开学活动
搜索
    上传资料 赚现金

    江苏省扬州市三年(2019-2021)中考数学真题知识点分类汇编

    资料中包含下列文件,点击文件名可预览资料内容
    • 练习
      江苏省扬州市三年(2019-2021)中考数学真题知识点分类汇编-解答题.doc
    • 练习
      江苏省扬州市三年(2019-2021)中考数学真题知识点分类汇编-填空题.doc
    • 练习
      江苏省扬州市三年(2019-2021)中考数学真题知识点分类汇编-选择题.doc
    江苏省扬州市三年(2019-2021)中考数学真题知识点分类汇编-解答题第1页
    江苏省扬州市三年(2019-2021)中考数学真题知识点分类汇编-解答题第2页
    江苏省扬州市三年(2019-2021)中考数学真题知识点分类汇编-解答题第3页
    江苏省扬州市三年(2019-2021)中考数学真题知识点分类汇编-填空题第1页
    江苏省扬州市三年(2019-2021)中考数学真题知识点分类汇编-填空题第2页
    江苏省扬州市三年(2019-2021)中考数学真题知识点分类汇编-填空题第3页
    江苏省扬州市三年(2019-2021)中考数学真题知识点分类汇编-选择题第1页
    江苏省扬州市三年(2019-2021)中考数学真题知识点分类汇编-选择题第2页
    江苏省扬州市三年(2019-2021)中考数学真题知识点分类汇编-选择题第3页
    还剩43页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省扬州市三年(2019-2021)中考数学真题知识点分类汇编

    展开

    这是一份江苏省扬州市三年(2019-2021)中考数学真题知识点分类汇编,文件包含江苏省扬州市三年2019-2021中考数学真题知识点分类汇编-解答题doc、江苏省扬州市三年2019-2021中考数学真题知识点分类汇编-填空题doc、江苏省扬州市三年2019-2021中考数学真题知识点分类汇编-选择题doc等3份试卷配套教学资源,其中试卷共84页, 欢迎下载使用。
    江苏省扬州市三年(2019-2021)中考数学真题知识点分类汇编-解答题
    一.实数的运算(共1小题)
    1.(2021•扬州)计算或化简:
    (1)(﹣)0+|﹣3|+tan60°.
    (2)(a+b)÷(+).
    二.分式的乘除法(共1小题)
    2.(2020•扬州)计算或化简:
    (1)2sin60°+()﹣1﹣.
    (2)÷.
    三.分式的加减法(共1小题)
    3.(2019•扬州)计算或化简:
    (1)﹣(3﹣π)0﹣4cos45°;
    (2)+.
    四.二元一次方程组的解(共1小题)
    4.(2021•扬州)已知方程组的解也是关于x、y的方程ax+y=4的一个解,求a的值.
    五.二元一次方程组的应用(共1小题)
    5.(2020•扬州)阅读感悟:
    有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:
    已知实数x、y满足3x﹣y=5①,2x+3y=7②,求x﹣4y和7x+5y的值.
    本题常规思路是将①②两式联立组成方程组,解得x、y的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①﹣②可得x﹣4y=﹣2,由①+②×2可得7x+5y=19.这样的解题思想就是通常所说的“整体思想”.
    解决问题:
    (1)已知二元一次方程组则x﹣y=   ,x+y=   ;
    (2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?
    (3)对于实数x、y,定义新运算:x*y=ax+by+c,其中a、b、c是常数,等式右边是通常的加法和乘法运算.已知3*5=15,4*7=28,那么1*1=   .
    六.分式方程的应用(共3小题)
    6.(2021•扬州)为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天.问原先每天生产多少万剂疫苗?
    7.(2020•扬州)如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染.
    进货单
    商品
    进价(元/件)
    数量(件)
    总金额(元)


    7200

    3200
    商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下:
    李阿姨:我记得甲商品进价比乙商品进价每件高50%.
    王师傅:甲商品比乙商品的数量多40件.
    请你求出乙商品的进价,并帮助他们补全进货单.
    8.(2019•扬州)“绿水青山就是金山银山”为了更进一步优化环境,甲、乙两队承担河道整治任务.甲、乙两个工程队每天共整治河道1500米,且甲整治3600米河道用的时间与乙工程队整治2400米所用的时间相等.求甲工程队每天修多少米?
    七.一元一次不等式组的整数解(共2小题)
    9.(2020•扬州)解不等式组并写出它的最大负整数解.
    10.(2019•扬州)解不等式组,并写出它的所有负整数解.
    八.反比例函数综合题(共1小题)
    11.(2020•扬州)如图,已知点A(1,2)、B(5,n)(n>0),点P为线段AB上的一个动点,反比例函数y=(x>0)的图象经过点P.小明说:“点P从点A运动至点B的过程中,k值逐渐增大,当点P在点A位置时k值最小,在点B位置时k值最大.”
    (1)当n=1时.
    ①求线段AB所在直线的函数表达式.
    ②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k的最小值和最大值.
    (2)若小明的说法完全正确,求n的取值范围.

    九.二次函数的应用(共1小题)
    12.(2021•扬州)甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:
    甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出.如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车.另外,公司为每辆租出的汽车支付月维护费200元.
    乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元.
    说明:①汽车数量为整数;②月利润=月租车费﹣月维护费;③两公司月利润差=月利润较高公司的利润﹣月利润较低公司的利润.
    在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:
    (1)当每个公司租出的汽车为10辆时,甲公司的月利润是    元;当每个公司租出的汽车为    辆时,两公司的月利润相等;
    (2)求两公司月利润差的最大值;
    (3)甲公司热心公益事业,每租出1辆汽车捐出a元(a>0)给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围.
    一十.二次函数综合题(共1小题)
    13.(2021•扬州)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于点A(﹣1,0)、B(3,0),与y轴交于点C.
    (1)b=   ,c=   ;
    (2)若点D在该二次函数的图象上,且S△ABD=2S△ABC,求点D的坐标;
    (3)若点P是该二次函数图象上位于x轴上方的一点,且S△APC=S△APB,直接写出点P的坐标.

    一十一.三角形综合题(共1小题)
    14.(2019•扬州)如图,平面内的两条直线l1、l2,点A,B在直线l1上,点C、D在直线l2上,过A、B两点分别作直线l2的垂线,垂足分别为A1,B1,我们把线段A1B1叫做线段AB在直线l2上的正投影,其长度可记作T(AB,CD)或T,特别地线段AC在直线l2上的正投影就是线段A1C.
    请依据上述定义解决如下问题:
    (1)如图1,在锐角△ABC中,AB=5,T(AC,AB)=3,则T(BC,AB)=   ;
    (2)如图2,在Rt△ABC中,∠ACB=90°,T(AC,AB)=4,T(BC,AB)=9,求△ABC的面积;
    (3)如图3,在钝角△ABC中,∠A=60°,点D在AB边上,∠ACD=90°,T(AD,AC)=2,T(BC,AB)=6,求T(BC,CD),

    一十二.平行四边形的性质(共2小题)
    15.(2020•扬州)如图,▱ABCD的对角线AC、BD相交于点O,过点O作EF⊥AC,分别交AB、DC于点E、F,连接AF、CE.
    (1)若OE=,求EF的长;
    (2)判断四边形AECF的形状,并说明理由.

