福建省仙游县初中第三教研片区2021-2022学年中考一模数学试题含解析
展开
这是一份福建省仙游县初中第三教研片区2021-2022学年中考一模数学试题含解析,共22页。试卷主要包含了下列计算正确的是,对于不等式组,下列说法正确的是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n( )
A.∠2=20° B.∠2=30° C.∠2=45° D.∠2=50°
2.欧几里得的《原本》记载,形如的方程的图解法是:画,使,,,再在斜边上截取.则该方程的一个正根是( )
A.的长 B.的长 C.的长 D.的长
3.若x=-2是关于x的一元二次方程x2+ax-a2=0的一个根,则a的值为( )
A.-1或4 B.-1或-4
C.1或-4 D.1或4
4.若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是( )
A.m>﹣2 B.m<﹣2
C.m>2 D.m<2
5.2018 年 1 月份,菏泽市市区一周空气质量报告中某项污染指数的数据是 41, 45,41,44,40,42,41,这组数据的中位数、众数分别是( )
A.42,41 B.41,42 C.41,41 D.42,45
6.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )
A. B.
C. D.
7.下列计算正确的是( )
A. B.0.00002=2×105
C. D.
8.对于不等式组,下列说法正确的是( )
A.此不等式组的正整数解为1,2,3
B.此不等式组的解集为
C.此不等式组有5个整数解
D.此不等式组无解
9.中华人民共和国国家统计局网站公布,2016年国内生产总值约为74300亿元,将74300亿用科学计数法可以表示为( )
A. B. C. D.
10.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形外,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形外绕点B逆时针旋转,使ON边与BC边重合,完成第一次旋转;再绕点C逆时针旋转,使MN边与CD边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B,O间的距离不可能是( )
A.0 B.0.8 C.2.5 D.3.4
11.已知抛物线y=x2-2mx-4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为( )
A.(1,-5) B.(3,-13) C.(2,-8) D.(4,-20)
12.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:
成绩
人数
2
3
2
3
4
1
则这些运动员成绩的中位数、众数分别为
A.、 B.、 C.、 D.、
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.在一个暗箱里放有a个除颜色外其他完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在0.25,那么可以推算出a大约是_________.
14.在临桂新区建设中,需要修一段全长2400m的道路,为了尽量减少施工对县城交通工具所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度.若设原计划每天修路xm,则根据题意可得方程 .
15.关于的一元二次方程有两个不相等的实数根,请你写出一个满足条件的值__________.
16.分解因式2x2+4x+2=__________.
17. 一般地,当α、β为任意角时,sin(α+β)与sin(α﹣β)的值可以用下面的公式求得:sin(α+β)=sinα•cosβ+cosα•sinβ;sin(α﹣β)=sinα•cosβ﹣cosα•sinβ.例如sin90°=sin(60°+30°)=sin60°•cos30°+cos60°•sin30°==1.类似地,可以求得sin15°的值是_______.
18.如图,直线l1∥l2,则∠1+∠2=____.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)先化简,再求值:,其中x是从-1、0、1、2中选取一个合适的数.
20.(6分)如图1,在平面直角坐标系中,直线y=﹣x+1与抛物线y=ax2+bx+c(a≠0)相交于点A(1,0)和点D(﹣4,5),并与y轴交于点C,抛物线的对称轴为直线x=﹣1,且抛物线与x轴交于另一点B.
(1)求该抛物线的函数表达式;
(2)若点E是直线下方抛物线上的一个动点,求出△ACE面积的最大值;
(3)如图2,若点M是直线x=﹣1的一点,点N在抛物线上,以点A,D,M,N为顶点的四边形能否成为平行四边形?若能,请直接写出点M的坐标;若不能,请说明理由.
21.(6分)如图,AB是⊙O的直径,点E是上的一点,∠DBC=∠BED.求证:BC是⊙O的切线;已知AD=3,CD=2,求BC的长.
