终身会员
搜索
    上传资料 赚现金

    07解答题知识点分类③-福建省五年(2017-2021)中考数学真题分类汇编

    立即下载
    加入资料篮
    07解答题知识点分类③-福建省五年(2017-2021)中考数学真题分类汇编第1页
    07解答题知识点分类③-福建省五年(2017-2021)中考数学真题分类汇编第2页
    07解答题知识点分类③-福建省五年(2017-2021)中考数学真题分类汇编第3页
    还剩24页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    07解答题知识点分类③-福建省五年(2017-2021)中考数学真题分类汇编

    展开

    这是一份07解答题知识点分类③-福建省五年(2017-2021)中考数学真题分类汇编,共27页。试卷主要包含了如图,C为线段AB外一点,已知△ABC和点A',如图等内容,欢迎下载使用。


    07解答题知识点分类③

    一十六.圆周角定理(共1小题)
    30.(2019•福建)如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF.
    (1)求证:∠BAC=2∠CAD;
    (2)若AF=10,BC=4,求tan∠BAD的值.

    一十七.三角形的外接圆与外心(共1小题)
    31.(2018•福建)如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB.
    (1)求证:BG∥CD;
    (2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.

    一十八.切线的判定(共1小题)
    32.(2017•福建)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点P在CA的延长线上,∠CAD=45°.
    (Ⅰ)若AB=4,求的长;
    (Ⅱ)若=,AD=AP,求证:PD是⊙O的切线.

    一十九.切线的判定与性质(共1小题)
    33.(2020•福建)如图,AB与⊙O相切于点B,AO交⊙O于点C,AO的延长线交⊙O于点D,E是上不与B,D重合的点,sinA=.
    (1)求∠BED的大小;
    (2)若⊙O的半径为3,点F在AB的延长线上,且BF=3,求证:DF与⊙O相切.

    二十.圆的综合题(共1小题)
    34.(2018•福建)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E.
    (1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;
    (2)过点B作BG⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,连接OH,BD,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.

    二十一.作图—基本作图(共1小题)
    35.(2017•福建)如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.求作∠ABC的平分线,分别交AD,AC于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)

    二十二.作图—复杂作图(共2小题)
    36.(2021•福建)如图,已知线段MN=a,AR⊥AK,垂足为A.
    (1)求作四边形ABCD,使得点B,D分别在射线AK,AR上,且AB=BC=a,∠ABC=60°,CD∥AB;(要求:尺规作图,不写作法,保留作图痕迹)
    (2)设P,Q分别为(1)中四边形ABCD的边AB,CD的中点,求证:直线AD,BC,PQ相交于同一点.

    37.如图,C为线段AB外一点.
    (1)求作四边形ABCD,使得CD∥AB,且CD=2AB;(要求:尺规作图,不写作法,保留作图痕迹)
    (2)在(1)的四边形ABCD中,AC,BD相交于点P,AB,CD的中点分别为M,N,求证:M,P,N三点在同一条直线上.

    二十三.旋转的性质(共1小题)
    38.(2019•福建)在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.
    (1)当点E恰好在AC上时,如图1,求∠ADE的大小;
    (2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.

    二十四.相似三角形的判定(共1小题)
    39.(2019•福建)已知△ABC和点A',如图.
    (1)以点A'为一个顶点作△A'B'C',使△A'B'C'∽△ABC,且△A'B'C'的面积等于△ABC面积的4倍;(要求:尺规作图,不写作法,保留作图痕迹)
    (2)设D、E、F分别是△ABC三边AB、BC、AC的中点,D'、E'、F'分别是你所作的△A'B'C'三边A'B'、B'C'、C'A'的中点,求证:△DEF∽△D'E'F'.

    二十五.相似三角形的判定与性质(共1小题)
    40.(2018•福建)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.
    (1)求∠BDF的大小;
    (2)求CG的长.

    二十六.作图-相似变换(共1小题)
    41.(2018•福建)求证:相似三角形对应边上的中线之比等于相似比.
    要求:①根据给出的△ABC及线段A′B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A′B′C′,使得△A′B′C′∽△ABC,不写作法,保留作图痕迹;
    ②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.

    二十七.相似形综合题(共1小题)
    42.(2020•福建)如图,△ADE由△ABC绕点A按逆时针方向旋转90°得到,且点B的对应点D恰好落在BC的延长线上,AD,EC相交于点P.
    (1)求∠BDE的度数;
    (2)F是EC延长线上的点,且∠CDF=∠DAC.
    ①判断DF和PF的数量关系,并证明;
    ②求证:=.

