黄石市2021-2022学年中考二模数学试题含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.夏新同学上午卖废品收入13元,记为+13元,下午买旧书支出9元,记为( )元.
A.+4 B.﹣9 C.﹣4 D.+9
2.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为( )
A.80° B.90° C.100° D.102°
3.由一些大小相同的小正方形搭成的几何体的左视图和俯视图,如图所示,则搭成该几何体的小正方形的个数最少是( )
A.4 B.5 C.6 D.7
4.如图,PA切⊙O于点A,PO交⊙O于点B,点C是⊙O优弧弧AB上一点,连接AC、BC,如果∠P=∠C,⊙O的半径为1,则劣弧弧AB的长为( )
A.π B.π C.π D.π
5.如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN的面积是( )
A. B. C. D.
6.在△ABC中,∠C=90°,,那么∠B的度数为( )
A.60° B.45° C.30° D.30°或60°
7.如图,将函数的图象沿y轴向上平移得到一条新函数的图象,其中点A(-4,m),B(-1,n),平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是 ( )
A. B. C. D.
8.甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为40km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法不正确的是( )
A.甲的速度是10km/h B.乙的速度是20km/h
C.乙出发h后与甲相遇 D.甲比乙晚到B地2h
9.下列四个图案中,不是轴对称图案的是( )
A. B. C. D.
10.计算x﹣2y﹣(2x+y)的结果为( )
A.3x﹣y B.3x﹣3y C.﹣x﹣3y D.﹣x﹣y
11.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
A.48 B.60
C.76 D.80
12.有一种球状细菌的直径用科学记数法表示为2.16×10﹣3米,则这个直径是( )
A.216000米 B.0.00216米
C.0.000216米 D.0.0000216米
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.若圆锥的母线长为4cm,其侧面积,则圆锥底面半径为 cm.
14.如图,菱形OABC的顶点O是原点,顶点B在y轴上,菱形的两条对角线的长分别是6和4,反比例函数的图象经过点C,则k的值为 .
15.如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC=,反比例函数y=的图象经过点C,与AB交于点D,若△COD的面积为20,则k的值等于_____________.
16.如果关于x的方程x2+2ax﹣b2+2=0有两个相等的实数根,且常数a与b互为倒数,那么a+b=_____.
17.若分式的值为正,则实数的取值范围是__________________.
18.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,一条公路的两侧互相平行,某课外兴趣小组在公路一侧AE的点A处测得公路对面的点C与AE的夹角∠CAE=30°,沿着AE方向前进15米到点B处测得∠CBE=45°,求公路的宽度.(结果精确到0.1米,参考数据:≈1.73)
20.(6分)九(3)班“2017年新年联欢会”中,有一个摸奖游戏,规则如下:有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸.现将4张纸牌洗匀后背面朝上摆放到桌上,然后让同学去翻纸牌.
(1)现小芳有一次翻牌机会,若正面是笑脸的就获奖,正面是哭脸的不获奖.她从中随机翻开一张纸牌,求小芳获奖的概率.
(2)如果小芳、小明都有翻两张牌的机会.小芳先翻一张,放回后再翻一张;小明同时翻开两张纸牌.他们翻开的两张纸牌中只要出现一张笑脸就获奖.他们获奖的机会相等吗?通过树状图分析说明理由.
21.(6分)(2016湖南省株洲市)某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A等.
(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?
(2)某同学测试成绩为70分,他的综合评价得分有可能达到A等吗?为什么?
(3)如果一个同学综合评价要达到A等,他的测试成绩至少要多少分?
22.(8分)如图,已知∠ABC=90°,AB=BC.直线l与以BC为直径的圆O相切于点C.点F是圆O上异于B、C的动点,直线BF与l相交于点E,过点F作AF的垂线交直线BC于点D.
如果BE=15,CE=9,求EF的长;证明:①△CDF∽△BAF;②CD=CE;探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使BC=CD,请说明你的理由.
23.(8分)如图,已知△ABC内接于⊙O,BC交直径AD于点E,过点C作AD的垂线交AB的延长线于点G,垂足为F.连接OC.
(1)若∠G=48°,求∠ACB的度数;
(1)若AB=AE,求证:∠BAD=∠COF;
(3)在(1)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S1.若tan∠CAF=,求的值.
