湖北省枣阳市实验中学2022年中考数学考前最后一卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图所示,把直角三角形纸片沿过顶点B的直线(BE交CA于E)折叠,直角顶点C落在斜边AB上,如果折叠后得等腰△EBA,那么结论中:①∠A=30°;②点C与AB的中点重合;③点E到AB的距离等于CE的长,正确的个数是( )
A.0 B.1 C.2 D.3
2.某班要从9名百米跑成绩各不相同的同学中选4名参加4×100米接力赛,而这9名同学只知道自己的成绩,要想让他们知道自己是否入选,老师只需公布他们成绩的( )
A.平均数 B.中位数 C.众数 D.方差
3.将抛物线向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为( )
A. B.
C. D.
4.如图是某个几何体的三视图,该几何体是( )
A.圆锥 B.四棱锥 C.圆柱 D.四棱柱
5.已知x+=3,则x2+=( )
A.7 B.9 C.11 D.8
6.已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且−2≤x≤1时,y的最大值为9,则a的值为
A.1或−2 B.−或
C. D.1
7.如图,AB∥CD,DE⊥BE,BF、DF分别为∠ABE、∠CDE的角平分线,则∠BFD=( )
A.110° B.120° C.125° D.135°
8.如图所示,在平面直角坐标系中,点A、B、C的坐标分别为(﹣1,3)、(﹣4,1)、(﹣2,1),将△ABC沿一确定方向平移得到△A1B1C1,点B的对应点B1的坐标是(1,2),则点A1,C1的坐标分别是 ( )
A.A1(4,4),C1(3,2) B.A1(3,3),C1(2,1)
C.A1(4,3),C1(2,3) D.A1(3,4),C1(2,2)
9.如果零上2℃记作+2℃,那么零下3℃记作( )
A.-3℃ B.-2℃ C.+3℃ D.+2℃
10.已知二次函数(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程的两实数根是
A.x1=1,x2=-1 B.x1=1,x2=2
C.x1=1,x2=0 D.x1=1,x2=3
二、填空题(共7小题,每小题3分,满分21分)
11.计算:﹣|﹣2|+()﹣1=_____.
12.小李和小林练习射箭,射完10箭后两人的成绩如图所示,通常新手的成绩不太稳定,根据图中的信息,估计这两人中的新手是_____.
13.大连市内与庄河两地之间的距离是160千米,若汽车以平均每小时80千米的速度从大连市内开往庄河,则汽车距庄河的路程y(千米)与行驶的时间x(小时)之间的函数关系式为_____.
14.如图,在△ABC中,∠C=120°,AB=4cm,两等圆⊙A与⊙B外切,则图中两个扇形的面积之和(即阴影部分)为 cm2(结果保留π).
15.如图,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC内部,且AD=CD,∠ADC=90°,连接BD,若△BCD的面积为10,则AD的长为_____.
16.如果抛物线y=﹣x2+(m﹣1)x+3经过点(2,1),那么m的值为_____.
17.如图,CE是▱ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E.连接AC,BE,DO,DO与AC交于点F,则下列结论:
①四边形ACBE是菱形;
②∠ACD=∠BAE;
③AF:BE=2:1;
④S四边形AFOE:S△COD=2:1.
其中正确的结论有_____.(填写所有正确结论的序号)
三、解答题(共7小题,满分69分)
18.(10分)如图,在△ABC中,∠B=∠C=40°,点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,到达C点、B点后运动停止.求证:△ABE≌△ACD;若AB=BE,求∠DAE的度数;
拓展:若△ABD的外心在其内部时,求∠BDA的取值范围.
19.(5分)如图,在平面直角坐标系中有三点(1,2),(3,1),(-2,-1),其中有两点同时在反比例函数的图象上,将这两点分别记为A,B,另一点记为C,
(1)求出的值;
(2)求直线AB对应的一次函数的表达式;
(3)设点C关于直线AB的对称点为D,P是轴上的一个动点,直接写出PC+PD的最小值(不必说明理由).
20.(8分)如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(-4,0),与y轴交于点C,PB⊥x轴于点B,点A与点B关于y轴对称.