    二十八.互余两角三角函数的关系(共1小题)
    43.(2017•福建)小明在某次作业中得到如下结果:
    sin27°+sin283°≈0.122+0.992=0.9945,
    sin222°+sin268°≈0.372+0.932=1.0018,
    sin229°+sin261°≈0.482+0.872=0.9873,
    sin237°+sin253°≈0.602+0.802=1.0000,
    sin245°+sin245°=()2+()2=1.
    据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.
    (Ⅰ)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;
    (Ⅱ)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.
    二十九.用样本估计总体(共1小题)
    44.(2017•福建)自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:
    使用次数
    0
    1
    2
    3
    4
    5(含5次以上)
    累计车费
    0
    0.5
    0.9
    a
    b
    1.5
    同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:
    使用次数
    0
    1
    2
    3
    4
    5
    人数
    5
    15
    10
    30
    25
    15
    (Ⅰ)写出a,b的值;
    (Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.
    三十.折线统计图(共1小题)
    45.(2020•福建)为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫.现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如图1所示的条形图.

    (1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;
    (2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;
    (3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如图2的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年6月开始,以后每月家庭人均月纯收入都将比上一个月增加170元.

    已知2020年农村脱贫标准为农民人均年纯收入4000元,试根据以上信息预测该地区所有贫困家庭能否在今年实现全面脱贫.
    三十一.概率公式(共1小题)
    46.(2018•福建)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:
    甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;
    乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日揽件数超过
    40,超过部分每件多提成2元.
    如图是今年四月份甲公司揽件员人均揽件数和乙公司揽件员人均揽件数的条形统计图:

    (1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;
    (2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的
    揽件数,解决以下问题:
    ①估计甲公司各揽件员的日平均揽件数;
    ②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,并说明理由.
    三十二.列表法与树状图法(共1小题)
    47.(2021•福建)“田忌赛马”的故事闪烁着我国古代先贤的智慧光芒.该故事的大意是:齐王有上、中、下三匹马A1,B1,C1,田忌也有上、中、下三匹马A2,B2,C2,且这六匹马在比赛中的胜负可用不等式表示如下:A1>A2>B1>B2>C1>C2(注:A>B表示A马与B马比赛,A马获胜).一天,齐王找田忌赛马,约定:每匹马都出场比赛一局,共赛三局,胜两局者获得整场比赛的胜利.面对劣势,田忌事先了解到齐王三局比赛的“出马”顺序为上马、中马、下马,并采用孙膑的策略:分别用下马、上马、中马与齐王的上马、中马、下马比赛,即借助对阵(C2A1,A2B1,B2C1)获得了整场比赛的胜利,创造了以弱胜强的经典案例.
    假设齐王事先不打探田忌的“出马”情况,试回答以下问题:
    (1)如果田忌事先只打探到齐王首局将出“上马”,他首局应出哪种马才可能获得整场比赛的胜利?并求其获胜的概率;
    (2)如果田忌事先无法打探到齐王各局的“出马”情况,他是否必败无疑?若是,请说明理由;若不是,请列出田忌获得整场比赛胜利的所有对阵情况,并求其获胜的概率.
    三十三.利用频率估计概率(共1小题)
    48.(2019•福建)某种机器使用期为三年,买方在购进机器时,可以给各台机器分别一次性额外购买若干次维修服务,每次维修服务费为2000元.每台机器在使用期间,如果维修次数未超过购机时购买的维修服务次数,每次实际维修时还需向维修人员支付工时费500元;如果维修次数超过购机时购买的维修服务次数,超出部分每次维修时需支付维修服务费5000元,但无需支付工时费.某公司计划购买1台该种机器,为决策在购买机器时应同时一次性额外购买几次维修服务,搜集并整理了100台这种机器在三年使用期内的维修次数,整理得下表;
    维修次数
    8
    9
    10
    11
    12
    频数(台数)
    10
    20
    30
    30
    10
    (1)以这100台机器为样本,估计“1台机器在三年使用期内维修次数不大于10”的概率;
    (2)试以这100台机器维修费用的平均数作为决策依据,说明购买1台该机器的同时应一次性额外购10次还是11次维修服务?



    【参考答案】
    一十六.圆周角定理(共1小题)
    30.(2019•福建)如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF.
    (1)求证:∠BAC=2∠CAD;
    (2)若AF=10,BC=4,求tan∠BAD的值.