22.(8分)在平面直角坐标系中,某个函数图象上任意两点的坐标分别为(﹣t,y1)和(t,y2)(其中t为常数且t>0),将x<﹣t的部分沿直线y=y1翻折,翻折后的图象记为G1;将x>t的部分沿直线y=y2翻折,翻折后的图象记为G2,将G1和G2及原函数图象剩余的部分组成新的图象G.
例如:如图,当t=1时,原函数y=x,图象G所对应的函数关系式为y=.
(1)当t=时,原函数为y=x+1,图象G与坐标轴的交点坐标是 .
(2)当t=时,原函数为y=x2﹣2x
①图象G所对应的函数值y随x的增大而减小时,x的取值范围是 .
②图象G所对应的函数是否有最大值,如果有,请求出最大值;如果没有,请说明理由.
(3)对应函数y=x2﹣2nx+n2﹣3(n为常数).
①n=﹣1时,若图象G与直线y=2恰好有两个交点,求t的取值范围.
②当t=2时,若图象G在n2﹣2≤x≤n2﹣1上的函数值y随x的增大而减小,直接写出n的取值范围.
23.(8分)解分式方程: -1=
24.(10分)先化简,再求值:÷,其中m是方程x2+2x-3=0的根.
25.(10分)如图,AB是⊙O的直径, ⊙O过BC的中点D,DE⊥AC.求证: △BDA∽△CED.
26.(12分)甲、乙、丙、丁四位同学进行乒乓球单打比赛,要从中选出两位同学打第一场比赛. 若确定甲打第一场,再从其余三位同学中随机选取一位,恰好选中乙同学的概率是 . 若随机抽取两位同学,请用画树状图法或列表法,求恰好选中甲、乙两位同学的概率.
27.(12分)如图,⊙O中,AB是⊙O的直径,G为弦AE的中点,连接OG并延长交⊙O于点D,连接BD交AE于点F,延长AE至点C,使得FC=BC,连接BC.
(1)求证:BC是⊙O的切线;
(2)⊙O的半径为5,tanA=,求FD的长.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.
【详解】
∵直线EF∥GH,
∴∠2=∠ABC+∠1=30°+20°=50°,
故选D.
【点睛】
本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.
2、B
【解析】
【分析】可以利用求根公式求出方程的根,根据勾股定理求出AB的长,进而求得AD的长,即可发现结论.
【解答】用求根公式求得:
∵
∴
∴
AD的长就是方程的正根.
故选B.
【点评】考查解一元二次方程已经勾股定理等,熟练掌握公式法解一元二次方程是解题的关键.
3、C
【解析】
试题解析:∵x=-2是关于x的一元二次方程的一个根,
∴(-2)2+a×(-2)-a2=0,即a2+3a-2=0,
整理,得(a+2)(a-1)=0,
解得 a1=-2,a2=1.
即a的值是1或-2.
故选A.
点睛:一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.
4、B
【解析】
根据反比例函数的性质,可得m+1<0,从而得出m的取值范围.
【详解】
∵函数的图象在其象限内y的值随x值的增大而增大,
∴m+1<0,
解得m<-1.
故选B.
5、C
【解析】
找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.
【详解】
从小到大排列此数据为:40,1,1,1,42,44,45, 数据 1 出现了三次最多为众数,1 处在第 4 位为中位数.
所以本题这组数据的中位数是 1,众数是 1.
故选C.
【点睛】
考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.
6、C
【解析】
根据全等三角形的判定定理进行判断.
【详解】
解:A、由全等三角形的判定定理SAS证得图中两个小三角形全等,
故本选项不符合题意;
B、由全等三角形的判定定理SAS证得图中两个小三角形全等,
故本选项不符合题意;
C、
如图1,∵∠DEC=∠B+∠BDE,
∴x°+∠FEC=x°+∠BDE,
∴∠FEC=∠BDE,
所以其对应边应该是BE和CF,而已知给的是BD=FC=3,
所以不能判定两个小三角形全等,故本选项符合题意;
D、
如图2,∵∠DEC=∠B+∠BDE,
∴x°+∠FEC=x°+∠BDE,
∴∠FEC=∠BDE,
∵BD=EC=2,∠B=∠C,
∴△BDE≌△CEF,
所以能判定两个小三角形全等,故本选项不符合题意;
由于本题选择可能得不到全等三角形纸片的图形,
故选C.