(1)求一次函数,反比例函数的表达式;
(2)求证:点C为线段AP的中点;
(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,说明理由并求出点D的坐标;如果不存在,说明理由.
21.(10分)列方程解应用题:
为宣传社会主义核心价值观,某社区居委会计划制作1200个大小相同的宣传栏.现有甲、乙两个广告公司都具备制作能力,居委会派出相关人员分别到这两个广告公司了解情况,获得如下信息:
信息一:甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天;
信息二:乙公司每天制作的数量是甲公司每天制作数量的1.2倍.
根据以上信息,求甲、乙两个广告公司每天分别能制作多少个宣传栏?
22.(10分)已知抛物线y=x2+bx+c经过点A(0,6),点B(1,3),直线l1:y=kx(k≠0),直线l2:y=-x-2,直线l1经过抛物线y=x2+bx+c的顶点P,且l1与l2相交于点C,直线l2与x轴、y轴分别交于点D、E.若把抛物线上下平移,使抛物线的顶点在直线l2上(此时抛物线的顶点记为M),再把抛物线左右平移,使抛物线的顶点在直线l1上(此时抛物线的顶点记为N).
(1)求抛物y=x2+bx+c线的解析式.
(2)判断以点N为圆心,半径长为4的圆与直线l2的位置关系,并说明理由.
(3)设点F、H在直线l1上(点H在点F的下方),当△MHF与△OAB相似时,求点F、H的坐标(直接写出结果).
23.(12分)西安汇聚了很多人们耳熟能详的陕西美食.李华和王涛同时去选美食,李华准备在“肉夹馍(A)、羊肉泡馍(B)、麻酱凉皮(C)、(biang)面(D)”这四种美食中选择一种,王涛准备在“秘制凉皮(E)、肉丸胡辣汤(F)、葫芦鸡(G)、水晶凉皮(H)”这四种美食中选择一种.
(1)求李华选择的美食是羊肉泡馍的概率;
(2)请用画树状图或列表的方法,求李华和王涛选择的美食都是凉皮的概率.
24.(14分)某中学为了了解在校学生对校本课程的喜爱情况,随机调查了部分学生对五类校本课程的喜爱情况,要求每位学生只能选择一类最喜欢的校本课程,根据调查结果绘制了如下的两个不完整统计图.请根据图中所提供的信息,完成下列问题:
(1)本次被调查的学生的人数为 ;
(2)补全条形统计图
(3)扇形统计图中,类所在扇形的圆心角的度数为 ;
(4)若该中学有2000名学生,请估计该校最喜爱两类校本课程的学生约共有多少名.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、D
【解析】
根据翻折变换的性质分别得出对应角相等以及利用等腰三角形的性质判断得出即可.
【详解】
∵把直角三角形纸片沿过顶点B的直线(BE交CA于E)折叠,直角顶点C落在斜边AB上,折叠后得等腰△EBA,
∴∠A=∠EBA,∠CBE=∠EBA,
∴∠A=∠CBE=∠EBA,
∵∠C=90°,
∴∠A+∠CBE+∠EBA=90°,
∴∠A=∠CBE=∠EBA=30°,故①选项正确;
∵∠A=∠EBA,∠EDB=90°,
∴AD=BD,故②选项正确;
∵∠C=∠EDB=90°,∠CBE=∠EBD=30°,
∴EC=ED(角平分线上的点到角的两边距离相等),
∴点E到AB的距离等于CE的长,故③选项正确,
故正确的有3个.
故选D.
【点睛】
此题主要考查了翻折变换的性质以及角平分线的性质和等腰三角形的性质等知识,利用折叠前后对应角相等是解题关键.
2、B
【解析】
总共有9名同学,只要确定每个人与成绩的第五名的成绩的多少即可判断,然后根据中位数定义即可判断.
【详解】
要想知道自己是否入选,老师只需公布第五名的成绩,
即中位数.
故选B.
3、A
【解析】
根据二次函数的平移规律即可得出.
【详解】
解:向右平移 1 个单位长度,再向下平移 3 个单位长度,所得的抛物线的函数表达式为
故答案为:A.
【点睛】
本题考查了二次函数的平移,解题的关键是熟知二次函数的平移规律.