    【解析】解:(1)∵AB=AC,
    ∴=,∠ABC=∠ACB,
    ∴∠ABC=∠ADB,∠ABC=(180°﹣∠BAC)=90°﹣∠BAC,
    ∵BD⊥AC,
    ∴∠ADB=90°﹣∠CAD,
    ∴∠BAC=∠CAD,
    ∴∠BAC=2∠CAD;
    (2)解:∵DF=DC,
    ∴∠DFC=∠DCF,
    ∴∠BDC=2∠DFC,
    ∴∠BFC=∠BDC=∠BAC=∠FBC,
    ∴CB=CF,
    又BD⊥AC,
    ∴AC是线段BF的中垂线,AB=AF=10,AC=10.
    又BC=4,
    设AE=x,CE=10﹣x,
    由AB2﹣AE2=BC2﹣CE2,得100﹣x2=80﹣(10﹣x)2,
    解得x=6,
    ∴AE=6,BE=8,CE=4,
    ∵∠ACD=∠ABD,∠CED=∠BEA,
    ∴△CED∽△BEA,
    ∴=,
    ∴DE===3,
    ∴BD=BE+DE=3+8=11,
    作DH⊥AB,垂足为H,
    ∵AB•DH=BD•AE,
    ∴DH===,
    ∴BH==,
    ∴AH=AB﹣BH=10﹣=,
    ∴tan∠BAD===.

    一十七.三角形的外接圆与外心(共1小题)
    31.(2018•福建)如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB.
    (1)求证:BG∥CD;
    (2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.

    【解析】(1)证明:如图1,∵PC=PB,
    ∴∠PCB=∠PBC,
    ∵四边形ABCD内接于圆,
    ∴∠BAD+∠BCD=180°,
    ∵∠BCD+∠PCB=180°,
    ∴∠BAD=∠PCB,
    ∵∠BAD=∠BFD,
    ∴∠BFD=∠PCB=∠PBC,
    ∴BC∥DF,
    ∵DE⊥AB,
    ∴∠DEB=90°,
    ∴∠ABC=90°,
    ∴AC是⊙O的直径,
    ∴∠ADC=90°,
    ∵BG⊥AD,
    ∴∠AGB=90°,
    ∴∠ADC=∠AGB,
    ∴BG∥CD;
    (2)由(1)得:BC∥DF,BG∥CD,
    ∴四边形BCDH是平行四边形,
    ∴BC=DH,
    在Rt△ABC中,∵AB=DH,
    ∴tan∠ACB==,
    ∴∠ACB=60°,∠BAC=30°,
    ∴∠ADB=60°,BC=AC,
    ∴DH=AC,
    ①当点O在DE的左侧时,如图2,作直径DM,连接AM、OH,则∠DAM=90°,
    ∴∠AMD+∠ADM=90°
    ∵DE⊥AB,
    ∴∠BED=90°,
    ∴∠BDE+∠ABD=90°,
    ∵∠AMD=∠ABD,
    ∴∠ADM=∠BDE,
    ∵DH=AC,
    ∴DH=OD,
    ∴∠DOH=∠OHD=80°,
    ∴∠ODH=20°
    ∵∠ADB=60°,
    ∴∠ADM+∠BDE=40°,
    ∴∠BDE=∠ADM=20°,
    ②当点O在DE的右侧时,如图3,作直径DN,连接BN,
    由①得:∠ADE=∠BDN=20°,∠ODH=20°,
    ∴∠BDE=∠BDN+∠ODH=40°,
    综上所述,∠BDE的度数为20°或40°.



    一十八.切线的判定(共1小题)
    32.(2017•福建)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,点P在CA的延长线上,∠CAD=45°.
    (Ⅰ)若AB=4,求的长;
    (Ⅱ)若=,AD=AP,求证:PD是⊙O的切线.

    【解析】解:(Ⅰ)连接OC,OD,
    ∵∠COD=2∠CAD,∠CAD=45°,
    ∴∠COD=90°,
    ∵AB=4,
    ∴OC=AB=2,
    ∴的长=×π×2=π;
    (Ⅱ)∵=,
    ∴∠BOC=∠AOD,
    ∵∠COD=90°,
    ∴∠AOD=45°,
    ∵OA=OD,
    ∴∠ODA=∠OAD,
    ∵∠AOD+∠ODA+∠OAD=180°,
    ∴∠ODA=67.5°,
    ∵AD=AP,
    ∴∠ADP=∠APD,
    ∵∠CAD=∠ADP+∠APD,∠CAD=45°,
    ∴∠ADP=CAD=22.5°,
    ∴∠ODP=∠ODA+∠ADP=90°,
    ∴PD是⊙O的切线.

    一十九.切线的判定与性质(共1小题)
    33.(2020•福建)如图,AB与⊙O相切于点B,AO交⊙O于点C,AO的延长线交⊙O于点D,E是上不与B,D重合的点,sinA=.
    (1)求∠BED的大小;
    (2)若⊙O的半径为3,点F在AB的延长线上,且BF=3,求证:DF与⊙O相切.