【点睛】
本题考查了全等三角形的判定,注意三角形边和角的对应关系是关键.
7、D
【解析】
在完成此类化简题时,应先将分子、分母中能够分解因式的部分进行分解因式.有些需要先提取公因式,而有些则需要运用公式法进行分解因式.通过分解因式,把分子分母中能够分解因式的部分,分解成乘积的形式,然后找到其中的公因式约去.
【详解】
解:A、原式= ;故本选项错误;
B、原式=2×10-5;故本选项错误;
C、原式= ;故本选项错误;
D、原式=;故本选项正确;
故选:D.
【点睛】
分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算.同样要注意的地方有:一是要确定好结果的符号;二是运算顺序不能颠倒.
8、A
【解析】
解:,解①得x≤,解②得x>﹣1,所以不等式组的解集为﹣1<x≤,所以不等式组的整数解为1,2,1.故选A.
点睛:本题考查了一元一次不等式组的整数解:利用数轴确定不等式组的解(整数解).解决此类问题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.
9、D
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:74300亿=7.43×1012,
故选:D.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
10、D
【解析】
如图,点O的运动轨迹是图在黄线,点B,O间的距离d的最小值为0,最大值为线段BK=,可得0≤d≤,即0≤d≤3.1,由此即可判断;
【详解】
如图,点O的运动轨迹是图在黄线,
作CH⊥BD于点H,
∵六边形ABCDE是正六边形,
∴∠BCD=120º,
∴∠CBH=30º,
∴BH=cos30 º·BC=,
∴BD=.
∵DK=,
∴BK=,
点B,O间的距离d的最小值为0,最大值为线段BK=,
∴0≤d≤,即0≤d≤3.1,
故点B,O间的距离不可能是3.4,
故选:D.
【点睛】
本题考查正多边形与圆、旋转变换等知识,解题的关键是正确作出点O的运动轨迹,求出点B,O间的距离的最小值以及最大值是解答本题的关键.
11、C
【解析】
试题分析:=,∴点M(m,﹣m2﹣1),∴点M′(﹣m,m2+1),∴m2+2m2﹣1=m2+1.解得m=±2.∵m>0,∴m=2,∴M(2,﹣8).故选C.
考点:二次函数的性质.
12、C
【解析】
根据中位数和众数的概念进行求解.
【详解】
解:将数据从小到大排列为:1.50,150,1.60,1.60,160,1.65,1.65, 1.1,1.1,1.1,1.75,1.75,1.75,1.75,1.80
众数为:1.75;
中位数为:1.1.
故选C.
【点睛】
本题考查1.中位数;2.众数,理解概念是解题关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、12
【解析】
在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,根据红球的个数除以总数等于频率,求解即可.
【详解】
∵摸到红球的频率稳定在0.25,
∴
解得:a=12
故答案为:12
【点睛】
此题主要考查了利用频率估计概率,解答此题的关键是利用红球的个数除以总数等于频率.
14、.
【解析】
试题解析:∵原计划用的时间为:
实际用的时间为:
∴可列方程为:
故答案为
15、1
【解析】
先根据根的判别式求出c的取值范围,然后在范围内随便取一个值即可.
【详解】
解得
所以可以取
故答案为:1.
【点睛】
本题主要考查根的判别式,掌握根的判别式与根个数的关系是解题的关键.
16、2(x+1)2。
【解析】
试题解析:原式=2(x2+2x+1)=2(x+1)2.
考点:提公因式法与公式法的综合运用.
17、.
【解析】
试题分析:sin15°=sin(60°﹣45°)=sin60°•cos45°﹣cos60°•sin45°==.故答案为.
考点:特殊角的三角函数值;新定义.
18、30°
【解析】
分别过A、B作l1的平行线AC和BD,则可知AC∥BD∥l1∥l2,再利用平行线的性质求得答案.
