终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2022年辽宁省沈阳市中考数学实训试卷(一)(含解析)

    立即下载
    加入资料篮
    2022年辽宁省沈阳市中考数学实训试卷(一)(含解析)第1页
    2022年辽宁省沈阳市中考数学实训试卷(一)(含解析)第2页
    2022年辽宁省沈阳市中考数学实训试卷(一)(含解析)第3页
    还剩20页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022年辽宁省沈阳市中考数学实训试卷(一)(含解析)

    展开

    这是一份2022年辽宁省沈阳市中考数学实训试卷(一)(含解析),共23页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
    2022年辽宁省沈阳市中考数学实训试卷(一) 题号总分得分     一、选择题(本大题共10小题,共20分)的绝对值是A.  B.  C.  D. 北京时间分,神舟十三号载人飞船在酒泉卫星发射中心按照预定时间精准发射,飞船逐渐飞到空间站的轨道上,和空间站交会对接.飞船全程要飞万公里的路程.数据“万”用科学记数法可以表示为A.  B.  C.  D. 如图是由个相同的小立方块搭成的几何体,这个几何体的左视图是A.
    B.
    C.
    D. 下列说法正确的是A. 若甲、乙两组数据的平均数相同,,则甲组数据较稳定
    B. 如果明天降水的概率是,那么明天有半天都在降雨
    C. “打开电视机,正在播放新闻”是必然事件
    D. 早上的太阳从西方升起是必然事件下列运算正确的是A.  B.
    C.  D. 如图,点上一点,,则的度数是
    A.  B.  C.  D. 已知是它们的对应高线,若,则的面积比是A.  B.  C.  D. 已知一次函数的图象如图所示,则的取值范围是A.
    B.
    C.
    D. 如图,点上的三点,连接,若的半径是,则的值是A.
    B.
    C.
    D. 已知等边,点、点分别是边上的动点,,则图中相似的三角形的对数是A.
    B.
    C.
    D.  二、填空题(本大题共6小题,共18分)因式分解:______不等式组的解集是______计算:______一次函数的图象相交于点,反比例函数的图象经过点,则反比例函数的表达式为______如图,某跑道的周长为且两端为半圆形,要使矩形内部操场的面积最大,直线跑道的长应为______已知点为正方形对角线的中点,点下方一点,且,则长为______


        三、解答题(本大题共9小题,共82分)计算:某校开展“强国学习”知识竞赛,现从队、队、队、队四个队中,随机抽取两个队进行第一轮的抢答环节比赛.请用列表或画树状图的方法求出抽到队与队比赛的概率.如图,四边形和四边形是平行四边形,点在一条直线上,,对角线交于点,点边的中点,连接
    求证:四边形是菱形;
    ,则四边形的面积是______
    某校为了解“双减”后学生回家完成作业的时间情况,对该校学生进行随机抽样调查,其中一个问题是“你平均每天回家写作业的时间是多少?”共有个选项:小时以上;小时;小时;小时以下.图是根据调查结果绘制的两幅不完整的统计图.
    根据以上信息,解答下列问题:
    这次调查一共抽取了______名学生,其中,选择选项的学生占被调查学生总数的百分比是______
    请将条形统计图补充完整;
    该校有名学生,根据调查结果,估计全校学生约有多少名回家写作业时间在小时以下.
    星海湾大桥是大连市境内连接沙河口区和西岗区的跨海通道,主桥全长千米,喜欢运动的话,这里是跑步运动绝佳的地方,小明和妈妈一起来到大桥晨跑,小明的速度是妈妈速度的倍,结果小明比妈妈提前小时跑完全程,小明的速度是每小时多少千米?如图,直径,四边形为矩形,于点,连接
    求证:的切线;
    的半径是,则长为______


      如图,在平面直角坐标系中,直线与坐标轴交于点两点,直线与直线交于点,点是直线上一动点,轴交于点轴交于点
    求点的坐标;
    时,求点的坐标;
    时,请直接写出点的坐标.
    中,于点,点是射线上一点,点延长线上一点,于点

    填空:与相等的角是______
    求证:
    时,则______如图,抛物线轴于两点在点的左侧,交轴于点
    求抛物线的解析式;
    直线与抛物线交于点,连接轴于点,连接
    的面积为时,求点的坐标;
    是线段上一动点,连接,当,且平分时,请直接写出的面积.