4、B
【解析】
由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状
【详解】
解:根据主视图和左视图为矩形判断出是柱体,根据俯视图是长方形可判断出这个几何体应该是四棱柱.
故选B.
【点睛】
本题考查了由三视图找到几何体图形,属于简单题,熟悉三视图概念是解题关键.
5、A
【解析】
根据完全平方公式即可求出答案.
【详解】
∵(x+)2=x2+2+
∴9=2+x2+,
∴x2+=7,
故选A.
【点睛】
本题考查完全平方公式,解题的关键是熟练运用完全平方公式.
6、D
【解析】
先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由-2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.
【详解】
∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),
∴对称轴是直线x=-=-1,
∵当x≥2时,y随x的增大而增大,
∴a>0,
∵-2≤x≤1时,y的最大值为9,
∴x=1时,y=a+2a+3a2+3=9,
∴3a2+3a-6=0,
∴a=1,或a=-2(不合题意舍去).
故选D.
【点睛】
本题考查了二次函数的性质,二次函数y=ax2+bx+c(a≠0)的顶点坐标是(-,),对称轴直线x=-,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:①当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<-时,y随x的增大而减小;x>-时,y随x的增大而增大;x=-时,y取得最小值,即顶点是抛物线的最低点.②当a<0时,抛物线y=ax2+bx+c(a≠0)的开口向下,x<-时,y随x的增大而增大;x>-时,y随x的增大而减小;x=-时,y取得最大值,即顶点是抛物线的最高点.
7、D
【解析】
如图所示,过E作EG∥AB.∵AB∥CD,∴EG∥CD,
∴∠ABE+∠BEG=180°,∠CDE+∠DEG=180°,
∴∠ABE+∠BED+∠CDE=360°.
又∵DE⊥BE,BF,DF分别为∠ABE,∠CDE的角平分线,
∴∠FBE+∠FDE=(∠ABE+∠CDE)=(360°﹣90°)=135°,
∴∠BFD=360°﹣∠FBE﹣∠FDE﹣∠BED=360°﹣135°﹣90°=135°.
故选D.
【点睛】
本题主要考查了平行线的性质以及角平分线的定义的运用,解题时注意:两直线平行,同旁内角互补.解决问题的关键是作平行线.
8、A
【解析】
分析:根据B点的变化,确定平移的规律,将△ABC向右移5个单位、上移1个单位,然后确定A、C平移后的坐标即可.
详解:由点B(﹣4,1)的对应点B1的坐标是(1,2)知,需将△ABC向右移5个单位、上移1个单位,
则点A(﹣1,3)的对应点A1的坐标为(4,4)、点C(﹣2,1)的对应点C1的坐标为(3,2),
故选A.
点睛:此题主要考查了平面直角坐标系中的平移,关键是根据已知点的平移变化总结出平移的规律.
9、A
【解析】
一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.
【详解】
∵“正”和“负”相对,∴如果零上2℃记作+2℃,那么零下3℃记作-3℃.
故选A.
10、B
【解析】
试题分析:∵二次函数(m为常数)的图象与x轴的一个交点为(1,0),
∴.∴.故选B.
二、填空题(共7小题,每小题3分,满分21分)
11、﹣1
【解析】
根据立方根、绝对值及负整数指数幂等知识点解答即可.
【详解】
原式= -2 -2+3= -1
【点睛】
本题考查了实数的混合运算,解题的关键是掌握运算法则及运算顺序.
12、小李.
【解析】
解:根据图中的信息找出波动性大的即可:根据图中的信息可知,小李的成绩波动性大,则这两人中的新手是小李.
故答案为:小李.
13、y=160﹣80x(0≤x≤2)
【解析】
根据汽车距庄河的路程y(千米)=原来两地的距离﹣汽车行驶的距离,解答即可.
【详解】
解:∵汽车的速度是平均每小时80千米,
∴它行驶x小时走过的路程是80x,
∴汽车距庄河的路程y=160﹣80x(0≤x≤2),故答案为:y=160﹣80x(0≤x≤2).
【点睛】
本题考查了根据实际问题确定一次函数的解析式,找到所求量的等量关系是解题的关键.
14、.
【解析】
图中阴影部分的面积就是两个扇形的面积,圆A,B的半径为2cm,则根据扇形面积公式可得阴影面积.