【详解】
如图,分别过A、B作l1的平行线AC和BD,
∵l1∥l2,
∴AC∥BD∥l1∥l2,
∴∠1=∠EAC,∠2=∠FBD,∠CAB+∠DBA=180°,
∵∠EAB+∠FBA=125°+85°=210°,
∴∠EAC+∠CAB+∠DBA+∠FBD=210°,
即∠1+∠2+180°=210°,
∴∠1+∠2=30°,
故答案为30°.
【点睛】
本题主要考查平行线的性质和判定,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、.
【解析】
先把分子分母因式分解,约分后进行通分化为同分母,再进行同分母的加法运算,然后再约分得到原式=,由于x不能取±1,2,所以把x=0代入计算即可.
【详解】
,
=
=
=
=,
当x=0时,原式=.
20、(1)y=x2+2x﹣3;(2);(3)详见解析.
【解析】
试题分析:(1)先利用抛物线的对称性确定出点B的坐标,然后设抛物线的解析式为y=a(x+3)(x-1),将点D的坐标代入求得a的值即可;
(2)过点E作EF∥y轴,交AD与点F,过点C作CH⊥EF,垂足为H.设点E(m,m2+2m-3),则F(m,-m+1),则EF=-m2-3m+4,然后依据△ACE的面积=△EFA的面积-△EFC的面积列出三角形的面积与m的函数关系式,然后利用二次函数的性质求得△ACE的最大值即可;
(3)当AD为平行四边形的对角线时.设点M的坐标为(-1,a),点N的坐标为(x,y),利用平行四边形对角线互相平分的性质可求得x的值,然后将x=-2代入求得对应的y值,然后依据=,可求得a的值;当AD为平行四边形的边时.设点M的坐标为(-1,a).则点N的坐标为(-6,a+5)或(4,a-5),将点N的坐标代入抛物线的解析式可求得a的值.
试题解析:(1)∴A(1,0),抛物线的对称轴为直线x=-1,
∴B(-3,0),
设抛物线的表达式为y=a(x+3)(x-1),
将点D(-4,5)代入,得5a=5,解得a=1,
∴抛物线的表达式为y=x2+2x-3;
(2)过点E作EF∥y轴,交AD与点F,交x轴于点G,过点C作CH⊥EF,垂足为H.
设点E(m,m2+2m-3),则F(m,-m+1).
∴EF=-m+1-m2-2m+3=-m2-3m+4.
∴S△ACE=S△EFA-S△EFC=EF·AG-EF·HC=EF·OA=- (m+)2+.
∴△ACE的面积的最大值为;
(3)当AD为平行四边形的对角线时:
设点M的坐标为(-1,a),点N的坐标为(x,y).
∴平行四边形的对角线互相平分,
∴=,=,
解得x=-2,y=5-a,
将点N的坐标代入抛物线的表达式,得5-a=-3,
解得a=8,
∴点M的坐标为(-1,8),
当AD为平行四边形的边时:
设点M的坐标为(-1,a),则点N的坐标为(-6,a+5)或(4,a-5),
∴将x=-6,y=a+5代入抛物线的表达式,得a+5=36-12-3,解得a=16,
∴M(-1,16),
将x=4,y=a-5代入抛物线的表达式,得a-5=16+8-3,解得a=26,
∴M(-1,26),
综上所述,当点M的坐标为(-1,26)或(-1,16)或(-1,8)时,以点A,D,M,N为顶点的四边形能成为平行四边形.
21、 (1)证明见解析
(2)BC=
【解析】
(1)AB是⊙O的直径,得∠ADB=90°,从而得出∠BAD=∠DBC,即∠ABC=90°,即可证明BC是⊙O的切线;
(2)可证明△ABC∽△BDC,则,即可得出BC=.
【详解】
(1)∵AB是⊙O的切直径,
∴∠ADB=90°,
又∵∠BAD=∠BED,∠BED=∠DBC,
∴∠BAD=∠DBC,
∴∠BAD+∠ABD=∠DBC+∠ABD=90°,
∴∠ABC=90°,
∴BC是⊙O的切线;
(2)解:∵∠BAD=∠DBC,∠C=∠C,
∴△ABC∽△BDC,
∴,即BC2=AC•CD=(AD+CD)•CD=10,
∴BC=.