24.(10分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.
(1)试用树形图或列表法中的一种列举出这两辆汽车行驶方向所有可能的结果;并计算两辆汽车都不直行的概率.
(2)求至少有一辆汽车向左转的概率.
25.(10分)先化简,再求值:(x﹣2﹣)÷,其中x=.
26.(12分)目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如表:
进价元只
售价元只
甲种节能灯
30
40
乙种节能灯
35
50
求甲、乙两种节能灯各进多少只?
全部售完100只节能灯后,该商场获利多少元?
27.(12分)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标系中,点A(11,0),点B(0,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B′和折痕OP.设BP=t.
(Ⅰ)如图①,当∠BOP=300时,求点P的坐标;
(Ⅱ)如图②,经过点P再次折叠纸片,使点C落在直线PB′上,得点C′和折痕PQ,若AQ=m,试用含有t的式子表示m;
(Ⅲ)在(Ⅱ)的条件下,当点C′恰好落在边OA上时,求点P的坐标(直接写出结果即可).
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、B
【解析】
收入和支出是两个相反的概念,故两个数字分别为正数和负数.
【详解】
收入13元记为+13元,那么支出9元记作-9元
【点睛】
本题主要考查了正负数的运用,熟练掌握正负数的概念是本题的关键.
2、A
【解析】
分析:根据平行线性质求出∠A,根据三角形内角和定理得出∠2=180°∠1−∠A,代入求出即可.
详解:∵AB∥CD.
∴∠A=∠3=40°,
∵∠1=60°,
∴∠2=180°∠1−∠A=80°,
故选:A.
点睛:本题考查了平行线的性质:两直线平行,内错角相等.三角形内角和定理:三角形内角和为180°.
3、C
【解析】
试题分析:由题中所给出的左视图知物体共两层,每一层都是两个小正方体;从俯视图可以可以看出最底层的个数
所以图中的小正方体最少2+4=1.故选C.
4、A
【解析】
利用切线的性质得∠OAP=90°,再利用圆周角定理得到∠C=∠O,加上∠P=∠C可计算写出∠O=60°,然后根据弧长公式计算劣弧的长.
【详解】
解:∵PA切⊙O于点A,
∴OA⊥PA,
∴∠OAP=90°,
∵∠C=∠O,∠P=∠C,
∴∠O=2∠P,
而∠O+∠P=90°,
∴∠O=60°,
∴劣弧AB的长=.
故选:A.
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理和弧长公式.
5、C
【解析】
连接CD,交MN于E,
∵将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,
∴MN⊥CD,且CE=DE.∴CD=2CE.
∵MN∥AB,∴CD⊥AB.∴△CMN∽△CAB.
∴.
∵在△CMN中,∠C=90°,MC=6,NC=,∴
∴.
∴.故选C.
6、C
【解析】
根据特殊角的三角函数值可知∠A=60°,再根据直角三角形中两锐角互余求出∠B的值即可.
【详解】
解:∵,
∴∠A=60°.
∵∠C=90°,
∴∠B=90°-60°=30°.
点睛:本题考查了特殊角的三角函数值和直角三角形中两锐角互余的性质,熟记特殊角的三角函数值是解答本题的突破点.
7、D
【解析】
分析:过A作AC∥x轴,交B′B的延长线于点C,过A′作A′D∥x轴,交B′B的于点D,则C(-1,m),AC=-1-(-1)=3,根据平移的性质以及曲线段AB扫过的面积为9(图中的阴影部分),得出AA′=3,然后根据平移规律即可求解.
详解:过A作AC∥x轴,交B′B的延长线于点C,过A′作A′D∥x轴,交B′B的于点D,则C(-1,m),
∴AC=-1-(-1)=3,
∵曲线段AB扫过的面积为9(图中的阴影部分),
∴矩形ACD A′的面积等于9,
∴AC·AA′=3AA′=9,
∴AA′=3,
∴新函数的图是将函数y=(x-2)2+1的图象沿y轴向上平移3个单位长度得到的,
∴新图象的函数表达式是y=(x-2)2+1+3=(x-2)2+1.
故选D.
点睛:此题主要考查了二次函数图象变换以及矩形的面积求法等知识,根据已知得出AA′的长度是解题关键.