    16.(2019•扬州)如图,在平行四边形ABCD中,AE平分∠DAB,已知CE=6,BE=8,DE=10.
    (1)求证:∠BEC=90°;
    (2)求cos∠DAE.

    一十三.平行四边形的判定与性质(共1小题)
    17.(2021•扬州)如图,在△ABC中,∠BAC的角平分线交BC于点D,DE∥AB,DF∥AC.
    (1)试判断四边形AFDE的形状,并说明理由;
    (2)若∠BAC=90°,且AD=2,求四边形AFDE的面积.

    一十四.四边形综合题(共2小题)
    18.(2020•扬州)如图1,已知点O在四边形ABCD的边AB上,且OA=OB=OC=OD=2,OC平分∠BOD,与BD交于点G,AC分别与BD、OD交于点E、F.
    (1)求证:OC∥AD;
    (2)如图2,若DE=DF,求的值;
    (3)当四边形ABCD的周长取最大值时,求的值.

    19.(2019•扬州)如图,四边形ABCD是矩形,AB=20,BC=10,以CD为一边向矩形外部作等腰直角△GDC,∠G=90°.点M在线段AB上,且AM=a,点P沿折线AD﹣DG运动,点Q沿折线BC﹣CG运动(与点G不重合),在运动过程中始终保持线段PQ∥AB.设PQ与AB之间的距离为x.
    (1)若a=12.
    ①如图1,当点P在线段AD上时,若四边形AMQP的面积为48,则x的值为   ;
    ②在运动过程中,求四边形AMQP的最大面积;
    (2)如图2,若点P在线段DG上时,要使四边形AMQP的面积始终不小于50,求a的取值范围.

    一十五.直线与圆的位置关系(共1小题)
    20.(2020•扬州)如图,△ABC内接于⊙O,∠B=60°,点E在直径CD的延长线上,且AE=AC.
    (1)试判断AE与⊙O的位置关系,并说明理由;
    (2)若AC=6,求阴影部分的面积.

    一十六.切线的判定与性质(共1小题)
    21.(2019•扬州)如图,AB是⊙O的弦,过点O作OC⊥OA,OC交AB于P,CP=BC.
    (1)求证:BC是⊙O的切线;
    (2)已知∠BAO=25°,点Q是上的一点.
    ①求∠AQB的度数;
    ②若OA=18,求的长.

    一十七.扇形面积的计算(共1小题)
    22.(2021•扬州)如图,四边形ABCD中,AD∥BC,∠BAD=90°,CB=CD,连接BD,以点B为圆心,BA长为半径作⊙B,交BD于点E.
    (1)试判断CD与⊙B的位置关系,并说明理由;
    (2)若AB=2,∠BCD=60°,求图中阴影部分的面积.

    一十八.圆的综合题(共1小题)
    23.(2021•扬州)在一次数学探究活动中,李老师设计了一份活动单:
    已知线段BC=2,使用作图工具作∠BAC=30°,尝试操作后思考:
    (1)这样的点A唯一吗?
    (2)点A的位置有什么特征?你有什么感悟?
    “追梦”学习小组通过操作、观察、讨论后汇报:点A的位置不唯一,它在以BC为弦的圆弧上(点B、C除外),….小华同学画出了符合要求的一条圆弧(如图1).
    (1)小华同学提出了下列问题,请你帮助解决.
    ①该弧所在圆的半径长为    ;
    ②△ABC面积的最大值为    ;
    (2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为A′,请你利用图1证明∠BA′C>30°.
    (3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形ABCD的边长AB=2,BC=3,点P在直线CD的左侧,且tan∠DPC=.
    ①线段PB长的最小值为    ;
    ②若S△PCD=S△PAD,则线段PD长为    .

    一十九.几何变换综合题(共1小题)
    24.(2019•扬州)如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合).直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B′.
    (1)如图1,当PB=4时,若点B′恰好在AC边上,则AB′的长度为    ;
    (2)如图2,当PB=5时,若直线l∥AC,则BB′的长度为    ;
    (3)如图3,点P在AB边上运动过程中,若直线l始终垂直于AC,△ACB′的面积是否变化?若变化,说明理由;若不变化,求出面积;
    (4)当PB=6时,在直线l变化过程中,求△ACB′面积的最大值.

    二十.频数(率)分布直方图(共1小题)
    25.(2019•扬州)扬州市“五个一百工程“在各校普遍开展,为了了解某校学生每天课外阅读所用的时间情况,从该校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如图不完整的频数分布表和频数分布直方图.
    每天课外阅读时间t/h
    频数
    频率
    0<t≤0.5
    24

    0.5<t≤1
    36
    0.3
    1<t≤1.5

    0.4
    1.5<t≤2
    12
    b
    合计
    a
    1
    根据以上信息,回答下列问题:
    (1)表中a=   ,b=   ;
    (2)请补全频数分布直方图;
    (3)若该校有学生1200人,试估计该校学生每天课外阅读时间超过1小时的人数.

    二十一.扇形统计图(共1小题)
    26.(2021•扬州)为推进扬州市“青少年茁壮成长工程”,某校开展“每日健身操”活动,为了解学生对“每日健身操”活动的喜欢程度,随机抽取了部分学生进行调查,将调查信息结果绘制成如下尚不完整的统计图表:

    抽样调查各类喜欢程度人数统计表
    喜欢程度
    人数
    A.非常喜欢
    50人
    B.比较喜欢
    m人
    C.无所谓
    n人
    D.不喜欢
    16人
    根据以上信息,回答下列问题:
    (1)本次调查的样本容量是    ;
    (2)扇形统计图中表示A程度的扇形圆心角为    °,统计表中m=   ;
    (3)根据抽样调查的结果,请你估计该校2000名学生中大约有多少名学生喜欢“每日健身操”活动(包含非常喜欢和比较喜欢).
    二十二.条形统计图(共1小题)
    27.(2020•扬州)扬州教育推出的“智慧学堂”已成为同学们课外学习的得力助手.为了解同学们“智慧学堂”平台使用的熟练程度,某校随机抽取了部分同学进行调查,并将调查结果绘制成如图两幅尚不完整的统计图.

