所属成套资源:2023年高考数学(文数)一轮复习课时达标练习(答案版+教师版)
- 2023年高考数学(文数)一轮复习课时37《空间点、线、面的位置关系》达标练习(2份,答案版+教师版) 试卷 0 次下载
- 2023年高考数学(文数)一轮复习课时38《空间线、面的平行关系》达标练习(2份,答案版+教师版) 试卷 0 次下载
- 2023年高考数学(文数)一轮复习课时40《简单几何体的表面积与体积》达标练习(2份,答案版+教师版) 试卷 0 次下载
- 2023年高考数学(文数)一轮复习课时41《直线的倾斜角与斜率直线方程》达标练习(2份,答案版+教师版) 试卷 0 次下载
- 2023年高考数学(文数)一轮复习课时42《两条直线的位置关系》达标练习(2份,答案版+教师版) 试卷 0 次下载
2023年高考数学(文数)一轮复习课时39《空间线、面的垂直关系》达标练习(2份,答案版+教师版)
展开
这是一份2023年高考数学(文数)一轮复习课时39《空间线、面的垂直关系》达标练习(2份,答案版+教师版),文件包含2023年高考数学文数一轮复习课时39《空间线面的垂直关系》达标练习含详解doc、2023年高考数学文数一轮复习课时39《空间线面的垂直关系》达标练习教师版doc等2份试卷配套教学资源,其中试卷共12页, 欢迎下载使用。
2023年高考数学(文数)一轮复习课时39《空间线、面的垂直关系》达标练习一 、选择题1.已知平面α与平面β相交,直线m⊥α,则( )A.β内必存在直线与m平行,且存在直线与m垂直B.β内不一定存在直线与m平行,不一定存在直线与m垂直C.β内不一定存在直线与m平行,但必存在直线与m垂直D.β内必存在直线与m平行,不一定存在直线与m垂直【答案解析】答案为:C;解析:如图,设平面α与平面β的交线为a,若在平面β内的直线与α,β的交线a平行,则该直线与m垂直.但β内不一定存在直线与m平行,只有当α⊥β时才存在.故选C.2.已知两个不同的平面α,β和两条不重合的直线m,n,有下列四个命题:①若m∥n,m⊥α,则n⊥α;②若m⊥α,m⊥β,则α∥β;③若m,n与α所成的角相等,则m∥n;④若m∥α,α∩β=n,则m∥n.其中正确命题的个数是( )A.1 B.2 C.3 D.4【答案解析】答案为:B解析:对于①,若m∥n,m⊥α,则n⊥α,故该命题为真命题;对于②,若m⊥α,m⊥β,则α∥β,故该命题为真命题;对于③,若m,n与α所成的角相等,则m与n可能平行、相交或异面,故该命题为假命题;对于④,若m∥α,α∩β=n,则m与n的位置关系不确定,故该命题为假命题.故选答案为:B.3.如图所示,直线PA垂直于⊙O所成的平面,△ABC内接于⊙O,且AB为⊙O的直径,点M为线段PB的中点.现有结论:①BC⊥PC;②OM∥平面APC;③点B到平面PAC的距离等于线段BC的长.其中正确的是( )A.①② B.①②③ C.① D.②③【答案解析】答案为:B;解析:对于①,∵PA⊥平面ABC,∴PA⊥BC,∵AB为⊙O的直径,∴BC⊥AC,∵AC∩PA=A,∴BC⊥平面PAC,又PC⊂平面PAC,∴BC⊥PC;对于②,∵点M为线段PB的中点,∴OM∥PA,∵PA⊂平面PAC,OM⊄平面PAC,∴OM∥平面PAC;对于③,由①知BC⊥平面PAC,∴线段BC的长即是点B到平面PAC的距离,故①②③都正确.4.设α,β为两个不同的平面,直线l⊂α,则“l⊥β”是“α⊥β”成立的( )A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案解析】答案为:A.解析:依题意,由l⊥β,l⊂α可以推出α⊥β;反过来,由α⊥β,l⊂α不能推出l⊥β.因此“l⊥β”是“α⊥β”成立的充分不必要条件,故选A.5.在正方体ABCDA1B1C1D1中,E为棱CD的中点,则( )A.A1E⊥DC1 B.A1E⊥BD C.A1E⊥BC1 D.A1E⊥AC【答案解析】答案为:C.解析:如图.∵A1E在平面ABCD上的投影为AE,而AE不与AC,BD垂直,∴B,D错;∵A1E在平面BCC1B1上的投影为B1C,且B1C⊥BC1,∴A1E⊥BC1,故C正确;(证明:由条件易知,BC1⊥B1C,BC1⊥CE,又CE∩B1C=C,∴BC1⊥平面CEA1B1.又A1E平面CEA1B1,∴A1E⊥BC1)∵A1E在平面DCC1D1上的投影为D1E,而D1E不与DC1垂直,故A错.]6.