    答案和解析 1.【答案】【解析】解:
    故选C
    根据绝对值的意义直接判断即可。
    本题考查了绝对值:若,则;若,则;若,则
     2.【答案】【解析】解:将数据“万”用科学记数法可以表示为
    故选:
    用科学记数法表示较大的数时,一般形式为,其中的值等于原数的整数位数减一,,一共六位整数,所以
    本题考查科学记数法的表示方法:科学记数法的表示形式为的形式,其中为整数,解题关键是正确确定的值,确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正数;当原数的绝对值时,是负数.
     3.【答案】【解析】解:从左边看,从左往右小正方形的个数依次为:左视图如下:

    故选:
    细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.
    本题主要考查了几何体的三种视图和学生的空间想象能力,视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.
     4.【答案】【解析】解:、若甲、乙两组数据的平均数相同,,则甲组数据较稳定,故本选项符合题意;
    B、“明天降雨的概率是”表示明天降雨的可能性,但不一定是明天有的时间降雨,故本选项不符合题意;
    C、“打开电视机,正在播放新闻”是随机事件,故本选项不符合题意;
    D、早上的太阳从西方升起是不可能事件,故本选项不符合题意;
    故选:
    利用概率的意义以及方差的定义判断即可.
    本题考查了随机事件、方差以及概率公式,熟练掌握各自的定义是解本题的关键.
     5.【答案】【解析】解:,不是同类项,不能合并,故错误;
    B.,正确;
    C.,故错误;
    D.,故错误.
    故选:
    根据合并同类项、幂的乘法除法、幂的乘方、完全平方公式分别计算即可.
    本题考查了整式的运算,熟练掌握合并同类项、幂的乘除法、幂的乘方、完全平方公式是解题的关键.
     6.【答案】【解析】解:
    中,




    中,
    故选:
    依据是等腰三角形,即可得到的度数;再根据平行线的性质,可得的度数;最后依据是等腰三角形,即可得到的度数.
    本题主要考查了等腰三角形的性质以及平行线的性质,解法多样,关键是掌握等腰三角形的两个底角相等.
     7.【答案】【解析】解:是它们的对应高线,若
    两三角形的相似比为:

    故选:
    根据相似三角形的性质:对应高线的比等于相似比,面积的比等于相似比的平方求解即可.
    本题考查的是相似三角形的性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.
     8.【答案】【解析】解:
    直线与轴交点坐标为
    由图象得

    故选:
    由一次函数解析式可得一次函数与轴交点坐标,进而求解.
    本题考查一次函数的性质,解题关键是掌握一次函数图象与系数的关系.
     9.【答案】【解析】解:如图,作直径,连接


    的半径是


    故选:
    作直径构建直角,根据同弧所对的圆周角相等可得,从而得结论.
    本题考查了圆周角定理,锐角三角函数在计算中的应用,熟练掌握正弦的定义和圆周角定理是解题的关键.
     10.【答案】【解析】解:是等边三角形,















    综上所述,图中相似的三角形的对数是对.
    故选:
    依据等边三角形的性质,结合条件,即可发现,再根据“有两组角对应相等的两个三角形相似”,即可找到相似三角形.
    本题主要考查了相似三角形的判定以及等边三角形的性质的运用,关键是掌握有两组角对应相等的两个三角形相似.
     11.【答案】【解析】解:原式

    故答案为:
    分别利用提取公因式法和平方差公式进行因式分解即可.
    本题主要考查了提取公因式法和公式法进行因式分解,正确利用上述法则进行因式分解是解题的关键.
     12.【答案】【解析】解:
    得:
    得:
    不等式组的解集为
    故答案为:
    分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.
    本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
     13.【答案】【解析】解:原式


    故答案为:
    先将括号内的式子进行通分计算,然后算括号外面的除法.
    本题考查分式的混合运算,理解分式的基本性质,掌握分式混合运算的运算顺序和计算法则是解题关键.
     14.【答案】【解析】解:解得,

    反比例函数的图象经过点

    反比例函数的表达式为
    故答案为:
    解方程组得到,把点代入即可得到结论.
    本题考查了待定系数法求反比例函数的解析式,一次函数的图象,正确地求得点的坐标是解题的关键.
     15.【答案】【解析】解:设矩形直线跑道长为,矩形面积为
    由题意得:

    时,
    即直线跑道长应为
    故答案为:
    本题涉及圆的周长公式的变形使用,矩形面积公式的运用,圆的直径就是矩形的一边长,直径
    本题考查了二次函数的最值,能够列出矩形面积的表达式,熟练掌握二次函数的性质是解题的关键.
     16.【答案】【解析】解:如图中,将绕点逆时针旋转得到,作的延长线于











    故答案为:
    绕点逆时针旋转得到,作的延长线于证明,求出即可解决问题.
    本题考查了正方形的性质,勾股定理,旋转的性质,等知识,解题的关键是正确地作出辅助线.
     17.【答案】解:

    【解析】先化简各式,然后再进行计算即可解答.
    本题考查了特殊角的三角函数值,零指数幂,负整数指数幂,绝对值,准确熟练地化简各式是解题的关键.
     18.【答案】解:画树状图如下:

    由图知,共有种等可能结果,其中抽到队与队比赛的有种结果,
    抽到队与队比赛的概率为【解析】先画树状图展示所有种等可能的结果数,再找出含的结果数,然后根据概率公式求解.
    本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果,再从中选出符合事件的结果数目,然后利用概率公式计算事件或事件的概率.
     19.【答案】【解析】证明:四边形和四边形是平行四边形,