8、B
【解析】
由图可知,甲用4小时走完全程40km,可得速度为10km/h;
乙比甲晚出发一小时,用1小时走完全程,可得速度为40km/h.
故选B
9、B
【解析】
根据轴对称图形的定义逐项识别即可,一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.
【详解】
A、是轴对称图形,故本选项错误;
B、不是轴对称图形,故本选项正确;
C、是轴对称图形,故本选项错误;
D、是轴对称图形,故本选项错误.
故选:B.
【点睛】
本题考查了轴对称图形的识别,熟练掌握轴对称图形的定义是解答本题的关键.
10、C
【解析】
原式去括号合并同类项即可得到结果.
【详解】
原式,
故选:C.
【点睛】
本题主要考查了整式的加减运算,熟练掌握去括号及合并同类项是解决本题的关键.
11、C
【解析】
试题解析:∵∠AEB=90°,AE=6,BE=8,
∴AB=
∴S阴影部分=S正方形ABCD-SRt△ABE=102-
=100-24
=76.
故选C.
考点:勾股定理.
12、B
【解析】
绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
2.16×10﹣3米=0.00216米.
故选B.
【点睛】
考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、3
【解析】
∵圆锥的母线长是5cm,侧面积是15πcm2,
∴圆锥的侧面展开扇形的弧长为:l==6π,
∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r==3cm,
14、-6
【解析】
分析:∵菱形的两条对角线的长分别是6和4,
∴A(﹣3,2).
∵点A在反比例函数的图象上,
∴,解得k=-6.
【详解】
请在此输入详解!
15、﹣24
【解析】
分析:
如下图,过点C作CF⊥AO于点F,过点D作DE∥OA交CO于点E,设CF=4x,由tan∠AOC=可得OF=3x,由此可得OC=5x,从而可得OA=5x,由已知条件易证S菱形ABCO=2S△COD=40=OA·CF=20x2,从而可得x=,由此可得点C的坐标为,这样由点C在反比例函数的图象上即可得到k=-24.
详解:
如下图,过点C作CF⊥AO于点F,过点D作DE∥OA交CO于点E,设CF=4x,
∵四边形ABCO是菱形,
∴AB∥CO,AO∥BC,
∵DE∥AO,
∴四边形AOED和四边形DECB都是平行四边形,
∴S△AOD=S△DOE,S△BCD=S△CDE,
∴S菱形ABCD=2S△DOE+2S△CDE=2S△COD=40,
∵tan∠AOC=,CF=4x,
∴OF=3x,
∴在Rt△COF中,由勾股定理可得OC=5x,
∴OA==OC=5x,
∴S菱形ABCO=AO·CF=5x·4x=20x2=40,解得:x=,
∴OF=,CF=,
∴点C的坐标为,
∵点C在反比例函数的图象上,
∴k=.
故答案为:-24.
点睛:本题的解题要点有两点:(1)作出如图所示的辅助线,设CF=4x,结合已知条件把OF和OA用含x的式子表达出来;(2)由四边形AOCB是菱形,点D在AB上,S△COD=20得到S菱形ABCO=2S△COD=40.
16、±1.
【解析】
根据根的判别式求出△=0,求出a1+b1=1,根据完全平方公式求出即可.
【详解】
解:∵关于x的方程x1+1ax-b1+1=0有两个相等的实数根,
∴△=(1a)1-4×1×(-b1+1)=0,
即a1+b1=1,
∵常数a与b互为倒数,
∴ab=1,
∴(a+b)1=a1+b1+1ab=1+3×1=4,
∴a+b=±1,
故答案为±1.
【点睛】
本题考查了根的判别式和解高次方程,能得出等式a1+b1=1和ab=1是解此题的关键.
17、x>0
【解析】
【分析】分式值为正,则分子与分母同号,据此进行讨论即可得.
【详解】∵分式的值为正,
∴x与x2+2的符号同号,
∵x2+2>0,
∴x>0,
故答案为x>0.
【点睛】本题考查了分式值为正的情况,熟知分式值为正时,分子分母同号是解题的关键.
18、
【解析】
列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.