    【解析】解:(1)连接OB,如图1,
    ∵AB与⊙O相切于点B,
    ∴∠ABO=90°,
    ∵sinA=,
    ∴∠A=30°,
    ∴∠BOD=∠ABO+∠A=120°,
    ∴∠BED=∠BOD=60°;


    (2)证明:连接OF,OB,如图2,
    ∵AB是切线,
    ∴∠OBF=90°,
    ∵BF=3,OB=3,
    ∴,
    ∴∠BOF=60°,
    ∵∠BOD=120°,
    ∴∠BOF=∠DOF=60°,
    在△BOF和△DOF中,

    ∴△BOF≌△DOF(SAS),
    ∴∠OBF=∠ODF=90°,
    ∴DF与⊙O相切.

    二十.圆的综合题(共1小题)
    34.(2018•福建)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E.
    (1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;
    (2)过点B作BG⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,连接OH,BD,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.

    【解析】解:(1)如图1,∵AC是⊙O的直径,
    ∴∠ABC=90°,
    ∵DE⊥AB,
    ∴∠DEA=90°,
    ∴∠DEA=∠ABC,
    ∴BC∥DF,
    ∴∠F=∠PBC,
    ∵四边形BCDF是圆内接四边形,
    ∴∠F+∠DCB=180°,
    ∵∠PCB+∠DCB=180°,
    ∴∠F=∠PCB,
    ∴∠PBC=∠PCB,
    ∴PC=PB;

    (2)如图2,连接OD,∵AC是⊙O的直径,
    ∴∠ADC=90°,
    ∵BG⊥AD,
    ∴∠AGB=90°,
    ∴∠ADC=∠AGB,
    ∴BG∥DC,
    ∵BC∥DE,
    ∴四边形DHBC是平行四边形,
    ∴BC=DH=1,
    在Rt△ABC中,AB=,tan∠ACB=,
    ∴∠ACB=60°,
    ∴BC=AC=OD,
    ∴DH=OD,
    在等腰三角形DOH中,∠DOH=∠OHD=80°,
    ∴∠ODH=20°,
    设DE交AC于N,
    ∵BC∥DE,
    ∴∠ONH=∠ACB=60°,
    ∴∠NOH=180°﹣(∠ONH+∠OHD)=40°,
    ∴∠DOC=∠DOH﹣∠NOH=40°,
    ∵OA=OD,∴∠OAD=∠DOC=20°,
    ∴∠CBD=∠OAD=20°,
    ∵BC∥DE,
    ∴∠BDE=∠CBD=20°.

    二十一.作图—基本作图(共1小题)
    35.(2017•福建)如图,△ABC中,∠BAC=90°,AD⊥BC,垂足为D.求作∠ABC的平分线,分别交AD,AC于P,Q两点;并证明AP=AQ.(要求:尺规作图,保留作图痕迹,不写作法)

    【解析】解:BQ就是所求的∠ABC的平分线,P、Q就是所求作的点.
    证明:∵AD⊥BC,
    ∴∠ADB=90°,
    ∴∠BPD+∠PBD=90°.
    ∵∠BAC=90°,
    ∴∠AQP+∠ABQ=90°.
    ∵∠ABQ=∠PBD,
    ∴∠BPD=∠AQP.
    ∵∠BPD=∠APQ,
    ∴∠APQ=∠AQP,
    ∴AP=AQ.

    二十二.作图—复杂作图(共2小题)
    36.(2021•福建)如图,已知线段MN=a,AR⊥AK,垂足为A.
    (1)求作四边形ABCD,使得点B,D分别在射线AK,AR上,且AB=BC=a,∠ABC=60°,CD∥AB;(要求:尺规作图,不写作法,保留作图痕迹)
    (2)设P,Q分别为(1)中四边形ABCD的边AB,CD的中点,求证:直线AD,BC,PQ相交于同一点.

    【解析】(1)解:如图,四边形ABCD为所作;

    (2)证明:设PQ交AD于G,BC交AD于G′,
    ∵DQ∥AP,
    ∴=,
    ∵DC∥AB,
    ∴=,
    ∵P,Q分别为边AB,CD的中点,
    ∴DC=2DQ,AB=2AP,
    ∴===,
    ∴=,
    ∴点G与点G′重合,
    ∴直线AD,BC,PQ相交于同一点.
    37.如图,C为线段AB外一点.
    (1)求作四边形ABCD,使得CD∥AB,且CD=2AB;(要求:尺规作图,不写作法,保留作图痕迹)
    (2)在(1)的四边形ABCD中,AC,BD相交于点P,AB,CD的中点分别为M,N,求证:M,P,N三点在同一条直线上.