【详解】
(cm2).
故答案为.
考点:1、扇形的面积公式;2、两圆相外切的性质.
15、5
【解析】
作辅助线,构建全等三角形和高线DH,设CM=a,根据等腰直角三角形的性质和三角函数表示AC和AM的长,根据三角形面积表示DH的长,证明△ADG≌△CDH(AAS),可得DG=DH=MG=作辅助线,构建全等三角形和高线DH,设CM=a,根据等腰直角三角形的性质和三角函数表示AC和AM的长,根据三角形面积表示DH的长,证明△ADG≌△CDH(AAS),可得DG=DH=MG=,AG=CH=a+,根据AM=AG+MG,列方程可得结论.,AG=CH=a+,根据AM=AG+MG,列方程可得结论.
【详解】
解:过D作DH⊥BC于H,过A作AM⊥BC于M,过D作DG⊥AM于G,
设CM=a,
∵AB=AC,
∴BC=2CM=2a,
∵tan∠ACB=2,
∴=2,
∴AM=2a,
由勾股定理得:AC=a,
S△BDC=BC•DH=10,
•2a•DH=10,
DH=,
∵∠DHM=∠HMG=∠MGD=90°,
∴四边形DHMG为矩形,
∴∠HDG=90°=∠HDC+∠CDG,DG=HM,DH=MG,
∵∠ADC=90°=∠ADG+∠CDG,
∴∠ADG=∠CDH,
在△ADG和△CDH中,
∵,
∴△ADG≌△CDH(AAS),
∴DG=DH=MG=,AG=CH=a+,
∴AM=AG+MG,
即2a=a++,
a2=20,
在Rt△ADC中,AD2+CD2=AC2,
∵AD=CD,
∴2AD2=5a2=100,
∴AD=5或−5(舍),
故答案为5.
【点睛】
本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、三角形面积的计算;证明三角形全等得出AG=CH是解决问题的关键,并利用方程的思想解决问题.
16、2
【解析】
把点(2,1)代入y=﹣x2+(m﹣1)x+3,即可求出m的值.
【详解】
∵抛物线y=﹣x2+(m﹣1)x+3经过点(2,1),
∴1= -4+2(m-1)+3,解得m=2,故答案为2.
【点睛】
本题考查了二次函数图象上点的坐标特征,解题的关键是找出二次函数图象上的点的坐标满足的关系式.
17、①②④.
【解析】
根据菱形的判定方法、平行线分线段成比例定理、直角三角形斜边中线的性质一一判断即可.
【详解】
∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∵EC垂直平分AB,
∴OA=OB=AB=DC,CD⊥CE,
∵OA∥DC,
∴=,
∴AE=AD,OE=OC,
∵OA=OB,OE=OC,
∴四边形ACBE是平行四边形,
∵AB⊥EC,
∴四边形ACBE是菱形,故①正确,
∵∠DCE=90°,DA=AE,
∴AC=AD=AE,
∴∠ACD=∠ADC=∠BAE,故②正确,
∵OA∥CD,
∴,
∴,故③错误,
设△AOF的面积为a,则△OFC的面积为2a,△CDF的面积为4a,△AOC的面积=△AOE的面积=1a,
∴四边形AFOE的面积为4a,△ODC的面积为6a
∴S四边形AFOE:S△COD=2:1.故④正确.
故答案是:①②④.
【点睛】
此题考查平行四边形的性质、菱形的判定和性质、平行线分线段成比例定理、等高模型等知识,解题的关键是灵活运用所学知识解决问题,学会利用参数解决问题.
三、解答题(共7小题,满分69分)
18、(1)证明见解析;(2);拓展:
【解析】
(1)由题意得BD=CE,得出BE=CD,证出AB=AC,由SAS证明△ABE≌△ACD即可;
(2)由等腰三角形的性质和三角形内角和定理求出∠BEA=∠EAB=70°,证出AC=CD,由等腰三角形的性质得出∠ADC=∠DAC=70°,即可得出∠DAE的度数;
拓展:对△ABD的外心位置进行推理,即可得出结论.