【详解】
列表如下:
-2
-1
1
2
-2
2
-2
-4
-1
2
-1
-2
1
-2
-1
2
2
-4
-2
2
由表可知,共有12种等可能结果,其中积为大于-4小于2的有6种结果,
∴积为大于-4小于2的概率为=,
故答案为.
【点睛】
此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、公路的宽为20.5米.
【解析】
作CD⊥AE,设CD=x米,由∠CBD=45°知BD=CD=x,根据tan∠CAD=,可得=,解之即可.
【详解】
解:如图,过点C作CD⊥AE于点D,
设公路的宽CD=x米,
∵∠CBD=45°,
∴BD=CD=x,
在Rt△ACD中,∵∠CAE=30°,
∴tan∠CAD==,即=,
解得:x=≈20.5(米),
答:公路的宽为20.5米.
【点睛】
本题考查了直角三角形的应用,解答本题的关键是根据仰角构造直角三角形,利用三角函数解直角三角形.
20、(1);(2)他们获奖机会不相等,理由见解析.
【解析】
(1)根据正面有2张笑脸、2张哭脸,直接利用概率公式求解即可求得答案;(2)根据题意分别列出表格,然后由表格即可求得所有等可能的结果与获奖的情况,再利用概率公式求解即可求得他们获奖的概率.
【详解】
(1)∵有4张纸牌,背面都是喜羊羊头像,正面有2张笑脸、2张哭脸,翻一次牌正面是笑脸的就获奖,正面是哭脸的不获奖,
∴获奖的概率是;
故答案为;
(2)他们获奖机会不相等,理由如下:
小芳:
笑1
笑2
哭1
哭2
笑1
笑1,笑1
笑2,笑1
哭1,笑1
哭2,笑1
笑2
笑1,笑2
笑2,笑2
哭1,笑2
哭2,笑2
哭1
笑1,哭1
笑2,哭1
哭1,哭1
哭2,哭1
哭2
笑1,哭2
笑2,哭2
哭1,哭2
哭2,哭2
∵共有16种等可能的结果,翻开的两张纸牌中只要出现笑脸的有12种情况,
∴P(小芳获奖)=;
小明:
笑1
笑2
哭1
哭2
笑1
笑2,笑1
哭1,笑1
哭2,笑1
笑2
笑1,笑2
哭1,笑2
哭2,笑2
哭1
笑1,哭1
笑2,哭1
哭2,哭1
哭2
笑1,哭2
笑2,哭2
哭1,哭2
∵共有12种等可能的结果,翻开的两张纸牌中只要出现笑脸的有10种情况,
∴P(小明获奖)=,
∵P(小芳获奖)≠P(小明获奖),
∴他们获奖的机会不相等.
【点睛】
本题考查了列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比.
21、(1)孔明同学测试成绩位90分,平时成绩为95分;(2)不可能;(3)他的测试成绩应该至少为1分.
【解析】
试题分析:(1)分别利用孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,分别得出等式求出答案;
(2)利用测试成绩占80%,平时成绩占20%,进而得出答案;
(3)首先假设平时成绩为满分,进而得出不等式,求出测试成绩的最小值.
试题解析:(1)设孔明同学测试成绩为x分,平时成绩为y分,依题意得:,解之得:.
答:孔明同学测试成绩位90分,平时成绩为95分;
(2)由题意可得:80﹣70×80%=24,24÷20%=120>100,故不可能.
(3)设平时成绩为满分,即100分,综合成绩为100×20%=20,设测试成绩为a分,根据题意可得:20+80%a≥80,解得:a≥1.
答:他的测试成绩应该至少为1分.
考点:一元一次不等式的应用;二元一次方程组的应用.
22、(1) (2)证明见解析(3)F在直径BC下方的圆弧上,且
【解析】
(1)由直线l与以BC为直径的圆O相切于点C,即可得∠BCE=90°,∠BFC=∠CFE=90°,则可证得△CEF∽△BEC,然后根据相似三角形的对应边成比例,即可求得EF的长;
(2)①由∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,根据同角的余角相等,即可得∠ABF=∠FCD,同理可得∠AFB=∠CFD,则可证得△CDF∽△BAF;
②由△CDF∽△BAF与△CEF∽△BCF,根据相似三角形的对应边成比例,易证得,又由AB=BC,即可证得CD=CE;
(3)由CE=CD,可得BC= CD=CE,然后在Rt△BCE中,求得tan∠CBE的值,即可求得∠CBE的度数,则可得F在⊙O的下半圆上,且.