    【解析】解:(1)如图,四边形ABCD即为所求;

    (2)证明:如图,

    ∵CD∥AB,
    ∴∠ABP=∠CDP,∠BAP=∠DCP,
    ∴△ABP∽△CDP,
    ∴=,
    ∵AB,CD的中点分别为M,N,
    ∴AB=2AM,CD=2CN,
    ∴=,
    连接MP,NP,
    ∵∠BAP=∠DCP,
    ∴△APM∽△CPN,
    ∴∠APM=∠CPN,
    ∵点P在AC上,
    ∴∠APM+∠CPM=180°,
    ∴∠CPN+∠CPM=180°,
    ∴M,P,N三点在同一条直线上.
    二十三.旋转的性质(共1小题)
    38.(2019•福建)在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC绕点C顺时针旋转一定的角度α得到△DEC,点A、B的对应点分别是D、E.
    (1)当点E恰好在AC上时,如图1,求∠ADE的大小;
    (2)若α=60°时,点F是边AC中点,如图2,求证:四边形BEDF是平行四边形.

    【解析】(1)解:连接AD,如图1,
    ∵△ABC绕点C顺时针旋转α得到△DEC,点E恰好在AC上,
    ∴CA=CD,∠ECD=∠BCA=30°,∠DEC=∠ABC=90°,
    ∵CA=CD,
    ∴∠CAD=∠CDA=(180°﹣30°)=75°,
    ∴∠ADE=90°﹣75°=15°;
    (2)证明:如图2,
    ∵点F是边AC中点,
    ∴BF=AC,
    ∵∠ACB=30°,
    ∴AB=AC,
    ∴BF=AB,
    ∵△ABC绕点C顺时针旋转60°得到△DEC,
    ∴∠BCE=∠ACD=60°,CB=CE,DE=AB,
    ∴DE=BF,△ACD和△BCE为等边三角形,
    ∴BE=CB,
    ∵点F为△ACD的边AC的中点,
    ∴DF⊥AC,
    易证得△CFD≌△ABC,
    ∴DF=BC,
    ∴DF=BE,
    而BF=DE,
    ∴四边形BEDF是平行四边形.

    二十四.相似三角形的判定(共1小题)
    39.(2019•福建)已知△ABC和点A',如图.
    (1)以点A'为一个顶点作△A'B'C',使△A'B'C'∽△ABC,且△A'B'C'的面积等于△ABC面积的4倍;(要求:尺规作图,不写作法,保留作图痕迹)
    (2)设D、E、F分别是△ABC三边AB、BC、AC的中点,D'、E'、F'分别是你所作的△A'B'C'三边A'B'、B'C'、C'A'的中点,求证:△DEF∽△D'E'F'.

    【解析】解:(1)作线段A'C'=2AC、A'B'=2AB、B'C'=2BC,得△A'B'C'即可所求.

    证明:∵A'C'=2AC、A'B'=2AB、B'C'=2BC,
    ∴△ABC∽△A′B′C′,

    (2)证明:

    ∵D、E、F分别是△ABC三边AB、BC、AC的中点,
    ∴DE=,,,
    ∴△DEF∽△ABC
    同理:△D'E'F'∽△A'B'C',
    由(1)可知:△ABC∽△A′B′C′,
    ∴△DEF∽△D'E'F'.
    二十五.相似三角形的判定与性质(共1小题)
    40.(2018•福建)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8.线段AD由线段AB绕点A按逆时针方向旋转90°得到,△EFG由△ABC沿CB方向平移得到,且直线EF过点D.
    (1)求∠BDF的大小;
    (2)求CG的长.

    【解析】解:(1)∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,
    ∴∠DAB=90°,AD=AB=10,
    ∴∠ABD=45°,
    ∵△EFG是△ABC沿CB方向平移得到,
    ∴AB∥EF,
    ∴∠BDF=∠ABD=45°;

    (2)方法1、由平移的性质得,AE∥CG,AB∥EF,
    ∴∠DEA=∠DFC=∠ABC,∠ADE+∠DAB=180°,
    ∵∠DAB=90°,
    ∴∠ADE=90°,
    ∵∠ACB=90°,
    ∴∠ADE=∠ACB,
    ∴△ADE∽△ACB,
    ∴,
    ∵AC=8,AB=AD=10,
    ∴AE=12.5,
    由平移的性质得,CG=AE=12.5;