考点:1.切线的判定;2.相似三角形的判定和性质.
22、(1)(2,0);(2)①﹣≤x≤1或x≥;②图象G所对应的函数有最大值为;(3)①;②n≤或n≥.
【解析】
(1)根据题意分别求出翻转之后部分的表达式及自变量的取值范围,将y=0代入,求出x值,即可求出图象G与坐标轴的交点坐标;
(2)画出函数草图,求出翻转点和函数顶点的坐标,①根据图象的增减性可求出y随x的增大而减小时,x的取值范围,②根据图象很容易计算出函数最大值;
(3)①将n=﹣1代入到函数中求出原函数的表达式,计算y=2时,x的值.据(2)中的图象,函数与y=2恰好有两个交点时t大于右边交点的横坐标且-t大于左边交点的横坐标,据此求解.
②画出函数草图,分别计算函数左边的翻转点A,右边的翻转点C,函数的顶点B的横坐标(可用含n的代数式表示),根据函数草图以及题意列出关于n的不等式求解即可.
【详解】
(1)当x=时,y=,
当x≥时,翻折后函数的表达式为:y=﹣x+b,将点(,)坐标代入上式并解得:
翻折后函数的表达式为:y=﹣x+2,
当y=0时,x=2,即函数与x轴交点坐标为:(2,0);
同理沿x=﹣翻折后当时函数的表达式为:y=﹣x,
函数与x轴交点坐标为:(0,0),因为所以舍去.
故答案为:(2,0);
(2)当t=时,由函数为y=x2﹣2x构建的新函数G的图象,如下图所示:
点A、B分别是t=﹣、t=的两个翻折点,点C是抛物线原顶点,
则点A、B、C的横坐标分别为﹣、1、,
①函数值y随x的增大而减小时,﹣≤x≤1或x≥,
故答案为:﹣≤x≤1或x≥;
②函数在点A处取得最大值,
x=﹣,y=(﹣)2﹣2×(﹣)=,
答:图象G所对应的函数有最大值为;
(3)n=﹣1时,y=x2+2x﹣2,
①参考(2)中的图象知:
当y=2时,y=x2+2x﹣2=2,
解得:x=﹣1±,
若图象G与直线y=2恰好有两个交点,则t>﹣1且-t>,
所以;
②函数的对称轴为:x=n,
令y=x2﹣2nx+n2﹣3=0,则x=n±,
当t=2时,点A、B、C的横坐标分别为:﹣2,n,2,
当x=n在y轴左侧时,(n≤0),
此时原函数与x轴的交点坐标(n+,0)在x=2的左侧,如下图所示,
则函数在AB段和点C右侧,
故:﹣2≤x≤n,即:在﹣2≤n2﹣2≤x≤n2﹣1≤n,
解得:n≤;
当x=n在y轴右侧时,(n≥0),
同理可得:n≥;
综上:n≤或n≥.
【点睛】
在做本题时,可先根据题意分别画出函数的草图,根据草图进行分析更加直观.在做第(1)问时,需注意翻转后的函数是分段函数,所以对最终的解要进行分析,排除掉自变量之外的解;(2)根据草图很直观的便可求得;(3)①需注意图象G与直线y=2恰好有两个交点,多于2个交点的要排除;②根据草图和增减性,列出不等式,求解即可.
23、7
【解析】
根据分式的性质及等式的性质进行去分母,去括号,移项,合并同类项,未知数系数化为1即可.
【详解】
-1=
3-(x-3)=-1
3-x+3=-1
x=7
【点睛】
此题主要考查分式方程的求解,解题的关键是正确去掉分母.
24、原式=,当m=l时,原式=
【解析】
先通分计算括号里的,再计算括号外的,化为最简,由于m是方程x2+3x-1=0的根,那么m2+3m-1=0,可得m2+3m的值,再把m2+3m的值整体代入化简后的式子,计算即可.