【详解】
(1)解:∵直线l与以BC为直径的圆O相切于点C.
∴∠BCE=90°,
又∵BC为直径,
∴∠BFC=∠CFE=90°,
∵∠FEC=∠CEB,
∴△CEF∽△BEC,
∴,
∵BE=15,CE=9,
即:,
解得:EF= ;
(2)证明:①∵∠FCD+∠FBC=90°,∠ABF+∠FBC=90°,
∴∠ABF=∠FCD,
同理:∠AFB=∠CFD,
∴△CDF∽△BAF;
②∵△CDF∽△BAF,
∴,
又∵∠FCE=∠CBF,∠BFC=∠CFE=90°,
∴△CEF∽△BCF,
∴,
∴,
又∵AB=BC,
∴CE=CD;
(3)解:∵CE=CD,
∴BC=CD=CE,
在Rt△BCE中,tan∠CBE=,
∴∠CBE=30°,
故 为60°,
∴F在直径BC下方的圆弧上,且.
【点睛】
考查了相似三角形的判定与性质,圆的切线的性质,圆周角的性质以及三角函数的性质等知识.此题综合性很强,解题的关键是方程思想与数形结合思想的应用.
23、(1)48°(1)证明见解析(3)
【解析】
(1)连接CD,根据圆周角定理和垂直的定义可得结论;
(1)先根据等腰三角形的性质得:∠ABE=∠AEB,再证明∠BCG=∠DAC,可得 ,则所对的圆周角相等,根据同弧所对的圆周角和圆心角的关系可得结论;
(3)过O作OG⊥AB于G,证明△COF≌△OAG,则OG=CF=x,AG=OF,设OF=a,则OA=OC=1x-a,根据勾股定理列方程得:(1x-a)1=x1+a1,则a=x,代入面积公式可得结论.
【详解】
(1)连接CD,
∵AD是⊙O的直径,
∴∠ACD=90°,
∴∠ACB+∠BCD=90°,
∵AD⊥CG,
∴∠AFG=∠G+∠BAD=90°,
∵∠BAD=∠BCD,
∴∠ACB=∠G=48°;
(1)∵AB=AE,
∴∠ABE=∠AEB,
∵∠ABC=∠G+∠BCG,∠AEB=∠ACB+∠DAC,
由(1)得:∠G=∠ACB,
∴∠BCG=∠DAC,
∴,
∵AD是⊙O的直径,AD⊥PC,
∴,
∴,
∴∠BAD=1∠DAC,
∵∠COF=1∠DAC,
∴∠BAD=∠COF;
(3)过O作OG⊥AB于G,设CF=x,
∵tan∠CAF== ,
∴AF=1x,
∵OC=OA,由(1)得:∠COF=∠OAG,
∵∠OFC=∠AGO=90°,
∴△COF≌△OAG,
∴OG=CF=x,AG=OF,
设OF=a,则OA=OC=1x﹣a,
Rt△COF中,CO1=CF1+OF1,
∴(1x﹣a)1=x1+a1,
a=x,
∴OF=AG=x,
∵OA=OB,OG⊥AB,
∴AB=1AG=x,
∴.
【点睛】
圆的综合题,考查了三角形的面积、垂径定理、角平分线的性质、三角形全等的性质和判定以及解直角三角形,解题的关键是:(1)根据圆周角定理找出∠ACB+∠BCD=90°;(1)根据外角的性质和圆的性质得:;(3)利用三角函数设未知数,根据勾股定理列方程解决问题.
24、 (1);(2).
【解析】
(1)可以采用列表法或树状图求解.可以得到一共有9种情况,从中找到两辆汽车都不直行的结果数,根据概率公式计算可得;
(2)根据树状图得出至少有一辆汽车向左转的结果数,根据概率公式可得答案.
【详解】
(1)画“树形图”列举这两辆汽车行驶方向所有可能的结果如图所示:
∴这两辆汽车行驶方向共有9种可能的结果,其中两辆汽车都不直行的有4种结果,
所以两辆汽车都不直行的概率为;
(2)由(1)中“树形图”知,至少有一辆汽车向左转的结果有5种,且所有结果的可能性相等
∴P(至少有一辆汽车向左转)=.