    方法2、由平移的性质得,AE∥CG,AB∥EF,
    ∴四边形ABFE是平行四边形,
    ∴S▱ABFE=AE•AC=AB•AD,
    由旋转知,AD=AB=10,
    ∵AC=8,
    ∴AE×8=10×10,
    ∴AE=12.5,
    由平移的性质得,CG=AE=12.5.
    二十六.作图-相似变换(共1小题)
    41.(2018•福建)求证:相似三角形对应边上的中线之比等于相似比.
    要求:①根据给出的△ABC及线段A′B′,∠A′(∠A′=∠A),以线段A′B′为一边,在给出的图形上用尺规作出△A′B′C′,使得△A′B′C′∽△ABC,不写作法,保留作图痕迹;
    ②在已有的图形上画出一组对应中线,并据此写出已知、求证和证明过程.

    【解析】解:(1)如图所示,△A′B′C′即为所求;

    (2)已知,如图,△ABC∽△A′B′C′',===k,D是AB的中点,D'是A'B'的中点,
    求证:=k.

    证明:∵D是AB的中点,D'是A'B'的中点,
    ∴AD=AB,A'D'=A'B',
    ∴==,
    ∵△ABC∽△A'B'C',
    ∴=,∠A'=∠A,
    ∵=,∠A'=∠A,
    ∴△A'C'D'∽△ACD,
    ∴==k.
    二十七.相似形综合题(共1小题)
    42.(2020•福建)如图,△ADE由△ABC绕点A按逆时针方向旋转90°得到,且点B的对应点D恰好落在BC的延长线上,AD,EC相交于点P.
    (1)求∠BDE的度数;
    (2)F是EC延长线上的点,且∠CDF=∠DAC.
    ①判断DF和PF的数量关系,并证明;
    ②求证:=.

    【解析】解:(1)∵△ADE由△ABC绕点A按逆时针方向旋转90°得到,
    ∴AB=AD,∠BAD=90°,△ABC≌△ADE,
    在Rt△ABD中,∠B=∠ADB=45°,
    ∴∠ADE=∠B=45°,
    ∴∠BDE=∠ADB+∠ADE=90°.
    (2)①DF=PF.
    证明:由旋转的性质可知,AC=AE,∠CAE=90°,
    在Rt△ACE中,∠ACE=∠AEC=45°,
    ∵∠CDF=∠CAD,∠ACE=∠ADB=45°,
    ∴∠ADB+∠CDF=∠ACE+∠CAD,
    即∠FPD=∠FDP,
    ∴DF=PF.
    ②证明:过点P作PH∥ED交DF于点H,

    ∴∠HPF=∠DEP,,
    ∵∠DPF=∠ADE+∠DEP=45°+∠DEP,
    ∠DPF=∠ACE+∠DAC=45°+∠DAC,
    ∴∠DEP=∠DAC,
    又∵∠CDF=∠DAC,
    ∴∠DEP=∠CDF,
    ∴∠HPF=∠CDF,
    又∵FD=FP,∠F=∠F,
    ∴△HPF≌△CDF(ASA),
    ∴HF=CF,
    ∴DH=PC,
    又∵,
    ∴.
    二十八.互余两角三角函数的关系(共1小题)
    43.(2017•福建)小明在某次作业中得到如下结果:
    sin27°+sin283°≈0.122+0.992=0.9945,
    sin222°+sin268°≈0.372+0.932=1.0018,
    sin229°+sin261°≈0.482+0.872=0.9873,
    sin237°+sin253°≈0.602+0.802=1.0000,
    sin245°+sin245°=()2+()2=1.
    据此,小明猜想:对于任意锐角α,均有sin2α+sin2(90°﹣α)=1.
    (Ⅰ)当α=30°时,验证sin2α+sin2(90°﹣α)=1是否成立;
    (Ⅱ)小明的猜想是否成立?若成立,请给予证明;若不成立,请举出一个反例.
    【解析】解:(1)当α=30°时,
    sin2α+sin2(90°﹣α)
    =sin230°+sin260°
    =()2+()2
    =+
    =1;

