(Ⅱ)证明:∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',
∴∠OBB'=∠OA'A=(180°﹣α),
∵∠BOA'=90°+α,四边形OBPA'的内角和为360°,
∴∠BPA'=360°﹣(180°﹣α)﹣(90°+α)=90°,
即AA'⊥BB';
(Ⅲ)点P纵坐标的最小值为.
如图,作AB的中点M(1,),连接MP,
∵∠APB=90°,
∴点P的轨迹为以点M为圆心,以MP=AB=1为半径的圆,除去点(1,).
∴当PM⊥x轴时,点P纵坐标的最小值为﹣1.
【点睛】
本题考查的知识点是几何变换综合题,解题的关键是熟练的掌握几何变换综合题.
20、(1);(2)这两个数字之和是3的倍数的概率为.
【解析】
(1)在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,根据概率公式可得;(2)用列表法列出所有情况,再计算概率.
【详解】
解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,
∴指针所指扇形中的数字是奇数的概率为,
故答案为;
(2)列表如下:
1
2
3
1
(1,1)
(2,1)
(3,1)
2
(1,2)
(2,2)
(3,2)
3
(1,3)
(2,3)
(3,3)
由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种,
所以这两个数字之和是3的倍数的概率为=.
【点睛】
本题考核知识点:求概率. 解题关键点:列出所有情况,熟记概率公式.
21、(1);(2)6.
【解析】
(1)由反比例函数解析式根据点A的横坐标是2,点B的纵坐标是-2可以求得点A、点B的坐标,然后根据待定系数法即可求得一次函数的解析式;
(2)令直线AB与y轴交点为D,求出点D坐标,然后根据三角形面积公式进行求解即可得.
【详解】
(1)当x=2时,=4,
当y=-2时,-2=,x=-4,
所以点A(2,4),点B(-4,-2),
将A,B两点分别代入一次函数解析式,得
,
解得:,
所以,一次函数解析式为;
(2)令直线AB与y轴交点为D,则OD=b=2,
.
【点睛】
本题考查了反比例函数与一次函数的交点问题,熟练掌握待定系数法是解本题的关键.
22、-1
【解析】
先化简二次根式、计算负整数指数幂、分母有理化、去绝对值符号,再合并同类二次根式即可得.
【详解】
原式=1﹣4﹣+1﹣=﹣1.
【点睛】
本题考查了实数的混合运算,熟练掌握二次根式的性质、分母有理化、负整数指数幂的意义、绝对值的意义是解答本题的关键.
23、 (1)y=10x+100;(2)这种干果每千克应降价9元;(3)该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.
【解析】
(1)由待定系数法即可得到函数的解析式;
(2)根据销售量×每千克利润=总利润列出方程求解即可;
(3)根据销售量×每千克利润=总利润列出函数解析式求解即可.
【详解】
(1)设y与x之间的函数关系式为:y=kx+b,
把(2,120)和(4,140)代入得,,
解得:,
∴y与x之间的函数关系式为:y=10x+100;
(2)根据题意得,(60﹣40﹣x)(10x+100)=2090,
解得:x=1或x=9,
∵为了让顾客得到更大的实惠,
∴x=9,
答:这种干果每千克应降价9元;
(3)该干果每千克降价x元,商贸公司获得利润是w元,
根据题意得,w=(60﹣40﹣x)(10x+100)=﹣10x2+100x+2000,
∴w=﹣10(x﹣5)2+2250,
∵a=-10,∴当x=5时,
故该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.
【点睛】
本题考查的是二次函数的应用,此类题目主要考查学生分析、解决实际问题能力,又能较好地考查学生“用数学”的意识.
24、建筑物AB的高度约为30.3m.
【解析】
分析:过点D作DE⊥AB,利用解直角三角形的计算解答即可.
详解:如图,根据题意,BC=2,∠DCB=90°,∠ABC=90°.
过点D作DE⊥AB,垂足为E,则∠DEB=90°,∠ADE=30°,∠BDE=10°,可得四边形DCBE为矩形,∴DE=BC=2.
在Rt△ADE中,tan∠ADE=,
∴AE=DE•tan30°=.
在Rt△DEB中,tan∠BDE=,
∴BE=DE•tan10°=2×0.18=7.2,
∴AB=AE+BE=23.09+7.2=30.29≈30.3.
答:建筑物AB的高度约为30.3m.
点睛:考查解直角三角形的应用﹣仰角俯角问题,要求学生能借助俯角构造直角三角形并解直角三角形.
25、(1)y=﹣x1﹣1x+6;(1)<y<;(3)(0,4).
【解析】
(1)利用对称轴公式求出m的值,即可确定出解析式;
(1)根据x的范围,利用二次函数的增减性确定出y的范围即可;
(3)根据题意确定出D与A坐标,进而求出直线AD解析式,设出E坐标,利用对称性确定出E坐标即可.
【详解】
(1)∵抛物线对称轴为直线x=﹣1,∴﹣=﹣1,即m=﹣1,则二次函数解析式为y=﹣x1﹣1x+6;
(1)当x=﹣时,y=;当x=1时,y=.
∵﹣<x<1位于对称轴右侧,y随x的增大而减小,∴<y<;
(3)当x=﹣1时,y=8,∴顶点D的坐标是(﹣1,8),令y=0,得到:﹣x1﹣1x+6=0,解得:x=﹣6或x=1.
∵点A在点B的左侧,∴点A坐标为(﹣6,0).
设直线AD解析式为y=kx+b,可得:,解得:,即直线AD解析式为y=1x+11.
设E(0,n),则有E′(﹣4,n),代入y=1x+11中得:n=4,则点E坐标为(0,4).
【点睛】
本题考查了抛物线与x轴的交点,以及二次函数的性质,熟练掌握二次函数的性质是解答本题的关键.
26、∠DAC=20°.
【解析】
根据角平分线的定义可得∠ABC=2∠ABE,再根据直角三角形两锐角互余求出∠BAD,然后根据∠DAC=∠BAC﹣∠BAD计算即可得解.
【详解】
∵BE平分∠ABC,∴∠ABC=2∠ABE=2×25°=50°.
∵AD是BC边上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC﹣∠BAD=60°﹣40°=20°.
【点睛】
本题考查了三角形的内角和定理,角平分线的定义,准确识图理清图中各角度之间的关系是解题的关键.
27、(1)画图见解析;(2)A1(0,6);(3)弧BB1=.
【解析】
(1)根据旋转图形的性质首先得出各点旋转后的点的位置,然后顺次连接各点得出图形;
(2)根据图形得出点的坐标;
(3)根据弧长的计算公式求出答案.
【详解】
解:(1)△A1B1C如图所示.
(2)A1(0,6).
(3)
.
【点睛】
本题考查了旋转作图和弧长的计算.
相关试卷
这是一份长治市重点中学2021-2022学年中考数学模拟试题含解析,共22页。试卷主要包含了答题时请按要求用笔,一元二次方程的根是,下列说法正确的是等内容,欢迎下载使用。
这是一份贺州市重点中学2021-2022学年中考数学模拟试题含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,在代数式 中,m的取值范围是,下列说法错误的是,下面四个几何体,-2的倒数是等内容,欢迎下载使用。
这是一份汉中市重点中学2021-2022学年中考数学模拟试题含解析,共21页。试卷主要包含了答题时请按要求用笔,﹣2018的绝对值是等内容,欢迎下载使用。