    根据以上信息,回答下列问题:
    (1)本次调查的样本容量是   ,扇形统计图中表示A等级的扇形圆心角为   °;
    (2)补全条形统计图;
    (3)学校拟对“不太熟练或不熟练”的同学进行平台使用的培训,若该校有2000名学生,试估计该校需要培训的学生人数.
    二十三.列表法与树状图法(共3小题)
    28.(2021•扬州)一张圆桌旁设有4个座位,丙先坐在了如图所示的座位上,甲、乙2人等可能地坐到①、②、③中的2个座位上.
    (1)甲坐在①号座位的概率是    ;
    (2)用画树状图或列表的方法,求甲与乙相邻而坐的概率.

    29.(2020•扬州)防疫期间,全市所有学校都严格落实测体温进校园的防控要求.某校开设了A、B、C三个测温通道,某天早晨,该校小明和小丽两位同学将随机通过测温通道进入校园.
    (1)小明从A测温通道通过的概率是   ;
    (2)利用画树状图或列表的方法,求小明和小丽从同一个测温通道通过的概率.
    30.(2019•扬州)只有1和它本身两个因数且大于1的正整数叫做素数.我国数学家陈景润从哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是:“每个大于2的偶数都可以表示为两个素数的和”.如20=3+17.
    (1)若从7、11、19、23这4个素数中随机抽取一个,则抽到的数是7的概率是   ;
    (2)从7、11、19、23这4个素数中随机抽取1个数,再从余下的3个数中随机抽取1个数,再用画树状图或列表的方法,求抽到的两个素数之和等于30的概率.

    江苏省扬州市三年(2019-2021)中考数学真题知识点分类汇编-解答题
    参考答案与试题解析
    一.实数的运算(共1小题)
    1.(2021•扬州)计算或化简:
    (1)(﹣)0+|﹣3|+tan60°.
    (2)(a+b)÷(+).
    【解答】解:(1)原式=
    =4;
    (2)原式=

    =ab.
    二.分式的乘除法(共1小题)
    2.(2020•扬州)计算或化简:
    (1)2sin60°+()﹣1﹣.
    (2)÷.
    【解答】解:(1)原式=2×+2﹣2
    =+2﹣2
    =2﹣;

    (2)原式=•
    =1.
    三.分式的加减法(共1小题)
    3.(2019•扬州)计算或化简:
    (1)﹣(3﹣π)0﹣4cos45°;
    (2)+.
    【解答】解:(1)原式=2﹣1﹣4×
    =2﹣1﹣2
    =﹣1;

    (2)原式=﹣


    =a+1.
    四.二元一次方程组的解(共1小题)
    4.(2021•扬州)已知方程组的解也是关于x、y的方程ax+y=4的一个解,求a的值.
    【解答】解:方程组,
    把②代入①得:2(y﹣1)+y=7,
    解得:y=3,代入①中,
    解得:x=2,
    把x=2,y=3代入方程ax+y=4得,2a+3=4,
    解得:a=.
    五.二元一次方程组的应用(共1小题)
    5.(2020•扬州)阅读感悟:
    有些关于方程组的问题,欲求的结果不是每一个未知数的值,而是关于未知数的代数式的值,如以下问题:
    已知实数x、y满足3x﹣y=5①,2x+3y=7②,求x﹣4y和7x+5y的值.
    本题常规思路是将①②两式联立组成方程组,解得x、y的值再代入欲求值的代数式得到答案,常规思路运算量比较大.其实,仔细观察两个方程未知数的系数之间的关系,本题还可以通过适当变形整体求得代数式的值,如由①﹣②可得x﹣4y=﹣2,由①+②×2可得7x+5y=19.这样的解题思想就是通常所说的“整体思想”.
    解决问题:
    (1)已知二元一次方程组则x﹣y= ﹣1 ,x+y= 5 ;
    (2)某班级组织活动购买小奖品,买20支铅笔、3块橡皮、2本日记本共需32元,买39支铅笔、5块橡皮、3本日记本共需58元,则购买5支铅笔、5块橡皮、5本日记本共需多少元?
    (3)对于实数x、y,定义新运算:x*y=ax+by+c,其中a、b、c是常数,等式右边是通常的加法和乘法运算.已知3*5=15,4*7=28,那么1*1= ﹣11 .
    【解答】解:(1).
    由①﹣②可得:x﹣y=﹣1,
    由(①+②)可得:x+y=5.
    故答案为:﹣1;5.
    (2)设铅笔的单价为m元,橡皮的单价为n元,日记本的单价为p元,
    依题意,得:,
    由2×①﹣②可得m+n+p=6,
    ∴5m+5n+5p=5×6=30.
    答:购买5支铅笔、5块橡皮、5本日记本共需30元.
    (3)依题意,得:,
    由3×①﹣2×②可得:a+b+c=﹣11,
    即1*1=﹣11.
    故答案为:﹣11.
    六.分式方程的应用(共3小题)
    6.(2021•扬州)为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天.问原先每天生产多少万剂疫苗?
    【解答】解:设原先每天生产x万剂疫苗,
    由题意可得:,
    解得:x=40,
    经检验:x=40是原方程的解,
    ∴原先每天生产40万剂疫苗.
    7.(2020•扬州)如图,某公司会计欲查询乙商品的进价,发现进货单已被墨水污染.
    进货单
    商品
    进价(元/件)
    数量(件)
    总金额(元)


    7200

    3200
    商品采购员李阿姨和仓库保管员王师傅对采购情况回忆如下:
    李阿姨:我记得甲商品进价比乙商品进价每件高50%.
    王师傅:甲商品比乙商品的数量多40件.
    请你求出乙商品的进价,并帮助他们补全进货单.
    【解答】解:设乙商品的进价为x元/件,则甲商品的进价为(1+50%)x元/件,
    依题意,得:﹣=40,
    解得:x=40,
    经检验,x=40是原方程的解,且符合题意,
    ∴(1+50%)x=60,=80,=120.
    答:甲商品的进价为60元/件,乙商品的进价为40元/件,购进甲商品120件,购进乙商品80件.
    8.(2019•扬州)“绿水青山就是金山银山”为了更进一步优化环境,甲、乙两队承担河道整治任务.甲、乙两个工程队每天共整治河道1500米,且甲整治3600米河道用的时间与乙工程队整治2400米所用的时间相等.求甲工程队每天修多少米?
    【解答】解:设甲工程队每天修x米,则乙工程队每天修(1500﹣x)米,根据题意可得:
    =,
    解得:x=900,
    经检验得:x=900是原方程的根,
    答:甲工程队每天修900米.
    七.一元一次不等式组的整数解(共2小题)
    9.(2020•扬州)解不等式组并写出它的最大负整数解.
    【解答】解:解不等式x+5≤0,得x≤﹣5,
    解不等式≥2x+1,得:x≤﹣3,
    则不等式组的解集为x≤﹣5,
    所以不等式组的最大负整数解为﹣5.
    10.(2019•扬州)解不等式组,并写出它的所有负整数解.
    【解答】解:解不等式4(x+1)≤7x+13,得:x≥﹣3,
    解不等式x﹣4<,得:x<2,
    则不等式组的解集为﹣3≤x<2,
    所以不等式组的所有负整数解为﹣3、﹣2、﹣1.
    八.反比例函数综合题(共1小题)
    11.(2020•扬州)如图,已知点A(1,2)、B(5,n)(n>0),点P为线段AB上的一个动点,反比例函数y=(x>0)的图象经过点P.小明说:“点P从点A运动至点B的过程中,k值逐渐增大,当点P在点A位置时k值最小,在点B位置时k值最大.”
    (1)当n=1时.
    ①求线段AB所在直线的函数表达式.
    ②你完全同意小明的说法吗?若完全同意,请说明理由;若不完全同意,也请说明理由,并求出正确的k的最小值和最大值.
    (2)若小明的说法完全正确,求n的取值范围.