【详解】
(1)证明:∵点D、点E分别从点B、点C同时出发,在线段BC上作等速运动,
∴BD=CE,
∴BC-BD=BC-CE,即BE=CD,
∵∠B=∠C=40°,
∴AB=AC,
在△ABE和△ACD中,
,
∴△ABE≌△ACD(SAS);
(2)解:∵∠B=∠C=40°,AB=BE,
∴∠BEA=∠EAB=(180°-40°)=70°,
∵BE=CD,AB=AC,
∴AC=CD,
∴∠ADC=∠DAC=(180°-40°)=70°,
∴∠DAE=180°-∠ADC-∠BEA=180°-70°-70°=40°;
拓展:
解:若△ABD的外心在其内部时,则△ABD是锐角三角形.
∴∠BAD=140°-∠BDA<90°.
∴∠BDA>50°,
又∵∠BDA<90°,
∴50°<∠BDA<90°.
【点睛】
本题考查了全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理、三角形的外心等知识;熟练掌握等腰三角形的性质是解题的关键.
19、(2)2;(2)y=x+2;(3).
【解析】
(2)确定A、B、C的坐标即可解决问题;
(2)理由待定系数法即可解决问题;
(3)作D关于x轴的对称点D′(0,-4),连接CD′交x轴于P,此时PC+PD的值最小,最小值=CD′的长.
【详解】
解:(2)∵反比例函数y=的图象上的点横坐标与纵坐标的积相同,
∴A(2,2),B(-2,-2),C(3,2)
∴k=2.
(2)设直线AB的解析式为y=mx+n,则有,
解得,
∴直线AB的解析式为y=x+2.
(3)∵C、D关于直线AB对称,
∴D(0,4)
作D关于x轴的对称点D′(0,-4),连接CD′交x轴于P,
此时PC+PD的值最小,最小值=CD′=.
【点睛】
本题考查反比例函数图象上的点的特征,一次函数的性质、反比例函数的性质、轴对称最短问题等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会利用轴对称解决最短问题.
20、(1)y=x+1. (2)点C为线段AP的中点. (3)存在点D,使四边形BCPD为菱形,点D(8,1)即为所求.
【解析】
试题分析:(1)由点A与点B关于y轴对称,可得AO=BO,再由A的坐标求得B点的坐标,从而求得点P的坐标,将P坐标代入反比例解析式求出m的值,即可确定出反比例解析式,将A与P坐标代入一次函数解析式求出k与b的值,确定出一次函数解析式;(2)由AO=BO,PB∥CO,即可证得结论 ;(3)假设存在这样的D点,使四边形BCPD为菱形,过点C作CD平行于x轴,交PB于点E,交反比例函数y= 的图象于点D,分别连结PD、BD,如图所示,即可得点D(8,1), BP⊥CD,易证PB与CD互相垂直平分,即可得四边形BCPD为菱形,从而得点D的坐标.
试题解析:
(1)∵点A与点B关于y轴对称,
∴AO=BO,
∵A(-4,0),
∴B(4,0),
∴P(4,2),
把P(4,2)代入y=得m=8,
∴反比例函数的解析式:y=
把A(-4,0),P(4,2)代入y=kx+b
得:,解得:,
所以一次函数的解析式:y=x+1.
(2)∵点A与点B关于y轴对称,
∴OA=OB
∵PB丄x轴于点B,
∴∠PBA=90°,
∵∠COA=90°,
∴PB∥CO,
∴点C为线段AP的中点.
(3)存在点D,使四边形BCPD为菱形
∵点C为线段AP的中点,
∴BC=,
∴BC和PC是菱形的两条边
由y=x+1,可得点C(0,1),
过点C作CD平行于x轴,交PB于点E,交反比例函数y=的图象于点D,
分别连结PD、BD,
∴点D(8,1), BP⊥CD
∴PE=BE=1,
∴CE=DE=4,
∴PB与CD互相垂直平分,
∴四边形BCPD为菱形.
∴点D(8,1)即为所求.
21、甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏.
【解析】
设甲广告公司每天能制作x个宣传栏,则乙广告公司每天能制作1.2x个宣传栏,然后根据“甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天”列出方程求解即可.
【详解】
解:设甲广告公司每天能制作x个宣传栏,则乙广告公司每天能制作1.2x个宣传栏.