【点睛】
此题考查了树状图法求概率.解题的关键是根据题意画出树状图,再由概率=所求情况数与总情况数之比求解.
25、
【解析】
根据分式的运算法则即可求出答案.
【详解】
原式,
,
.
当时,原式
【点睛】
本题考查的知识点是分式的化简求值,解题关键是化简成最简再代入计算.
26、甲、乙两种节能灯分别购进40、60只;商场获利1300元.
【解析】
(1)利用节能灯数量和所用的价钱建立方程组即可;
(2)每种灯的数量乘以每只灯的利润,最后求出之和即可.
【详解】
(1)设商场购进甲种节能灯x只,购进乙种节能灯y只,
根据题意,得,
解这个方程组,得 ,
答:甲、乙两种节能灯分别购进40、60只.
(2)商场获利元,
答:商场获利1300元.
【点睛】
此题是二元一次方程组的应用,主要考查了列方程组解应用题的步骤和方法,利润问题,解本题的关键是求出两种节能灯的数量.
27、(Ⅰ)点P的坐标为(,1).
(Ⅱ)(0<t<11).
(Ⅲ)点P的坐标为(,1)或(,1).
【解析】
(Ⅰ)根据题意得,∠OBP=90°,OB=1,在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案.
(Ⅱ)由△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,可知△OB′P≌△OBP,
△QC′P≌△QCP,易证得△OBP∽△PCQ,然后由相似三角形的对应边成比例,即可求得答案.
(Ⅲ)首先过点P作PE⊥OA于E,易证得△PC′E∽△C′QA,由勾股定理可求得C′Q的长,然后利用相似三角形的对应边成比例与,即可求得t的值:
【详解】
(Ⅰ)根据题意,∠OBP=90°,OB=1.
在Rt△OBP中,由∠BOP=30°,BP=t,得OP=2t.
∵OP2=OB2+BP2,即(2t)2=12+t2,解得:t1=,t2=-(舍去).
∴点P的坐标为(,1).
(Ⅱ)∵△OB′P、△QC′P分别是由△OBP、△QCP折叠得到的,
∴△OB′P≌△OBP,△QC′P≌△QCP.
∴∠OPB′=∠OPB,∠QPC′=∠QPC.
∵∠OPB′+∠OPB+∠QPC′+∠QPC=180°,∴∠OPB+∠QPC=90°.
∵∠BOP+∠OPB=90°,∴∠BOP=∠CPQ.
又∵∠OBP=∠C=90°,∴△OBP∽△PCQ.∴.
由题意设BP=t,AQ=m,BC=11,AC=1,则PC=11-t,CQ=1-m.
∴.∴(0<t<11).
(Ⅲ)点P的坐标为(,1)或(,1).
过点P作PE⊥OA于E,∴∠PEA=∠QAC′=90°.
∴∠PC′E+∠EPC′=90°.
∵∠PC′E+∠QC′A=90°,∴∠EPC′=∠QC′A.
∴△PC′E∽△C′QA.∴.
∵PC′=PC=11-t,PE=OB=1,AQ=m,C′Q=CQ=1-m,
∴.
∴.
∵,即,∴,即.
将代入,并化简,得.解得:.
∴点P的坐标为(,1)或(,1).
2022-2023学年湖北省黄石市中考数学专项突破仿真模拟试题(一模二模)含解析: 这是一份2022-2023学年湖北省黄石市中考数学专项突破仿真模拟试题(一模二模)含解析
湖北省黄石市协作体重点名校2021-2022学年中考冲刺卷数学试题含解析: 这是一份湖北省黄石市协作体重点名校2021-2022学年中考冲刺卷数学试题含解析,共18页。试卷主要包含了计算的结果等于等内容,欢迎下载使用。
湖北省黄石市第十四中学2021-2022学年中考五模数学试题含解析: 这是一份湖北省黄石市第十四中学2021-2022学年中考五模数学试题含解析,共15页。试卷主要包含了答题时请按要求用笔,下列各式中计算正确的是,下列四个多项式,能因式分解的是,下列计算正确的是,一元二次方程的根的情况是等内容,欢迎下载使用。