    【解答】解:(1)①当n=1时,B(5,1),
    设线段AB所在直线的函数表达式为y=mx+n,
    把A(1,2)和B(5,1)代入得:,
    解得:,
    则线段AB所在直线的函数表达式为y=﹣x+;
    ②不完全同意小明的说法,理由为:
    k=xy=x(﹣x+)=﹣(x﹣)2+,
    ∵1≤x≤5,
    ∴当x=1时,kmin=2;
    当x=时,kmax=,
    则不完全同意;
    (2)当n=2时,A(1,2),B(5,2),符合;
    当n≠2时,y=x+,
    k=x(x+)=(x﹣)2+,
    当n<2时,k随x的增大而增大,则有≥5,
    此时≤n<2;
    当n>2时,k随x的增大而增大,则有≤1,
    此时n>2,
    综上,n≥.
    九.二次函数的应用(共1小题)
    12.(2021•扬州)甲、乙两汽车出租公司均有50辆汽车对外出租,下面是两公司经理的一段对话:
    甲公司经理:如果我公司每辆汽车月租费3000元,那么50辆汽车可以全部租出.如果每辆汽车的月租费每增加50元,那么将少租出1辆汽车.另外,公司为每辆租出的汽车支付月维护费200元.
    乙公司经理:我公司每辆汽车月租费3500元,无论是否租出汽车,公司均需一次性支付月维护费共计1850元.
    说明:①汽车数量为整数;②月利润=月租车费﹣月维护费;③两公司月利润差=月利润较高公司的利润﹣月利润较低公司的利润.
    在两公司租出的汽车数量相等的条件下,根据上述信息,解决下列问题:
    (1)当每个公司租出的汽车为10辆时,甲公司的月利润是  48000 元;当每个公司租出的汽车为  37 辆时,两公司的月利润相等;
    (2)求两公司月利润差的最大值;
    (3)甲公司热心公益事业,每租出1辆汽车捐出a元(a>0)给慈善机构,如果捐款后甲公司剩余的月利润仍高于乙公司月利润,且当两公司租出的汽车均为17辆时,甲公司剩余的月利润与乙公司月利润之差最大,求a的取值范围.
    【解答】解:(1)[(50﹣10)×50+3000]×10﹣200×10=48000元,
    当每个公司租出的汽车为10辆时,甲公司的月利润是48000元;
    设每个公司租出的汽车为x辆,
    由题意可得:[(50﹣x)×50+3000]x﹣200x=3500x﹣1850,
    解得:x=37或x=﹣1(舍),
    ∴当每个公司租出的汽车为37辆时,两公司的月利润相等;
    (2)设两公司的月利润分别为y甲,y乙,月利润差为y,
    则y甲=[(50﹣x)×50+3000]x﹣200x,
    y乙=3500x﹣1850,
    当甲公司的利润大于乙公司时,0<x<37,
    y=y甲﹣y乙=[(50﹣x)×50+3000]x﹣200x﹣(3500x﹣1850)
    =﹣50x2+1800x+1850,
    当x==18时,利润差最大,且为18050元;
    当乙公司的利润大于甲公司时,37<x≤50,
    y=y乙﹣y甲=3500x﹣1850﹣[(50﹣x)×50+3000]x+200x
    =50x2﹣1800x﹣1850,
    ∵对称轴为直线x==18,50>0,
    ∴当37<x≤50时,y随x的增大而增大,
    ∴当x=50时,利润差最大,且为33150元,
    综上:两公司月利润差的最大值为33150元;
    (3)∵捐款后甲公司剩余的月利润仍高于乙公司月利润,
    则利润差为y=﹣50x2+1800x+1850﹣ax=﹣50x2+(1800﹣a)x+1850,
    对称轴为直线x=,
    ∵x只能取整数,且当两公司租出的汽车均为17辆时,月利润之差最大,
    ∴16.5<<17.5,
    解得:50<a<150.
    一十.二次函数综合题(共1小题)
    13.(2021•扬州)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于点A(﹣1,0)、B(3,0),与y轴交于点C.
    (1)b= ﹣2 ,c= ﹣3 ;
    (2)若点D在该二次函数的图象上,且S△ABD=2S△ABC,求点D的坐标;
    (3)若点P是该二次函数图象上位于x轴上方的一点,且S△APC=S△APB,直接写出点P的坐标.

    【解答】解:(1)∵点A和点B在二次函数y=x2+bx+c图象上,
    则,解得:,
    故答案为:﹣2,﹣3;
    (2)连接BC,由题意可得:
    A(﹣1,0),B(3,0),C(0,﹣3),y=x2﹣2x﹣3,
    ∴S△ABC==6,
    ∵S△ABD=2S△ABC,设点D(m,m2﹣2m﹣3),
    ∴|yD|=2×6,即×4×|m2﹣2m﹣3|=2×6,
    解得:m=或,代入y=x2﹣2x﹣3,
    可得:y值都为6,
    ∴D(,6)或(,6);

    (3)设P(n,n2﹣2n﹣3),
    ∵点P在抛物线位于x轴上方的部分,
    ∴n<﹣1或n>3,
    当点P在点A左侧时,即n<﹣1,
    可知点C到AP的距离小于点B到AP的距离,
    ∴S△APC<S△APB,不成立;
    当点P在点B右侧时,即n>3,
    ∵△APC和△APB都以AP为底,若要面积相等,
    则点B和点C到AP的距离相等,即BC∥AP,
    设直线BC的解析式为y=kx+p,
    则,解得:,
    则设直线AP的解析式为y=x+q,将点A(﹣1,0)代入,
    则﹣1+q=0,解得:q=1,
    则直线AP的解析式为y=x+1,将P(n,n2﹣2n﹣3)代入,
    即n2﹣2n﹣3=n+1,
    解得:n=4或n=﹣1(舍),
    n2﹣2n﹣3=5,
    ∴点P的坐标为(4,5).