根据题意得:
解得:x=1.
经检验:x=1是原方程的解且符合实际问题的意义.
∴1.2x=1.2×1=2.
答:甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏.
【点睛】
此题考查了分式方程的应用,找出等量关系为两广告公司的工作时间的差为10天是解题的关键.
22、(1);(2)以点为圆心,半径长为4的圆与直线相离;理由见解析;(3)点、的坐标分别为、或、或、.
【解析】
(1)分别把A,B点坐标带入函数解析式可求得b,c即可得到二次函数解析式
(2)先求出顶点的坐标,得到直线解析式,再分别求得MN的坐标,再求出NC比较其与4的大小可得圆与直线的位置关系.
(3)由题得出tanBAO=,分情况讨论求得F,H坐标.
【详解】
(1)把点、代入得,
解得,,
∴抛物线的解析式为.
(2)由得,∴顶点的坐标为,
把代入得解得,∴直线解析式为,
设点,代入得,∴得,
设点,代入得,∴得,
由于直线与轴、轴分别交于点、
∴易得、,
∴,
∴,∵点在直线上,
∴,
∴,即,
∵,
∴以点为圆心,半径长为4的圆与直线相离.
(3)点、的坐标分别为、或、或、.
C(-1,-1),A(0,6),B(1,3)
可得tanBAO=,
情况1:tanCF1M= = , CF1=9,
M F1=6,H1F1=5, F1(8,8),H1(3,3);
情况2:F2(-5,-5), H2(-10,-10)(与情况1关于L2对称);
情况3:F3(8,8), H3(-10,-10)(此时F3与F1重合,H3与H2重合).
【点睛】
本题考查的知识点是二次函数综合题,解题的关键是熟练的掌握二次函数综合题.
23、(1);(2)见解析.
【解析】
(1)直接根据概率的意义求解即可;
(2)列出表格,再找到李华和王涛同时选择的美食都是凉皮的情况数,利用概率公式即可求得答案.
【详解】
解:(1)李华选择的美食是羊肉泡馍的概率为;
(2)列表得:
E
F
G
H
A
AE
AF
AG
AH
B
BE
BF
BG
BH
C
CE
CF
CG
CH
D
DE
DF
DG
DH
由列表可知共有16种情况,其中李华和王涛选择的美食都是凉皮的结果数为2,
所以李华和王涛选择的美食都是凉皮的概率为=.
【点睛】
本题涉及树状图或列表法的相关知识,难度中等,考查了学生的分析能力.用到的知识点为:概率=所求情况数与总情况数之比.
24、 (1)300;(2)见解析;(3)108°;(4)约有840名.
【解析】
(1)根据A种类人数及其占总人数百分比可得答案;
(2)用总人数乘以B的百分比得出其人数,即可补全条形图;
(3)用360°乘以C类人数占总人数的比例可得;
(4)总人数乘以C、D两类人数占样本的比例可得答案.
【详解】
解:(1)本次被调查的学生的人数为69÷23%=300(人),
故答案为:300;
(2)喜欢B类校本课程的人数为300×20%=60(人),
补全条形图如下:
(3)扇形统计图中,C类所在扇形的圆心角的度数为360°×=108°,
故答案为:108°;
(4)∵2000×=840,
∴估计该校喜爱C,D两类校本课程的学生共有840名.
【点睛】
本题考查条形统计图、扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解题关键.条形统计图能清楚地表示出每个项目的数据.
2022年江苏省苏州市吴江区实验中学中考数学考前最后一卷含解析: 这是一份2022年江苏省苏州市吴江区实验中学中考数学考前最后一卷含解析,共18页。试卷主要包含了学校小组名同学的身高,下列计算错误的是等内容,欢迎下载使用。
2022届辽宁省阜新实验中学中考考前最后一卷数学试卷含解析: 这是一份2022届辽宁省阜新实验中学中考考前最后一卷数学试卷含解析
2022届江苏省苏州市XX实验中学中考数学考前最后一卷含解析: 这是一份2022届江苏省苏州市XX实验中学中考数学考前最后一卷含解析,共17页。试卷主要包含了考生要认真填写考场号和座位序号,的相反数是等内容,欢迎下载使用。