已知互相垂直的平面α,β交于直线l,若直线m,n满足m∥α,n⊥β,则( )A.m∥l B.m∥n C.n⊥l D.m⊥n【答案解析】答案为:C;解析:因为α∩β=l,所以l⊂β,又n⊥β,所以n⊥l.故选C.7.如图,正方体ABCDA1B1C1D1中,下面结论错误的是( )A.BD∥平面CB1D1B.异面直线AD与CB1所成的角为45°C.AC1⊥平面CB1D1D.AC1与平面ABCD所成的角为30°【答案解析】答案为:D.解析:因为BD∥B1D1,所以BD∥平面CB1D1,A不符合题意;因为AD∥BC,所以异面直线AD与CB1所成的角为∠BCB1=45°,B不符合题意;因为AC1⊥B1D1,AC1⊥B1C,所以AC1⊥平面CB1D1,C不符合题意;AC1与平面ABCD所成的角为∠CAC1≠30°,故选D.8.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是( )A.AB∥m B.AC⊥m C.AB∥β D.AC⊥β【答案解析】答案为:D;解析:因为直线m∥α,m∥β,α∩β=l,所以m∥l,所以AB∥m正确,AC⊥m正确;根据线面平行的判定定理可得AB∥β正确;当直线AC不在平面α内时,尽管AC⊥l,AC与平面β可以平行,也可以相交(不垂直),所以AC⊥β不一定成立.故选D.9.若平面α⊥平面β,平面α∩平面β=直线l,则( )A.垂直于平面β的平面一定平行于平面αB.垂直于直线l的直线一定垂直于平面αC.垂直于平面β的平面一定平行于直线lD.垂直于直线l的平面一定与平面α,β都垂直【答案解析】答案为:D;解析:对于A,垂直于平面β的平面与平面α平行或相交,故A错误;对于B,垂直于直线l的直线与平面α垂直、斜交、平行或在平面α内,故B错误;对于C,垂直于平面β的平面与直线l平行或相交,故C错误.D正确.10.直三棱柱ABC-A1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90°,D是A1B1的中点,F是BB1上的动点,AB1,DF相交于点E.要使AB1⊥平面C1DF,则线段B1F的长为( )A. B.1 C. D.2【答案解析】答案为:A解析:设B1F=x,因为AB1⊥平面C1DF,DF⊂平面C1DF,所以AB1⊥DF.由已知可得A1B1=,设Rt△AA1B1斜边AB1上的高为h,则DE=h.又2×=h,所以h=,DE=.在Rt△DB1E中,B1E=.由面积相等得× =x,得x=.11.如图所示,四棱锥P-ABCD中,△PAB与△PBC是正三角形,平面PAB⊥平面PBC,AC⊥BD,则下列结论不一定成立的是( )A.PB⊥AC B.PD⊥平面ABCDC.AC⊥PD D.平面PBD⊥平面ABCD【答案解析】答案为:B解析:如图所示,对于选项A,取PB的中点O,连接AO,CO.∵在四棱锥P-ABCD中,△PAB与△PBC是正三角形,平面PAB⊥平面PBC,∴AO⊥PB,CO⊥PB,∵AO∩CO=O,∴PB⊥平面AOC,∵AC⊂平面AOC,∴PB⊥AC,故选项A正确;对于选项B,设AC与BD交于点M,易知M为AC的中点,若PD⊥平面ABCD,则PD⊥BD,由已知条件知点D满足AC⊥BD且位于BM的延长线上,∴点D的位置不确定,∴PD与BD不一定垂直,∴PD⊥平面ABCD不一定成立,故选项B不正确;对于选项C,∵AC⊥PB,AC⊥BD,PB∩BD=B,∴AC⊥平面PBD,∵PD⊂平面PBD,∴AC⊥PD,故选项C正确;对于选项D,∵AC⊥平面PBD,AC⊂平面ABCD,∴平面PBD⊥平面ABCD,故选项D正确.故选B.12.如图所示,三棱锥A-BCD的底面是等腰直角三角形,AB⊥平面BCD,AB=BC=BD=2,E是棱CD上的任意一点,F,G分别是AC,BC的中点.则在下面命题中:①平面ABE⊥平面BCD;②平面EFG∥平面ABD;③四面体FECG体积的最大值是.真命题的个数是( )A.0 B.1 C.2 D.3【答案解析】答案为:C解析:①正确,因为AB⊥平面BCD,且AB⊂平面ABE,由面面垂直的判定定理可知平面ABE⊥平面BCD;②错误,若两平面平行,则必有AD∥EF,而点E是棱CD上任意一点,故该命题为假命题;③正确,由已知易得GF⊥平面GCE,且GF=AB=1,而S△GCE=GC·CE·sin45°=CE≤1,故VF-GCE=S△GCE·FG≤.故正确的命题为①③.