    一十一.三角形综合题(共1小题)
    14.(2019•扬州)如图,平面内的两条直线l1、l2,点A,B在直线l1上,点C、D在直线l2上,过A、B两点分别作直线l2的垂线,垂足分别为A1,B1,我们把线段A1B1叫做线段AB在直线l2上的正投影,其长度可记作T(AB,CD)或T,特别地线段AC在直线l2上的正投影就是线段A1C.
    请依据上述定义解决如下问题:
    (1)如图1,在锐角△ABC中,AB=5,T(AC,AB)=3,则T(BC,AB)= 2 ;
    (2)如图2,在Rt△ABC中,∠ACB=90°,T(AC,AB)=4,T(BC,AB)=9,求△ABC的面积;
    (3)如图3,在钝角△ABC中,∠A=60°,点D在AB边上,∠ACD=90°,T(AD,AC)=2,T(BC,AB)=6,求T(BC,CD),

    【解答】解:(1)如图1中,作CH⊥AB.

    ∵T(AC,AB)=3,
    ∴AH=3,
    ∵AB=5,
    ∴BH=5﹣3=2,
    ∴T(BC,AB)=BH=2,
    故答案为2.

    (2)如图2中,作CH⊥AB于H.

    ∵T(AC,AB)=4,T(BC,AB)=9,
    ∴AH=4,BH=9,
    ∵∠ACB=∠CHA=∠CHB=90°,
    ∴∠A+∠ACH=90°,∠ACH+∠BCH=90°,
    ∴∠A=∠BCH,
    ∴△ACH∽△CBH,
    ∴=,
    ∴=,
    ∴CH=6,
    ∴S△ABC=•AB•CH=×13×6=39.

    (3)如图3中,作CH⊥AD于H,BK⊥CD于K.

    ∵∠ACD=90°,T(AD,AC)=2,
    ∴AC=2,
    ∵∠A=60°,
    ∴∠ADC=∠BDK=30°,
    ∴CD=AC=2,AD=2AC=4,AH=AC=1,DH=AD﹣AH=3,
    ∵T(BC,AB)=6,CH⊥AB,
    ∴BH=6,
    ∴DB=BH﹣DH=3,
    在Rt△BDK中,∵∠K=90°,BD=3,∠BDK=30°,
    ∴DK=BD•cos30°=,
    ∴CK=CD+DK=2+=,
    ∴T(BC,CD)=CK=.
    一十二.平行四边形的性质(共2小题)
    15.(2020•扬州)如图,▱ABCD的对角线AC、BD相交于点O,过点O作EF⊥AC,分别交AB、DC于点E、F,连接AF、CE.
    (1)若OE=,求EF的长;
    (2)判断四边形AECF的形状,并说明理由.

    【解答】解:(1)∵四边形ABCD是平行四边形,
    ∴AB∥CD,AO=CO,
    ∴∠FCO=∠EAO,
    又∵∠AOE=∠COF,
    ∴△AOE≌△COF(ASA),
    ∴OE=OF=,
    ∴EF=2OE=3;
    (2)四边形AECF是菱形,
    理由:∵△AOE≌△COF,
    ∴AE=CF,
    又∵AE∥CF,
    ∴四边形AECF是平行四边形,
    又∵EF⊥AC,
    ∴四边形AECF是菱形.

    16.(2019•扬州)如图,在平行四边形ABCD中,AE平分∠DAB,已知CE=6,BE=8,DE=10.
    (1)求证:∠BEC=90°;
    (2)求cos∠DAE.

    【解答】(1)证明:∵四边形ABCD是平行四边形,
    ∴DC=AB,AD=BC,DC∥AB,
    ∴∠DEA=∠EAB,
    ∵AE平分∠DAB,
    ∴∠DAE=∠EAB,
    ∴∠DAE=∠DEA
    ∴AD=DE=10,
    ∴BC=10,AB=CD=DE+CE=16,
    ∵CE2+BE2=62+82=100=BC2,
    ∴△BCE是直角三角形,∠BEC=90°;
    (2)解:∵AB∥CD,
    ∴∠ABE=∠BEC=90°,
    ∴AE===8,
    ∴cos∠DAE=cos∠EAB===.
    一十三.平行四边形的判定与性质(共1小题)
    17.(2021•扬州)如图,在△ABC中,∠BAC的角平分线交BC于点D,DE∥AB,DF∥AC.
    (1)试判断四边形AFDE的形状,并说明理由;
    (2)若∠BAC=90°,且AD=2,求四边形AFDE的面积.

    【解答】解:(1)四边形AFDE是菱形,理由是:
    ∵DE∥AB,DF∥AC,
    ∴四边形AFDE是平行四边形,
    ∵AD平分∠BAC,
    ∴∠FAD=∠EAD,
    ∵DE∥AB,
    ∴∠EDA=∠FAD,
    ∴∠EDA=∠EAD,
    ∴AE=DE,
    ∴平行四边形AFDE是菱形;
    (2)∵∠BAC=90°,
    ∴四边形AFDE是正方形,
    ∵AD=,
    ∴AF=DF=DE=AE==2,
    ∴四边形AFDE的面积为2×2=4.
    一十四.四边形综合题(共2小题)
    18.(2020•扬州)如图1,已知点O在四边形ABCD的边AB上,且OA=OB=OC=OD=2,OC平分∠BOD,与BD交于点G,AC分别与BD、OD交于点E、F.
    (1)求证:OC∥AD;
    (2)如图2,若DE=DF,求的值;
    (3)当四边形ABCD的周长取最大值时,求的值.

    【解答】(1)证明:∵AO=OD,
    ∴∠OAD=∠ADO,
    ∵OC平分∠BOD,
    ∴∠DOC=∠COB,
    又∵∠DOC+∠COB=∠OAD+∠ADO,
    ∴∠ADO=∠DOC,
    ∴CO∥AD;
    (2)解:如图1,

    ∵OA=OB=OD,
    ∴∠ADB=90°,
    设∠DAC=α,则∠ACO=∠DAC=α.
    ∵OA=OD,DA∥OC,
    ∴∠ODA=∠OAD=2α,
    ∴∠DFE=3α,
    ∵DF=DE,
    ∴∠DEF=∠DFE=3α,
    ∴4α=90°,
    ∴α=22.5°,
    ∴∠DAO=45°,
    ∴△AOD和△ABD为等腰直角三角形,
    ∴AD=AO,
    ∴,
    ∵DE=DF,
    ∴∠DFE=∠DEF,
    ∵∠DFE=∠AFO,
    ∴∠AFO=∠AED,
    又∠ADE=∠AOF=90°,
    ∴△ADE∽△AOF,
    ∴.
    (3)解:如图2,