解:原式=
∵x2+2x-3=0, ∴x1=-3,x2 =1
∵‘m是方程x2 +2x-3=0的根, ∴m=-3或m=1
∵m+3≠0, ∴.m≠-3, ∴m=1
当m=l时,原式:
“点睛”本题考查了分式的化简求值、一元二次方程的解,解题的关键是通分、约分,以及分子分母的因式分解、整体代入.
25、证明见解析.
【解析】
不难看出△BDA和△CED都是直角三角形,证明△BDA∽△CED,只需要另外找一对角相等即可,由于AD是△ABC的中线,又可证AD⊥BC,即AD为BC边的中垂线,从而得到∠B=∠C,即可证相似.
【详解】
∵AB是⊙O直径,
∴AD⊥BC,
又BD=CD,
∴AB=AC,
∴∠B=∠C,
又∠ADB=∠DEC=90°,
∴△BDA∽△CED.
【点睛】
本题重点考查了圆周角定理、直径所对的圆周角为直角及相似三角形判定等知识的综合运用.
26、 (1);(2)
【解析】
1)由题意可得共有乙、丙、丁三位同学,恰好选中乙同学的只有一种情况,则可利用概率公式求解即可求得答案;
(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中甲、乙两位同学的情况,再利用概率公式求解即可求得答案.
【详解】
解:(1)∵甲、乙、丙、丁四位同学进行一次乒乓球单打比赛,确定甲打第一场,再从其余的三位同学中随机选取一位,∴恰好选到丙的概率是: ;
(2)画树状图得:
∵共有12种等可能的结果,恰好选中甲、乙两人的有2种情况,
∴恰好选中甲、乙两人的概率为:
【点睛】
此题考查的是用列表法或树状图法求概率.注意树状图与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
27、(1)证明见解析(2)
【解析】
(1)由点G是AE的中点,根据垂径定理可知OD⊥AE,由等腰三角形的性质可得∠CBF=∠DFG,∠D=∠OBD,从而∠OBD+∠CBF=90°,从而可证结论;
(2)连接AD,解Rt△OAG可求出OG=3,AG=4,进而可求出DG的长,再证明△DAG∽△FDG,由相似三角形的性质求出FG的长,再由勾股定理即可求出FD的长.
【详解】
(1)∵点G是AE的中点,
∴OD⊥AE,
∵FC=BC,
∴∠CBF=∠CFB,
∵∠CFB=∠DFG,
∴∠CBF=∠DFG
∵OB=OD,
∴∠D=∠OBD,
∵∠D+∠DFG=90°,
∴∠OBD+∠CBF=90°
即∠ABC=90°
∵OB是⊙O的半径,
∴BC是⊙O的切线;
(2)连接AD,
∵OA=5,tanA=,
∴OG=3,AG=4,
∴DG=OD﹣OG=2,
∵AB是⊙O的直径,
∴∠ADF=90°,
∵∠DAG+∠ADG=90°,∠ADG+∠FDG=90°
∴∠DAG=∠FDG,
∴△DAG∽△FDG,
∴,
∴DG2=AG•FG,
∴4=4FG,
∴FG=1
∴由勾股定理可知:FD=.
【点睛】
本题考查了垂径定理,等腰三角形的性质,切线的判定,解直角三角形,相似三角形的判定与性质,勾股定理等知识,求出∠CBF=∠DFG,∠D=∠OBD是解(1)的关键,证明证明△DAG∽△FDG是解(2)的关键.
相关试卷
这是一份09,福建省莆田市仙游县郊尾枫亭教研片区2023-2024学年九年级下学期月考数学试题(无答案),共5页。试卷主要包含了选择题,填空,解答题等内容,欢迎下载使用。
这是一份2022-2023学年福建省莆田市仙游县郊尾枫亭教研片区七校联考八年级(下)期中数学试卷(含解析),共20页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
这是一份2022-2023学年福建省莆田市仙游县郊尾枫亭教研片区七校联考八年级(下)期中数学试卷(含解析),共20页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。