    (2)小明的猜想成立,证明如下:
    如图,在△ABC中,∠C=90°,

    设∠A=α,则∠B=90°﹣α,
    ∴sin2α+sin2(90°﹣α)
    =()2+()2


    =1.
    二十九.用样本估计总体(共1小题)
    44.(2017•福建)自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:
    使用次数
    0
    1
    2
    3
    4
    5(含5次以上)
    累计车费
    0
    0.5
    0.9
    a
    b
    1.5
    同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:
    使用次数
    0
    1
    2
    3
    4
    5
    人数
    5
    15
    10
    30
    25
    15
    (Ⅰ)写出a,b的值;
    (Ⅱ)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利?说明理由.
    【解析】解:(Ⅰ)a=0.9+0.3=1.2,b=1.2+0.2=1.4;
    (Ⅱ)根据用车意愿调查结果,抽取的100名师生每人每天使用A品牌共享单车的平均车费为:
    ×(0×5+0.5×15+0.9×10+1.2×30+1.4×25+1.5×15)=1.1(元),
    所以估计5000名师生一天使用共享单车的费用为:5000×1.1=5500(元),
    因为5500<5800,
    故收费调整后,此运营商在该校投放A品牌共享单车不能获利.
    三十.折线统计图(共1小题)
    45.(2020•福建)为贯彻落实党中央关于全面建成小康社会的战略部署,某贫困地区的广大党员干部深入农村积极开展“精准扶贫”工作.经过多年的精心帮扶,截至2019年底,按照农民人均年纯收入3218元的脱贫标准,该地区只剩少量家庭尚未脱贫.现从这些尚未脱贫的家庭中随机抽取50户,统计其2019年的家庭人均年纯收入,得到如图1所示的条形图.

    (1)如果该地区尚未脱贫的家庭共有1000户,试估计其中家庭人均年纯收入低于2000元(不含2000元)的户数;
    (2)估计2019年该地区尚未脱贫的家庭人均年纯收入的平均值;
    (3)2020年初,由于新冠疫情,农民收入受到严重影响,上半年当地农民家庭人均月纯收入的最低值变化情况如图2的折线图所示.为确保当地农民在2020年全面脱贫,当地政府积极筹集资金,引进某科研机构的扶贫专项项目.据预测,随着该项目的实施,当地农民自2020年6月开始,以后每月家庭人均月纯收入都将比上一个月增加170元.

    已知2020年农村脱贫标准为农民人均年纯收入4000元,试根据以上信息预测该地区所有贫困家庭能否在今年实现全面脱贫.
    【解析】解:(1)根据题意,可估计该地区尚未脱贫的1000户家庭中,家庭人均年纯收入低于2000元(不含2000元)的户数为:
    1000×=120(户);
    (2)根据题意,可估计该地区尚未脱贫的家庭2019年家庭人均年纯收入的平均值为:
    ×(1.5×6+2.0×8+2.2×10+2.5×12+3.0×9+3.2×5)
    =2.4(千元);
    (3)根据题意,得,
    2020年该地区农民家庭人均月纯收入的最低值如下:

    由上表可知当地农民2020年家庭人均年纯收入不低于:
    500+300+150+200+300+450+620+790+960+1130+1300+1470=8170(元),
    ∵8170>4000.
    所以可以预测该地区所有贫困家庭能在今年实现全面脱贫.
    三十一.概率公式(共1小题)
    46.(2018•福建)甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:
    甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;
    乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日揽件数超过
    40,超过部分每件多提成2元.
    如图是今年四月份甲公司揽件员人均揽件数和乙公司揽件员人均揽件数的条形统计图:

    (1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;
    (2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的
    揽件数,解决以下问题:
    ①估计甲公司各揽件员的日平均揽件数;
    ②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,并说明理由.
    【解析】解:(1)因为今年四月份甲公司揽件员人均揽件数超过40的有4天,
    所以甲公司揽件员人均揽件数超过40(不含40)的概率为=;