    ∵OD=OB,∠BOC=∠DOC,
    ∴△BOC≌△DOC(SAS),
    ∴BC=CD,
    设BC=CD=x,CG=m,则OG=2﹣m,
    ∵OB2﹣OG2=BC2﹣CG2,
    ∴4﹣(2﹣m)2=x2﹣m2,
    解得:m=,
    ∴OG=2﹣,
    ∵OD=OB,∠DOG=∠BOG,
    ∴G为BD的中点,
    又∵O为AB的中点,
    ∴AD=2OG=4﹣,
    ∴四边形ABCD的周长为2BC+AD+AB=2x+4﹣+4=﹣+2x+8=﹣+10,
    ∵﹣<0,
    ∴x=2时,四边形ABCD的周长有最大值为10.
    ∴BC=2,
    ∴△BCO为等边三角形,
    ∴∠BOC=60°,
    ∵OC∥AD,
    ∴∠DAO=∠COB=60°,
    ∴∠ADF=∠DOC=60°,∠DAE=30°,
    ∴∠AFD=90°,
    ∴,DF=DA,
    ∴.
    19.(2019•扬州)如图,四边形ABCD是矩形,AB=20,BC=10,以CD为一边向矩形外部作等腰直角△GDC,∠G=90°.点M在线段AB上,且AM=a,点P沿折线AD﹣DG运动,点Q沿折线BC﹣CG运动(与点G不重合),在运动过程中始终保持线段PQ∥AB.设PQ与AB之间的距离为x.
    (1)若a=12.
    ①如图1,当点P在线段AD上时,若四边形AMQP的面积为48,则x的值为 3 ;
    ②在运动过程中,求四边形AMQP的最大面积;
    (2)如图2,若点P在线段DG上时,要使四边形AMQP的面积始终不小于50,求a的取值范围.

    【解答】(1)解:①P在线段AD上,PQ=AB=20,AP=x,AM=12,
    四边形AMQP的面积=(12+20)x=48,
    解得:x=3;
    故答案为:3;
    ②当P,在AD上运动时,P到D点时四边形AMQP面积最大,四边形AMQP为直角梯形,
    ∴0<x≤10时,四边形AMQP面积的最大值=(12+20)10=160,
    当P在DG上运动,10<x<20,四边形AMQP为不规则梯形,
    作PK⊥AB于K,交CD于N,作GE⊥CD于E,交AB于F,如图2所示:
    则PK=x,PN=x﹣10,EF=BC=10,
    ∵△GDC是等腰直角三角形,
    ∴DE=CE,GE=CD=10,
    ∴GF=GE+EF=20,
    ∴GH=20﹣x,
    由题意得:PQ∥CD,
    ∴△GPQ∽△GDC,
    ∴=,
    即=,
    解得:PQ=40﹣2x,
    ∴梯形AMQP的面积=(12+40﹣2x)×x=﹣x2+26x=﹣(x﹣13)2+169,
    ∴当x=13时,四边形AMQP的面积最大=169;
    (2)解:P在DG上,则10≤x<20,AM=a,PQ=40﹣2x,
    梯形AMQP的面积S=(a+40﹣2x)×x=﹣x2+x,对称轴为:x=10+,
    ∵0≤a≤20,
    ∴10≤10+≤15,对称轴在10和15之间,
    ∵10≤x<20,二次函数图象开口向下,
    ∴当x无限接近于20时,S最小,
    ∴﹣202+×20≥50,
    ∴a≥5;
    综上所述,a的取值范围为5≤a≤20.

    一十五.直线与圆的位置关系(共1小题)
    20.(2020•扬州)如图,△ABC内接于⊙O,∠B=60°,点E在直径CD的延长线上,且AE=AC.
    (1)试判断AE与⊙O的位置关系,并说明理由;
    (2)若AC=6,求阴影部分的面积.

    【解答】(1)证明:连接OA、AD,如图,
    ∵CD为⊙O的直径,
    ∴∠DAC=90°,
    又∵∠ADC=∠B=60°,
    ∴∠ACE=30°,
    又∵AE=AC,OA=OD,
    ∴△ADO为等边三角形,
    ∴∠AEC=30°,∠ADO=∠DAO=60°,
    ∴∠EAD=30°,
    ∴∠EAD+∠DAO=90°,
    ∴∠EAO=90°,即OA⊥AE,
    ∴AE为⊙O的切线;
    (2)解:由(1)可知△AEO为直角三角形,且∠E=30°,
    ∴OA=2,AE=6,
    ∴阴影部分的面积为×6×2﹣=6﹣2π.
    故阴影部分的面积为6﹣2π.

    一十六.切线的判定与性质(共1小题)
    21.(2019•扬州)如图,AB是⊙O的弦,过点O作OC⊥OA,OC交AB于P,CP=BC.
    (1)求证:BC是⊙O的切线;
    (2)已知∠BAO=25°,点Q是上的一点.
    ①求∠AQB的度数;
    ②若OA=18,求的长.

    【解答】(1)证明:连接OB,
    ∵OA=OB,
    ∴∠OAB=∠OBA,
    ∵PC=CB,
    ∴∠CPB=∠PBC,
    ∵∠APO=∠CPB,
    ∴∠APO=∠CBP,
    ∵OC⊥OA,
    ∴∠AOP=90°,
    ∴∠OAP+∠APO=90°,
    ∴∠CBP+∠ABO=90°,
    ∴∠CBO=90°,
    ∴BC是⊙O的切线;
    (2)解:①∵∠BAO=25°,
    ∴∠ABO=25°,∠APO=65°,
    ∴∠POB=∠APO﹣∠ABO=40°,
    ∴∠AQB=(∠AOP+∠POB)=130°=65°;
    ②∵∠AQB=65°,
    ∴∠AOB=130°,
    ∴弧AQB的度数=360°﹣130°=230°,
    ∵m在弧AB上,
    ∴的长=的长==23π.

    一十七.扇形面积的计算(共1小题)
    22.(2021•扬州)如图,四边形ABCD中,AD∥BC,∠BAD=90°,CB=CD,连接BD,以点B为圆心,BA长为半径作⊙B,交BD于点E.
    (1)试判断CD与⊙B的位置关系,并说明理由;
    (2)若AB=2,∠BCD=60°,求图中阴影部分的面积.

