专题22 最大角米勒角问题-2021年中考数学二次函数压轴题核心考点突破
展开
这是一份专题22 最大角米勒角问题-2021年中考数学二次函数压轴题核心考点突破,文件包含专题22最大角米勒角问题解析版doc、专题22最大角米勒角问题原卷版doc等2份课件配套教学资源,其中PPT共0页, 欢迎下载使用。
最大角米勒角问题知识导航【问题描述】1471年,德国数学家米勒向诺德尔提出这样一个问题:如图,点A、B直线l的同一侧,在直线l上取一点P,使得∠APB最大,求P点位置.【问题铺垫】圆外角:如图,像∠APB这样顶点在圆外,两边和圆相交的角叫圆外角.相关结论:圆外角等于这个角所夹两条弧的度数差(大减小)的一半.如图,.换句话说,对同一个圆而言,圆周角>圆外角.【问题解决】结论:当点P不与A、B共线时,作△PAB的外接圆,当圆与直线l相切时,∠APB最大.证明:在直线l上任取一点M(不与点P重合),连接AM、BM,∠AMB即为圆O的圆外角,∴∠APB>∠AMB,∠APB最大.∴当圆与直线l相切时,∠APB最大. 特别地,若点A、B与P分别在一个角的两边,如下图,则有.(切割线定理)证明:∵∠POA=∠BOP,∠OPA=∠OBP(弦切角定理)∴△AOP∽△POB,∴,∴.即可通过OA、OB线段长确定OP长,便知P点位置.专项训练如图,抛物线与轴交于A(-1,0)、两点,与y轴交于点C,过点C作CD⊥y轴交抛物线于另一点D,作DE⊥x轴,垂足为点E,双曲线经过点D,BD.(1)求抛物线的表达式;(2)动点P从点O出发,以每秒1个单位长度的速度沿OC方向运动,运动时间为t秒,当t为何值时,∠BPD的度数最大?(请直接写出结果)
【分析】(1)考虑到点D纵坐标与点C相同,为3,代入反比例解析式,可得D点坐标为(2,3),根据A、D坐标可得抛物线解析式:.(2)求t即求P点位置.思路2:切割线定理延长BD交y轴于M点,则当时,∠BPD最大.考虑到B(3,0)、D(2,3),可得直线BD解析式:,故直线BD与y轴交点M点坐标为(0,9),,,∴,∴,∴P点坐标为,故t的值为.
练习:如图,在平面直角坐标系中,A(1,0)、B(5,0)直线l经过点C(-1,2),点P是直线l上的动点,若∠APB的最大值为45°,求直线l的解析式.【分析】考虑到直线l未知但∠APB的最大值已知为45°,故构造圆.记△ABP外接圆圆心为M点,则∠AMB=2∠APB=90°,故可确定M点位置.根据A(1,0)、B(5,0),不难求得M点坐标为(3,2),连接MC、MP,考虑到圆M与直线CP相切,故MP⊥CP,△CPM是直角三角形.∵MC=4,MP=MA=,∴,即△CPM是等腰直角三角形,易求P点坐标为(1,4),又C点坐标为(-1,2),可求直线l的解析式为y=x+3.
相关课件
这是一份中考数学专题突破---线段最值问题 课件,共26页。PPT课件主要包含了“两定一动“模型,“两动一定“模型,“两定一动”模型,“两动一定”模型等内容,欢迎下载使用。
这是一份2023年中考数学专题突破---线段最值问题 课件,共26页。PPT课件主要包含了“两定一动“模型,“两动一定“模型,“两定一动”模型,“两动一定”模型等内容,欢迎下载使用。
这是一份专题24 圆内最大张角米勒角问题课件PPT,共14页。