    (2)①甲公司各揽件员的日平均件数为=39件;
    ②甲公司揽件员的日平均工资为70+39×2=148元,
    乙公司揽件员的日平均工资为
    =[40+]×4+×6
    =159.4元,
    因为159.4>148,
    所以仅从工资收入的角度考虑,小明应到乙公司应聘.
    三十二.列表法与树状图法(共1小题)
    47.(2021•福建)“田忌赛马”的故事闪烁着我国古代先贤的智慧光芒.该故事的大意是:齐王有上、中、下三匹马A1,B1,C1,田忌也有上、中、下三匹马A2,B2,C2,且这六匹马在比赛中的胜负可用不等式表示如下:A1>A2>B1>B2>C1>C2(注:A>B表示A马与B马比赛,A马获胜).一天,齐王找田忌赛马,约定:每匹马都出场比赛一局,共赛三局,胜两局者获得整场比赛的胜利.面对劣势,田忌事先了解到齐王三局比赛的“出马”顺序为上马、中马、下马,并采用孙膑的策略:分别用下马、上马、中马与齐王的上马、中马、下马比赛,即借助对阵(C2A1,A2B1,B2C1)获得了整场比赛的胜利,创造了以弱胜强的经典案例.
    假设齐王事先不打探田忌的“出马”情况,试回答以下问题:
    (1)如果田忌事先只打探到齐王首局将出“上马”,他首局应出哪种马才可能获得整场比赛的胜利?并求其获胜的概率;
    (2)如果田忌事先无法打探到齐王各局的“出马”情况,他是否必败无疑?若是,请说明理由;若不是,请列出田忌获得整场比赛胜利的所有对阵情况,并求其获胜的概率.
    【解析】解:(1)田忌首局应出“下马”才可能获胜,
    此时,比赛所有可能的对阵为:(A1C2,B1A2,C1B2),(A1C2,C1B2,B1A2),(A1C2,B1B2,C1A2),(A1C2,C1A2,B1B2),共四种,其中获胜的有两场,
    故此田忌获胜的概率为P=.
    (2)不是.
    当齐王的出马顺序为A1,B1,C1时,田忌获胜的对阵是:(A1C2,B1A2,C1B2),
    当齐王的出马顺序为A1,C1,B1时,田忌获胜的对阵是:(A1C2,C1B2,B1A2),
    当齐王的出马顺序为B1,A1,C1时,田忌获胜的对阵是:(B1A2,A1C2,C1B2),
    当齐王的出马顺序为B1,C1,A1时,田忌获胜的对阵是:(B1A2,C1B2,A1C2),
    当齐王的出马顺序为C1,A1,B1时,田忌获胜的对阵是:(C1B2,A1C2,B1A2),
    当齐王的出马顺序为C1,B1,A1时,田忌获胜的对阵是:(C1B2,B1A2,A1C2),
    综上所述,田忌获胜的对阵有6种,不论齐王的出马顺序如何,也都有相应的6种可能对阵,所以田忌获胜的概率为P=.
    三十三.利用频率估计概率(共1小题)
    48.(2019•福建)某种机器使用期为三年,买方在购进机器时,可以给各台机器分别一次性额外购买若干次维修服务,每次维修服务费为2000元.每台机器在使用期间,如果维修次数未超过购机时购买的维修服务次数,每次实际维修时还需向维修人员支付工时费500元;如果维修次数超过购机时购买的维修服务次数,超出部分每次维修时需支付维修服务费5000元,但无需支付工时费.某公司计划购买1台该种机器,为决策在购买机器时应同时一次性额外购买几次维修服务,搜集并整理了100台这种机器在三年使用期内的维修次数,整理得下表;
    维修次数
    8
    9
    10
    11
    12
    频数(台数)
    10
    20
    30
    30
    10
    (1)以这100台机器为样本,估计“1台机器在三年使用期内维修次数不大于10”的概率;
    (2)试以这100台机器维修费用的平均数作为决策依据,说明购买1台该机器的同时应一次性额外购10次还是11次维修服务?
    【解析】解:(1)“1台机器在三年使用期内维修次数不大于10”的概率==0.6.
    (2)购买10次时,
    某台机器使用期内维修次数
    8
    9
    10
    11
    12
    该台机器维修费用
    24000
    24500
    25000
    30000
    35000
    此时这100台机器维修费用的平均数
    y1=×(24000×10+24500×20+25000×30+30000×30+35000×10)=27300
    购买11次时,
    某台机器使用期内维修次数
    8
    9
    10
    11
    12
    该台机器维修费用
    26000
    26500
    27000
    27500
    32500
    此时这100台机器维修费用的平均数
    y2=×(26000×10+26500×20+27000×30+27500×30+32500×10)=27500,
    ∵27300<27500,
    所以,选择购买10次维修服务.

    相关试卷

    江苏省2022中考数学真题分类汇编-07+解答题+提升题知识点分类:

    这是一份江苏省2022中考数学真题分类汇编-07+解答题+提升题知识点分类,共40页。试卷主要包含了为函数y1、y2的“组合函数”,x+m﹣4,其中m>2,,与y轴交于点C,顶点为D,已知等内容,欢迎下载使用。

    07解答题中档题知识点分类-浙江省2022年各地区中考数学真题分类汇编:

    这是一份07解答题中档题知识点分类-浙江省2022年各地区中考数学真题分类汇编,共37页。试卷主要包含了>x+1,的函数图象如图,的图象与x轴交于A,B两点,根据以下素材,探索完成任务等内容,欢迎下载使用。

    05解答题知识点分类①-福建省五年(2017-2021)中考数学真题分类汇编:

    这是一份05解答题知识点分类①-福建省五年(2017-2021)中考数学真题分类汇编,共5页。试卷主要包含了计算,先化简,再求值,,其中x=+1,÷,其中m=+1,•,其中a=﹣1,解方程组,解应用题的方法求出问题的解,解不等式组等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map