    【解答】解:(1)过点B作BF⊥CD,垂足为F,
    ∵AD∥BC,
    ∴∠ADB=∠CBD,
    ∵CB=CD,
    ∴∠CBD=∠CDB,
    ∴∠ADB=∠CDB.
    在△ABD和△FBD中,

    ∴△ABD≌△FBD(AAS),
    ∴BF=BA,则点F在圆B上,
    ∴CD与⊙B相切;


    (2)∵∠BCD=60°,CB=CD,
    ∴△BCD是等边三角形,
    ∴∠CBD=60°
    ∵BF⊥CD,
    ∴∠ABD=∠DBF=∠CBF=30°,
    ∴∠ABF=60°,
    ∵AB=BF=,
    ∴AD=DF=AB·tan30°=2,
    ∴阴影部分的面积=S△ABD﹣S扇形ABE

    =.
    一十八.圆的综合题(共1小题)
    23.(2021•扬州)在一次数学探究活动中,李老师设计了一份活动单:
    已知线段BC=2,使用作图工具作∠BAC=30°,尝试操作后思考:
    (1)这样的点A唯一吗?
    (2)点A的位置有什么特征?你有什么感悟?
    “追梦”学习小组通过操作、观察、讨论后汇报:点A的位置不唯一,它在以BC为弦的圆弧上(点B、C除外),….小华同学画出了符合要求的一条圆弧(如图1).
    (1)小华同学提出了下列问题,请你帮助解决.
    ①该弧所在圆的半径长为  2 ;
    ②△ABC面积的最大值为   ;
    (2)经过比对发现,小明同学所画的角的顶点不在小华所画的圆弧上,而在如图1所示的弓形内部,我们记为A′,请你利用图1证明∠BA′C>30°.
    (3)请你运用所学知识,结合以上活动经验,解决问题:如图2,已知矩形ABCD的边长AB=2,BC=3,点P在直线CD的左侧,且tan∠DPC=.
    ①线段PB长的最小值为   ;
    ②若S△PCD=S△PAD,则线段PD长为   .

    【解答】解:(1)①设O为圆心,连接BO,CO,
    ∵∠BAC=30°,
    ∴∠BOC=60°,又OB=OC,
    ∴△OBC是等边三角形,
    ∴OB=OC=BC=2,即半径为2;
    ②∵△ABC以BC为底边,BC=2,
    ∴当点A到BC的距离最大时,△ABC的面积最大,
    如图,过点O作BC的垂线,垂足为E,延长EO,交圆于D,
    ∴BE=CE=1,DO=BO=2,
    ∴OE=,
    ∴DE=,
    ∴△ABC的最大面积为=;

    (2)如图,延长BA′,交圆于点D,连接CD,
    ∵点D在圆上,
    ∴∠BDC=∠BAC,
    ∵∠BA′C=∠BDC+∠A′CD,
    ∴∠BA′C>∠BDC,
    ∴∠BA′C>∠BAC,即∠BA′C>30°;

    (3)①如图,当点P在BC上,且PC=时,
    ∵∠PCD=90°,AB=CD=2,AD=BC=3,
    ∴tan∠DPC=,为定值,
    连接PD,设点Q为PD中点,以点Q为圆心,PD为半径画圆,
    ∴当点P在优弧CPD上时,tan∠DPC=,连接BQ,与圆Q交于P′,
    此时BP′即为BP的最小值,过点Q作QE⊥BE,垂足为E,
    ∵点Q是PD中点,
    ∴点E为PC中点,即QE=CD=1,PE=CE=PC=,
    ∴BE=BC﹣CE=3﹣=,
    ∴BQ=,
    ∵PD=,
    ∴圆Q的半径为,
    ∴BP′=BQ﹣P′Q=,即BP的最小值为;

    ②∵AD=3,CD=2,S△PCD=S△PAD,
    则,
    ∴△PAD中AD边上的高=△PCD中CD边上的高,
    即点P到AD的距离和点P到CD的距离相等,
    则点P到AD和CD的距离相等,即点P在∠ADC的平分线上,如图,
    过点C作CF⊥PD,垂足为F,
    ∵PD平分∠ADC,
    ∴∠ADP=∠CDP=45°,
    ∴△CDF为等腰直角三角形,又CD=2,
    ∴CF=DF=,
    ∵tan∠DPC=,
    ∴PF=,
    ∴PD=DF+PF=.

    解法二:如图,作直径DG,连接PG,

    ∵△CDF为等腰直角三角形,又CD=2,
    ∴∠CDF=∠CED=45°,
    ∴CD=CE=2,
    ∴DE=2,
    ∵∠DPC=∠GDC,
    ∴tan∠DGC=tan∠DPC==,
    ∴CG=1.5,EG=0.5,
    ∵DG是直径,
    ∴∠DPG=∠EPG=90°,
    ∴PE=EG=,
    ∴PD=DE﹣PE=2﹣=.
    一十九.几何变换综合题(共1小题)
    24.(2019•扬州)如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合).直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B′.
    (1)如图1,当PB=4时,若点B′恰好在AC边上,则AB′的长度为  4或0 ;
    (2)如图2,当PB=5时,若直线l∥AC,则BB′的长度为  5 ;
    (3)如图3,点P在AB边上运动过程中,若直线l始终垂直于AC,△ACB′的面积是否变化?若变化,说明理由;若不变化,求出面积;
    (4)当PB=6时,在直线l变化过程中,求△ACB′面积的最大值.

    【解答】解:(1)如图1中,

    ∵△ABC是等边三角形,
    ∴∠A=60°,AB=BC=AC=8,
    ∵PB=4,
    ∴PB′=PB=PA=4,
    ∵∠A=60°,
    ∴△APB′是等边三角形,
    ∴AB′=AP=4.
    当直线l经过C时,点B′与A重合,此时AB′=0
    故答案为4或0.
    (2)如图2中,设直线l交BC于点E.连接BB′交PE于O.

    ∵PE∥AC,
    ∴∠BPE=∠A=60°,∠BEP=∠C=60°,
    ∴△PEB是等边三角形,
    ∵PB=5,
    ∴∵B,B′关于PE对称,
    ∴BB′⊥PE,BB′=2OB
    ∴OB=PB•sin60°=,
    ∴BB′=5.
    故答案为5.
    (3)如图3中,结论:面积不变.

    ∵B,B′关于直线l对称,
    ∴BB′⊥直线l,
    ∵直线l⊥AC,
    ∴AC∥BB′,
    ∴S△ACB′=S△ACB=×8××8=16.
    (4)如图4中,当B′P⊥AC时,△ACB′的面积最大,

    设直线PB′交AC于E,
    在Rt△APE中,∵PA=2,∠PAE=60°,
    ∴PE=PA•sin60°=,
    ∴B′E=6+,
    ∴S△ACB′的最大值=×8×(6+)=4+24.
    解法二:如图5中,过点P作PH垂直于AC,

    由题意可得:B′在以P为圆心半径长为6的圆上运动,
    当PH的延长线交圆P于点B′时面积最大,
    此时BH=6+,S△ACB′的最大值=×8×(6+)=4+24.
    二十.频数(率)分布直方图(共1小题)
    25.(2019•扬州)扬州市“五个一百工程“在各校普遍开展,为了了解某校学生每天课外阅读所用的时间情况,从该校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如图不完整的频数分布表和频数分布直方图.
    每天课外阅读时间t/h
    频数
    频率
    0<t≤0.5
    24

    0.5<t≤1
    36
    0.3
    1<t≤1.5

    0.4
    1.5<t≤2
    12
    b
    合计
    a
    1
    根据以上信息,回答下列问题:
    (1)表中a= 120 ,b= 0.1 ;
    (2)请补全频数分布直方图;
    (3)若该校有学生1200人,试估计该校学生每天课外阅读时间超过1小时的人数.