二 、填空题13.如图,已知∠BAC=90°,PC⊥平面ABC,则在△ABC,△PAC的边所在的直线中,与PC垂直的直线有 ;与AP垂直的直线有 .【答案解析】答案为:AB,BC,AC;AB.解析:∵PC⊥平面ABC,∴PC垂直于直线AB,BC,AC.∵AB⊥AC,AB⊥PC,AC∩PC=C,∴AB⊥平面PAC,又∵AP⊂平面PAC,∴AB⊥AP,与AP垂直的直线是AB.14.α,β是两平面,AB,CD是两条线段,已知α∩β=EF,AB⊥α于B,CD⊥α于D,若增加一个条件,就能得出BD⊥EF.现有下列条件:①AC⊥β;②AC与α,β所成的角相等;③AC与CD在β内的射影在同一条直线上;④AC∥EF.其中能成为增加条件的序号是 .【答案解析】答案为:①③;解析:由题意得,AB∥CD,∴A,B,C,D四点共面.①中,∵AC⊥β,EF⊂β,∴AC⊥EF,又∵AB⊥α,EF⊂α,∴AB⊥EF,∵AB∩AC=A,∴EF⊥平面ABCD,又∵BD⊂平面ABCD,∴BD⊥EF,故①正确;②不能得到BD⊥EF,故②错误;③中,由AC与CD在β内的射影在同一条直线上可知平面ABCD⊥β,又AB⊥α,AB⊂平面ABCD,∴平面ABCD⊥α.∵平面ABCD⊥α,平面ABCD⊥β,α∩β=EF,∴EF⊥平面ABCD,又BD⊂平面ABCD,∴BD⊥EF,故③正确;④中,由①知,若BD⊥EF,则EF⊥平面ABCD,则EF⊥AC,故④错误,故填①③.15.已知一个直角三角形的三个顶点分别在底面边长为2的正三棱柱的侧棱上,则该直角三角形斜边的最小值为________.【答案解析】答案为:2解析:记该直角三角形为△ABC,且AC为斜边.不妨令点A与正三棱柱的一个顶点重合,如图,取AC的中点O,连接BO,∴BO=AC,∴当AC取得最小值时,BO取得最小值,即点B到平面ADEF的距离.∵△AHD是边长为2的正三角形,∴点B到平面ADEF的距离为,∴AC的最小值为2.16.如图,正方体ABCDA1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=,则下列结论:①EF∥平面ABCD;②平面ACF⊥平面BEF;③三棱锥EABF的体积为定值;④存在某个位置使得异面直线AE与BF所成的角为30°.其中正确的是 .(写出所有正确的结论序号)【答案解析】答案为:①②③④.解析:由正方体ABCDA1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=知,在①中,由EF∥BD,且EF⊄平面ABCD,BD⊂平面ABCD,得EF∥平面ABCD,故①正确;在②中,如图,连接BD,CF,由AC⊥BD,AC⊥DD1,可知AC⊥平面BDD1B1,而BE⊂平面BDD1B1,BF⊂平面BDD1B1,则AC⊥平面BEF.又因为AC⊂平面ACF,所以平面ACF⊥平面BEF,故②正确;在③中,三棱锥EABF的体积与三棱锥ABEF的体积相等,三棱锥ABEF的底面积和高都是定值,故三棱锥EABF的体积为定值,故③正确;在④中,令上底面中心为O,当E与D1重合时,此时点F与O重合,则两异面直线所成的角是∠OBC1,可求解∠OBC1=30°,故存在某个位置使得异面直线AE与BF成角30°,故④正确.
相关试卷
这是一份2023年高考数学(理数)一轮复习课时39《空间线、面的垂直关系》达标练习(含详解),文件包含2023年高考数学理数一轮复习课时39《空间线面的垂直关系》达标练习含详解doc、2023年高考数学理数一轮复习课时39《空间线面的垂直关系》达标练习教师版doc等2份试卷配套教学资源,其中试卷共12页, 欢迎下载使用。
这是一份2023年高考数学(理数)一轮复习课时38《空间线、面的平行关系》达标练习(含详解),文件包含2023年高考数学理数一轮复习课时38《空间线面的平行关系》达标练习含详解doc、2023年高考数学理数一轮复习课时38《空间线面的平行关系》达标练习教师版doc等2份试卷配套教学资源,其中试卷共13页, 欢迎下载使用。
这是一份2023年高考数学(理数)一轮复习课时37《空间点、线、面的位置关系》达标练习(含详解),文件包含2023年高考数学理数一轮复习课时37《空间点线面的位置关系》达标练习含详解doc、2023年高考数学理数一轮复习课时37《空间点线面的位置关系》达标练习教师版doc等2份试卷配套教学资源,其中试卷共11页, 欢迎下载使用。