    的中位线,

    边的中点,

    四边形是平行四边形,


    平行四边形是菱形;
    解:四边形是菱形,四边形是平行四边形,




    平行四边形是矩形,

    四边形是平行四边形,


    中,



    故答案为:
    由三角形中位线定理得,则四边形是平行四边形,再证,即可得出结论;
    由菱形的性质和平行四边形的性质得,再证平行四边形是矩形,得,再由锐角三角函数定义得,则,即可得出结论.
    本题考查了矩形的判定与性质、平行四边形的判定与性质、菱形的判定与性质、三角形中位线定理、等腰三角形的性质、锐角三角函数定义等知识,熟练掌握矩形的判定与性质和菱形的判定与性质是解题的关键.
     20.【答案】  【解析】解:

    故答案为:

    补全条形统计图如下:


    答:估计全校学生约有名回家写作业时间在小时以下.
    读图可得,选择选项有人,占,即可求得总人数;用选择选项的人数除以总人数再乘即可得出答案.
    计算可得选择选项的人数为名,据此补全条形统计图.
    用该校学生总数乘以选择选项的百分比即可得出答案.
    本题考查条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解答本题的关键.
     21.【答案】解:设小明妈妈的速度是每小时千米,则小明的速度是每小时多千米,
    由题意得:
    解得:
    经检验,是原方程的解,且符合题意,

    答:小明的速度是每小时千米.【解析】设小明妈妈的速度是每小时千米,则小明的速度是每小时多千米,由题意:主桥全长千米,小明和妈妈一起来到大桥晨跑,结果小明比妈妈提前小时跑完全程,列出分式方程,解方程即可.
    本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.
     22.【答案】【解析】证明:如图

    连接
    四边形是矩形,

    中,











    上,
    的切线;
    解:如图

    ,连接



    得:






    连接,证明,从而得出,进而证得,进而证明,从而得出,进一步得出结论;
    ,证明,从而求得,进一步求得结果.
    本题考查了矩形性质,勾股定理,全等三角形判定和性质,相似三角形判定和性质,圆的切线判定,垂径定理等知识,解决问题的关键是作辅助线,构造全等三角形和相似三角形.
     23.【答案】解:联立
    解得

    设点的横坐标为,则


    当点在点的下方时,


    解得
    当点在点的上方时,如图,



    解得
    的坐标为
    设直线轴交于点,如图,

    可知,设,则

    根据题意可知,
    解得
    的坐标为【解析】联立直线,解方程组即可得出点的坐标;
    设点的横坐标为,依次表达点的坐标,进而可表达的长,利用三角形的面积公式列出方程,解方程即可得出结论;
    设直线轴交于点,由点的坐标可得出的长,利用可列出方程,由此可得出结论.
    本题考查的是一次函数综合运用,涉及到一次函数的性质、三角形的面积,两点间的距离等知识等,根据题意得出方程是解题关键.
     24.【答案】  【解析】解:



    相等的角是
    故答案为:
    证明:如图

    过点于点









    解:




    中,






    如图,过






    是等边三角形,
    ,则
    知,









    解得

    故答案为:
    根据等腰三角形到现在得到,根据三角形的外角的性质得到,于是得到结论;
    如图,过点于点,得到,根据相似三角形的性质得到,根据全等三角形的性质即可得到
    根据全等三角形的性质得到,求得,得到,于是得到结论;
    如图,过,根据平行线的性质得到,推出是等边三角形,设,则,根据全等三角形的性质得到,根据相似三角形的性质健康得到结论.
    本题考查了相似三角形的综合题,全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的性质,平行线的性质,正确地作出辅助线是解题的关键.
     25.【答案】解:时,











    设直线的解析式为:



    时,




    舍去
    时,

    如图,

    设直线,连接

    直线的解析式为:
    知:








    平分










    四边形是平行四边形,


    舍去
    时,

    【解析】先求出点的坐标,从而得出的长,进而根据求得,进一步求得结果;
    表示出点坐标,求得的关系式,从而表示出,进而根据的面积是求得的值,从而求得结果;
    设直线,连接,得出的纵坐标相等,从而得出,进而可证得,从而得出,进而表示出,证明得四边形是平行四边形,从而,从而求得,进而得出结果.
    本题考查了二次函数及其图象性质,求一次函数解析式,全等三角形判定和性质,等腰三角形判定和性质,平行四边形判定和性质等知识,解决问题得关键是作辅助线,构造全等三角形.
     

    相关试卷

    2024年辽宁省沈阳市中考数学调研试卷(含解析):

    这是一份2024年辽宁省沈阳市中考数学调研试卷(含解析),共29页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022年辽宁省沈阳市沈河区中考数学一模试卷(含解析):

    这是一份2022年辽宁省沈阳市沈河区中考数学一模试卷(含解析),共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2022年辽宁省沈阳市中考数学实训试卷(五)(含解析):

    这是一份2022年辽宁省沈阳市中考数学实训试卷(五)(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map