    【解答】解:(1)a=36÷0.3=120,b=12÷120=0.1,
    故答案为:120,0.1;
    (2)1<t≤1.5的人数为120×0.4=48,
    补全图形如下:

    (3)估计该校学生每天课外阅读时间超过1小时的人数为1200×(0.4+0.1)=600(人).
    二十一.扇形统计图(共1小题)
    26.(2021•扬州)为推进扬州市“青少年茁壮成长工程”,某校开展“每日健身操”活动,为了解学生对“每日健身操”活动的喜欢程度,随机抽取了部分学生进行调查,将调查信息结果绘制成如下尚不完整的统计图表:

    抽样调查各类喜欢程度人数统计表
    喜欢程度
    人数
    A.非常喜欢
    50人
    B.比较喜欢
    m人
    C.无所谓
    n人
    D.不喜欢
    16人
    根据以上信息,回答下列问题:
    (1)本次调查的样本容量是  200 ;
    (2)扇形统计图中表示A程度的扇形圆心角为  90 °,统计表中m= 94 ;
    (3)根据抽样调查的结果,请你估计该校2000名学生中大约有多少名学生喜欢“每日健身操”活动(包含非常喜欢和比较喜欢).
    【解答】解:(1)16÷8%=200,
    则样本容量是200;
    故答案为:200.
    (2)×360°=90°,
    则表示A程度的扇形圆心角为90°;
    200×(1﹣8%﹣20%﹣×100%)=94,
    则m=94;
    故答案为:90;94.
    (3)=1440(名),
    ∴该校2000名学生中大约有1440名学生喜欢“每日健身操”活动.
    二十二.条形统计图(共1小题)
    27.(2020•扬州)扬州教育推出的“智慧学堂”已成为同学们课外学习的得力助手.为了解同学们“智慧学堂”平台使用的熟练程度,某校随机抽取了部分同学进行调查,并将调查结果绘制成如图两幅尚不完整的统计图.

    根据以上信息,回答下列问题:
    (1)本次调查的样本容量是 500 ,扇形统计图中表示A等级的扇形圆心角为 108 °;
    (2)补全条形统计图;
    (3)学校拟对“不太熟练或不熟练”的同学进行平台使用的培训,若该校有2000名学生,试估计该校需要培训的学生人数.
    【解答】解:(1)本次调查的样本容量是150÷30%=500,
    扇形统计图中表示A等级的扇形圆心角为:360°×30%=108°,
    故答案为:500,108;
    (2)B等级的人数为:500×40%=200,
    补全的条形统计图如右图所示;
    (3)2000×=200(人),
    答:估计该校需要培训的学生有200人.

    二十三.列表法与树状图法(共3小题)
    28.(2021•扬州)一张圆桌旁设有4个座位,丙先坐在了如图所示的座位上,甲、乙2人等可能地坐到①、②、③中的2个座位上.
    (1)甲坐在①号座位的概率是   ;
    (2)用画树状图或列表的方法,求甲与乙相邻而坐的概率.

    【解答】解:(1)∵丙坐了一张座位,
    ∴甲坐在①号座位的概率是;
    (2)画树状图如图:

    共有6种等可能的结果,甲与乙两人恰好相邻而坐的结果有4种,
    ∴甲与乙相邻而坐的概率为.
    29.(2020•扬州)防疫期间,全市所有学校都严格落实测体温进校园的防控要求.某校开设了A、B、C三个测温通道,某天早晨,该校小明和小丽两位同学将随机通过测温通道进入校园.
    (1)小明从A测温通道通过的概率是  ;
    (2)利用画树状图或列表的方法,求小明和小丽从同一个测温通道通过的概率.
    【解答】解:(1)小明从A测温通道通过的概率是,
    故答案为:;
    (2)列表格如下:

    A
    B
    C
    A
    A,A
    B,A
    C,A
    B
    A,B
    B,B
    C,B
    C
    A,C
    B,C
    C,C
    由表可知,共有9种等可能的结果,其中小明和小丽从同一个测温通道通过的有3种可能,
    所以小明和小丽从同一个测温通道通过的概率为=.
    30.(2019•扬州)只有1和它本身两个因数且大于1的正整数叫做素数.我国数学家陈景润从哥德巴赫猜想的研究中取得了世界领先的成果,哥德巴赫猜想是:“每个大于2的偶数都可以表示为两个素数的和”.如20=3+17.
    (1)若从7、11、19、23这4个素数中随机抽取一个,则抽到的数是7的概率是  ;
    (2)从7、11、19、23这4个素数中随机抽取1个数,再从余下的3个数中随机抽取1个数,再用画树状图或列表的方法,求抽到的两个素数之和等于30的概率.
    【解答】解:(1)从7、11、19、23这4个素数中随机抽取一个,则抽到的数是7的概率是.
    故答案为.
    (2)树状图如图所示:

    共有12种可能,满足条件的有4种可能,
    所以抽到的两个素数之和等于30的概率==

    相关试卷

    湖南省长沙市三年(2019-2021)中考数学真题知识点分类汇编:

    这是一份湖南省长沙市三年(2019-2021)中考数学真题知识点分类汇编,文件包含湖南省长沙市三年2019-2021中考数学真题知识点分类汇编-解答题doc、湖南省长沙市三年2019-2021中考数学真题知识点分类汇编-选择题doc、湖南省长沙市三年2019-2021中考数学真题知识点分类汇编-填空题doc等3份试卷配套教学资源,其中试卷共66页, 欢迎下载使用。

    湖南省衡阳市三年(2019-2021)中考数学真题知识点分类汇编:

    这是一份湖南省衡阳市三年(2019-2021)中考数学真题知识点分类汇编,文件包含湖南省衡阳市三年2019-2021中考数学真题知识点分类汇编-解答题doc、湖南省衡阳市三年2019-2021中考数学真题知识点分类汇编-选择题doc、湖南省衡阳市三年2019-2021中考数学真题知识点分类汇编-填空题doc等3份试卷配套教学资源,其中试卷共68页, 欢迎下载使用。

    江苏省苏州市三年(2019-2021)中考数学真题知识点分类汇编:

    这是一份江苏省苏州市三年(2019-2021)中考数学真题知识点分类汇编,文件包含江苏省苏州市三年2019-2021中考数学真题知识点分类汇编-解答题doc、江苏省苏州市三年2019-2021中考数学真题知识点分类汇编-选择题doc、江苏省苏州市三年2019-2021中考数学真题知识点分类汇编-填空题doc等3份试卷配套教学资源,其中试卷共79页, 欢迎下载使用。

    英语朗读宝
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map